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Abstract

The Cauchy problem for a class of hyperbolic operators with triple characteristics is
analyzed. Some a priori estimates in Sobolev spaces with negative indexes are proved.
Subsequently, an existence result for the Cauchy problem is obtained.
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1 Introduction

In the past, many authors studied widely hyperbolic operators with double character-
istics, both in the case when there is no transition between different types on the set
where the principal symbol vanishes of order 2 (see for instance [5,8] for a general
survey) and when there is transition (see [1—4]). The operators are called effectively
hyperbolic if the propagation cone C is transversal to the manifold of multiple points
(see [8]). Moreover, if this occurs and lower order terms satisfy a generic Ivrii-Petkov
vanishing condition, we have well posedness in C*° (see [7]).

The aim of the paper is to analyze the following class of operators with triple
characteristics

P(xo, D) = D} — (D;, +x{D};)Dx, — bx{ D}, in £2 =]0, +oo[xRR?,

X X
where Dy, = ;ax i»J = 0, 1,2, under hyperbolicity assumptions, namely |b| < %
Such a class of operators has been considered in [6], for example operators whose
propagation cone is not transversal to the triple characteristic manifold. The authors
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prove a well posedness result in the Gevrey category for a simple hyperbolic operator
with triple characteristics and whose propagation cone is not transversal to the triple
manifold. Furthermore they estimate the precise Gevrey threshold, by exhibiting a
special class of solutions, through which we can violate weak necessary solvability
conditions. More precisely, let x = (xg, x’) where x" = (x1, x2), let & = (&, &),
where &' = (&1, &). In [6], the authors study the well posedness of the following
Cauchy problem

Pu =0, in £ =]0, +o00o[xR?,
Dx]'u(oa x/) == ¢j(-x/)a ,] = Oa 1’ 25

with ¢;(x") € y®O@®R?), j = 0,1,2, where y®(R?) is the Gevrey s class. They
obtained that the Cauchy problem for P is well posed in the Gevrey 2 class assuming
that b? < %. Moreover, if s > 2, it is possible to choose b € ]O, %[ such that the

Cauchy problem for P is not locally solvable at the origin in the Gevrey s class.
In this paper, instead, we investigate on the well posedness of the Cauchy problem

{Pu:f, in £2, 0

Dy;u(0,x") =0, j=0,1,2,

with f € H"(£2), in the Sobolev spaces, obtaining an existence result for solutions.
Let us set

0=-0 + (afl +x%a§2> By +bx}03, in Q2.
It results
Pu=iQu, in £2.

As a consequence, problem (1) becomes
Qu =g, in§$2,
> | @)
axju(O,x )=0, j=0,1,2,

where we set g = if, in §2, with g real function. The main result of the paper is the
following.

Theorem 1 Let f € H[OC(E), withr > 5. For every h, T > 0, the Cauchy problem
(1) admits a solution u € Hr_z(Qh,T), where 2, 7 = [0, h[x] =T, T2

The rest of the paper is organized as follows. Section 2 deals with some preliminary
notations and definitions. In Sect. 3 some a priori estimates are established. Section 4
is devoted to obtain a priori estimates in Sobolev spaces with negative indexes. Finally,
the existence result for solutions to the Cauchy problem are proved in Sect. 5.
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On the Cauchy problem for a class of hyperbolic operators...

2 Notations and preliminaries

Let o = (ap, a1, ) € Ng. Let 0% be the derivative of order ||, let Bi’j be the
derivative of order & with respect to x; and let ij’ x, e the derivative of order /2 with
respect to x; and x .

We indicate the L2-scalar product, the L?-norm and the H"-norm (r € Ny) by (-, ),
|| - |l and || - || g~ respectively.

Let £2 be an open subset of R>. Let Co° (£2) be the space of the restrictions to £2
of functions belonging to C° (R3). For each K € 2 compact set, let C§°(K) be the
set of functions ¢ € Cy° (£2) having support contained in K. Let S(R?) be the space
of rapidly decreasing functions. In particular, let S(£2) be the space of the restrictions
to £2 of functions belonging to S(R?).

Let 2 = [0, +oo[x]aj, b1[x] — 0o, +o00[ and let s € R, let us denote by | -
Il gr0.0.5 @) the norm given by

5 +00 bq
||u||H0,0.S(§) = f de/ dxl
0 al

+00 1 e
f L (04 18P o, 11, 8)2dE, Y e C(@),
oo 2T

where the Fourier transform is performed only with respect to the variable x,. More-
over, let us denote by A the pseudodifferential operator given by

too 1 ; _
Asu(x) =/ Eemz'&(l + &%) T u(x0, x1. £2)dEr, Yu € CO(R).  (3)

—0o0

Let us recall that Ay : C3° (2) = C™(£2). For every ¢(x») € C;°(R), the operator

¢ Azu extends to a linear continuous operator from HCOO’,%_ (2) to Hl?)’co’r_s (2), where
r,s € R. In particular, in £2; = [0, k[x]ay, b1[x] — oo, +ool, for k > 0, we denote
by H®05(£2;) the space of all u € H*%5(£2) such that supp u € §2x. Moreover,
denoted by U, the projection of supp u on the axis x2, if supp ¢ € R\U,, then 9 Asu
is regularizing with respect to the variable x>, namely it results:

lpAsull goor < cllull oo, Vr, r'eR, u e C®(R2).

The norms |[u|| go.o.s(oy and || Asull 2y are equivalent for any s € R.

Lets € Rand p > 0. Let H?*(R?) be the space of distributions U into R? such
that

1 ~
el s ey = 5 > fR A+ 181195, 4, Uxo, x1. &) Pdxodxidés < +o0.
|hl<p
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At last, let HP*(§2) be the space of the restrictions to §2 of elements of H”(R?)
endowed with the norm

||u||Hp3(.Q) = inf ”U”Hp,s(RS).
U e HPS(RY)
Ul =u

3 A priori estimates
The following preliminary result holds (see [1], Lemma 3.1).
Lemmal Letu € S(£2) and let p,ag, oy, o € No. Then

pt2

”xOZ 8060-{-1,0{1,(){2””. 4)

P
lxg %02y | <

+ 1
Now, we establish a useful estimate.

Lemma2 Let u € C5°([0, +00[xR?) such that suppu C [0, h[x] — T, T[> Let
¢ € C°(R) such that supp g € R\] —nT,nT[, withn > 2. Foreveryr <0,s € R
and p > s +r, it results

Cp,r,s
A u < L u 0.r .
lpAs ||L2(Q) == )T | ||H00 (2)

Proof In order to obtain the claim, we follow analogous techniques used in the proof
of Lemma 3.2 in [3]. For the reader’s convenience, we present the demonstration. We
have

1 [T . .
(pAsu)(x) = E/ 2520 (x2) (1 + |£12) 20 (x0, X1, £2)dE>
—00
1 . .
=5 / /1%2 ez(xz—yz)éz¢(x2)(1 + |§2|2)§M(x0, x1, y2)dyrdér

im l'(X2—y2)E2 W(XZ)M(XO’ -x]a y2) 2 s
= o7 (1 2dv-d
2 //]R2 ¢ (x2 — yp)™ Ez( + 16217) 2dy2d&>

m +oo too
=0 [ o gl [ e
. :

2 00
v (25%)

(x2 — y2)™

u(xo, X1, y2) dyr, (5)

where m € N and ¢ € C®(R) such that ¥ (t) = 1 if |t| > 1, ¥ (z) = 0if |7 < L.
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By using (5), we get

i"@(xy) [T s
o= f 95 (1 + 1621%)2 u(xo, X1, X2)
—0

X2 eixzé'z p
*(’”(m—l)T) X ) 2

") [T $~
— oy (1 + 1621%)2 W(xo, x1, 172)
—00

X3 eixzé‘z
-F dé,
= (‘”(m_m) x5 ) ®
where

X3 eixz& +oo B X2 1
. — ix2(§2—12) —dx»,
2(w<(n—l)T> Xl ) /_Oo ¢ w((n—l)T)xg” 2

Easily, we deduce

. X3 el*282
(1 + &2 —n2)" ) Fx, (W <(n — 1)T> T )

+
:/ Ooeixz(éz—nz)w 12 ide
- (n— DT ) x2

r

+i" Z r /+OO eixz(éz—nz)aj v *2 3r_j dez
i) ) AN DV A A

j=0

(pAsu)(x) =

and also

Frr (@Asu)(x0, X1, 1m2) =

and, then,

U e e
“UNe-01) g )17 av@-m»i \@-DT)

Making use of (6) and (7), we obtain

loAsull = | Fx, (@ Asu)|l

A

1 +OO 2 s
— 12l 21wy f O (1 + |62 2 W(x0. x1, m2)
2 50

X2 PRSI
T (‘” ((n— 1>T> Xy )d&

+00 P
s fama el ey
—o0

L*(£2)

(6)

(7
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dé&
L%(£2)

X2 el*282
= (‘”(m_m) 7 )

/+oo oz (1 + &2 FCxo, 21, m2)|

Cr.m

L2(£2
( )dé'z.

T L= DT (14 & —m)??
From the previous inequality and the Peetre inequality (see [9], pag. 17), it follows

Cr.m,s

A <
lpAsullp 2oy < [(n — )T]"—2

L& je, 8)

s m+1
/+oo [+ 183" o, 51, m)|

o (14 (&2 — m)?)?2

Ifm > s +r+2,setting p =m — 2 in (8), it results

Cp.r,s
Asu < —P0 | oor o
lpAsullp2o) < TCEEYal [ull gro.0.r (2

where ¢, , s is independent of n and T'. O
Taking into account Lemma 2, we deduce

Lemma3 Let ¢ € C3°(R) such that ¢(t) = 0, for |t| < 1. For every ¢ > 0, for every
r <0ands € R there exists n > 1 such that

(o)
Y\ o=pr )"

In the following, we establish a priori estimates in L%(27), where pr =
[0, h[x] — T, T[?, for functions belonging to Coo(82p,7).

f 8||M||H0,O,r(9).
L2(£2)

Theorem 2 For every h, T > 0, there exists a positive constant ¢ such that
10xouell + llull < ¢ (18x, Qull + 1105, Quill) . Yu € CG°(82) : suppu S 2. 7. (9)
Proof By means of a translation with respect to x; in 7', we consider the function
v(xo, X1, x2) = u(xp, x1,x2 — T), in 25 =]0, +o0[x] — T, T[x]0, 2T].
We extend the function v in even manner in | — 27, 2T[. It results
v(xo, X1, —X2) = v(x0, X1, X2), in 27 =]0, +oo[x] — T, T[x]—2T,2T]|.
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We consider the following Fourier development of the function v:

+00 inwyxy

U(X X X ) — E C (.x X )
07 1, A2 n 09 1
2\/ T

n=—o0
+00

- Z Un(anxl’x2),

n=—0oo

where wy = ﬁ—’TT = 57 and

1 2T .
cn(x0, x1) = —f v(x0, x1, x2)e” "0 2dx;.
" 2JT Joor

We remark that the Fourier coefficients ¢, are real. We apply the operator Q to v,
obtaining

einwoxz 3 5
Qva(x0, x1, x2) = | — 3, en 0. x1) + 02, gy (x0, x1)

2T

2 .22 -3 3.3
—n"wxi OxyCn (X0, X1) — in a)obxlcn(xo,xl)]

£l Nwox2

2JT

= Lycn(xo, Xx1)

where we set

3 2 2 .22
Lycn(xo, x1) = —85 cn(x0, X1) + 05, dxyCn (X0, X1) — n"wjx] dxyCn (X0, X1)

.3 3,3
—in”wybxicy(xo, x1).

It results

inwyx;

400
e
QU(X(),X],XZ): Z ann(XO,xl)

= 2T

We estimate the Fourier coefficients ¢, (xg, x1) by means of L, c,(xg, x1) in L?. To
this aim, let us consider the inner products

(Lncn, xoa,%ocn) + (Xoafocn, Lycp)
= —2(3300,1, xoa)%ocn) + 2(0x, 8)%1 Cn, xoagocn) — 2n2w(2)(x128xocn, xoafocn)
= 2118% cull® — 2(3x, dxyCn, X097, dx,Cn) + 202w} [1X19xeCn |1

= 2[182 cnll* + 2118y, dxyen > + 20w llx10xpcn > (10)
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From which we have

2 2 2 2.2 2 2
182 cull® + 1195, 8xycn 12 + n2w3 x18x0cal> < cllxoLncal. (11)

Let us evaluate the inner products

(Lnaxlcna )C()a)%o 8xlcn) + (X03§03x16n, Ly axlcn)-

Proceeding as in (10), we obtain

105, 3x,cnlI* + 1192, 2o CnlI> + n* 511130 O, |1
= (Lnaxlcna xoa)%oaxlcn) + (xoa)%oaxlcn’ Lnaxlcn)
= (axl Lycy, an)%O axlcn) + (xoafo axlcn, axl Lycp)

2.2 2
+4(x1n"wydxyCn s xoaxoax]cn).
Hence, we deduce

1
2 2 2 2 2
2 zllaxoaxlcl’l” + 2 2”8)61 axocl’l” + “xla)C()axlcl’l”
n a)O n a)o

_ 2
= 52,2
n-wy

2 2
%00 LnCallll 03, xy |l + 4l[x0x10x0Callll 05, Oy crl-

As a consequence, we have

1 1
2 2 2 2 2
> 2 ”axoaxlcnn + > 2 ”ax1 axocn” + ||x13x03xlcn||

2 2 2 2
< 5 %00y Lucn ™ 4 cn”awyqllx19x call” (12)
n CI)O

Making use of (11) and (12), we get
102 call® + 1192, o nll® + nafllx1 dxycnll®

1
2 2 2 2
+ 2 2||8x08xlcn” + 2 2”8)61 8xocn||

2 2 ¢ 2
+||xlaxoaxlcn” < cllxoLncyll” + m”xoaxl Lycyll
0

llixonwoLc || (13)

¢ 2
= m”xoalenCnH +

2.2
0 n=w,

Let us consider v € C3°(J0, +oo[x] — T, T[x]0, 2T[) and we still denote by v its
even extension in |0, +oo[x] — T, T[x] — 2T, 2T[. Let us develop v in Fourier’s

series with respect to x;:
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+00 inwyxy

e
v(x0, X1, X2) = cn(x0, X1) ,
n;w ! 2JT

from which it follows

inwyx)

400 e
Qu(x0, x1,%2) = Y Lncu(x0, x1)

i 2T

Hence, it results

+00 inwyxy
X10xy 0y, V(X0, X1, X2) = E X10xy0x; Cn (X0, X1) T
n=-—00 VT

Applying the Parseval inequality, we have

2 2
vlli_a7 27l 10,400l x =T, T[
2

2
||Xlaxoaxlv|| = H ”xlaxoaxl

+00

2
Z |x1 axoaxlcnl

n=—oo
+00
< Y Ixidygdx el (14)

n=—oo

10,+o00[x]-T,T[

Taking into account (13) and (14), we obtain

+00
2 2
118y, 0[1F < ) 1119y Oy
n=—oo
+00
C 2 c . 2
< D | 55 1%00x Lacall* + 5 llixonwoLcy|
= n-wy n-wy
n=—oo
+00
C 1 2 . 2
== Y 5 (1% Local® + linxowo Lucal?] . (15)
Wy o
We remark that
+00 einwon
X090, QU(X0, X1, X2) = Y %08, Lnca (X0, X)) ——=
n=-—00 VT

For the Parseval inequality, it results

2 2 2
”)C()ax] Qv|” = ” onaxl QU”]_2T,2T[ H]O,+oo[x]—T,T[

400 2

Z |x08x1ann|2

n=—0oo

(16)

10,4+o00[x]-T,T|[
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Moreover, we remark that

+00 eina)oxz
X0, QU(x0, X1, X2) = Y inwoxoLncn(x0, X1) ==
n=-—00 VT

Applying, again, the Parseval inequality, we have
2 2 2
||x03x2 Qv|” = ” Hx()axz Qv ”]_2T72T[ H]O,—}-OO[X]—T,T[

400 2
D> linwoxoLncal?

n=—~oo

(17)

10,4o00[x]-T,T|[

Making use of (15), (16) and (17), we obtain

—+00 1
2 2 : 2
180,01 < ¢ Y2 = [ %00k Lacall® + linwoLocal |

n=—oo

< ¢ [ Ix0d, QI + I1¥00:, OvI? (1)

On the other hand, it results
2
0= / O, X1 (axo v) dx
Q

"
T
/.;2

From which it follows

(E)xov)2 dx—l—/ 2X10xy U0y, Ox, VdX.

" "
T ‘QT

185, vl* = =2 /Q x1 (3 v) (9xyx,v) dx

"
T
=< 2[[3xo [ 1121 0xg O V-

Hence, we have
185 v1I* < 4113y 0, V1% (19)
From (18) and (19), we deduce
190112 = ¢ (Ix00s, QvI2 + 102, QvI1?)

By using Lemma 1, it results
195112 + 112 = € (Ix0dy, QuI + 100y, QvI1?) 20)
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Let us remark

+00 elna)oxz
X00x, QU =Y X0dx; LnCn(x0, x1) Wil
n=—oo T
+00 inwoxa
x00x, Qv = Z inwoxoLncp(xo, X1) Wik
n=—0oo T

As a consequence, we have

1X08x, QVII} o7 27 Z %005, Lncnl®,

n=——oo
1X08x, Q1T o7 2177 Z linwoxoLacal®.
n=—oo
Furthermore, we obtain
= cos(nwyxy)
(X0, Q) (x2) + (X0dy, QV)(—x2) = n;oo 2x00x, annT,
= cos(nwyxy)
(X080, QU)(x2) + (00, QV)(—x2) = ) ZineozoLnen— =

n=—0oo

By using (21), (22), (23) and (24), we deduce
109, QUIIT_a7 27 + I1X09x, QVIIT 27 27

+0o0 +oo
2 . 2
D %00y Lucal* + ) linwoxoLacyl

n=-—00 n=-—00

= [1x0(3x, QV)(x2) + x0(dx,; QV) (—xD)IT_27 27
+1x0(3x, QV) (x2) + X0 (32 OV (=X T 27 277

= 2)|x0(3x, QV) (x2) + x0(dy, Q) (—x2) 1% o7
+21x0(3y, Q) (x2) + x0(3x, Q) (—x2) 13 27

< 2(|Ix0(@x, Q) (x2) 1o 271 + 1%0(32, QVI(—x2) 130 277
+1x0 (Bx, Q) (x2) 1o 271 + 16032, QU (—x2) [0 277)-

Now, we want to estimate directly the norms. Let us start from

emwox2

Wik

x0 (05, QU) (x2) = Z X00x, Lncn (x0, x1)

n=—0oo

1)

(22)

(23)

(24)

(25)
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It results

HXO (35, Q) (x2) H]zo,zT[
1 +o0 +00 2T ‘

=7 >y xgalenc,,(xo,xl)(alehch(xo,xl))*f /0% g ihe0x2 gy
Tn:—ooh:_oo 0

Let us compute the other norm remembering that

+00 —inwoxa

e
%0 (35, QV) (=x2) = ) %00, Luca (X, )
n=—oo

We have

on (am Qv) (—=x2) H]zo,zr[
RS o7 .
4T Z Z xéaxll‘”cn(xo’xl)(amLhch(xO,xl))*f om0 pihwox2 g )
0

n:—ooh:—oo

From which, it follows

HXO (am Q”) (x2) ”]20,2T[ = on (am Qv) (—x2) H]20,2T[ :

Moreover, making use of (25) and (20), we obtain

2 2 2 2
10001 + 101, < e (Ix0dy, QuIG, + Ix00:; Qvl%, )

2¢ (I1x003, @I, + %00 OVl ) -

A

Since v(xq, x1, x2) = u(xg, x1, xp — T), for every (xg, x1, x2) € £2/., we have

10xoutll2r + llulley < ¢ (llx0dy, Qulle, + Ix00x, Quller) . (26)
from which the claim follows. O

Let us remark that the positive constant ¢ in (26) does not depend on 7" but only on
x1. As a consequence, the following result holds:

Corollary 1 For every h, T > 0, there exists a positive constant ¢ such that

13xoull + llull < ¢ (19x, Quill + 13y, Qul) 27)

for everyu € Cgo(ﬁ) such that suppu C [0, T[x] —T,T[x] —nT,nT]|, for every
n e N.
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4 A priori estimate in Sobolev spaces

In the following, we establish a priori estimate in the Sobolev spaces.

Theorem 3 For every s > 0, it results

| 0xo 2 || 0.0.—s + 1t || o.0.—s <c (|| Qull go1,—s + | QullHo,o,—s+1) , Yu e Cy°($2n.1),
(28)

where 2,7 = [0, h[x] =T, T[>

Proof Let ¢ € C3°(R) such that ¢(x) = lin [—~(n — DT, (n — 1)T] and supp ¢y C
| =nT,nT[, withn > 1. For every u € C35°(825,7), we set vy = @ Asu, where Ay is
the pseudodifferential operator defined as:

1 , s o
Asu = _/ "2 (1 + &) 21i(x0, x1, £2)dés,
2 R
with s > 0. Applying (27) to vs, we have

18 sl + llvsll < € (192, Qus | + 135, Qs )
(192, Q@ Asull + 119y, QpAsull)
< ¢ (l9dy, QAsull + 110y, [Q, plAsul)
+¢ (199 QAsull + 110x,[Q, plAsul))
< ¢ (l9dx, As Qull + 1184, [Q, ¢l Asul))
+¢ (199, As Qull + I[85, 91 Q Asull + 118x,[Q, @l Asull)

= C<||<PAs3x1 Qull + ll9Asdx, Qull + [ R1 Qu

I Roull + ||R33xoull) +cll[Q, plAgOx ull, (29)

where R1, R> and Rz are regularizing operators with respect to the variable x; of type

Rl:w(L> A, i=1,2.3 (30)
(n— DT

with ¢ € CSO(R) such that ¢ = 0 in [—1, 1], as in Lemma 3, and having used

Oy, QAsu = A;0y, Qu and 0y, QAsu = A0y, Qu.
Making use of Lemmas 1, 3 and (29), we deduce

10xgull go.o.—s + ull goo.—s < ¢ (1 Qull go.1.—s + | Qull go.o—s+1 + || Qull gro.0.~s)
+c (| Radx ]l + | Rsdx, dxoull) , (31)

where R4 and R4 are regularizing operators with respect to the variable x; of type
(30).
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Now, written the operator Q as:
Qu = L(dyx,u) + x{dy, dxou + bxi 03 u,

where L is the wave operator, namely L = 8%0 + 8)%] , it results

(L(dxgu), Ogyu0) = (Qu, dg,u) — (x703, dxgtt, dpyu) — (bx7 93,1, dg ).

X0 > 7X0 > 7X0

Integrating by parts, we have easily:
102, ull + 1102, g0l < € (102,050 + N3, + 11 Qul ).
Making use of Lemma 1, it follows

0xoull + 19,2l + 192, ull + 1185, dxpuell < c (||a§28xou|| + 1193 ull + IIQull) :
(32)

Taking into account (31), (32) and Lemma 3, we deduce

19yt g00« + el 00—+ < ¢ (I1Qutll o1« + | Qull goo—sor + | Qutll 00—
4 (119, 2]l 0.0.—5—3 4 [|0x, Ixg e || £70.0.—5-3)
< c (I1Qull go.1.~s + | Qull go.0.~s+1)
+c (”M”H0,0,—s + [|Oxou | go.0.—s + || Qu||Ho,0,—s) .

From which we have
||ax01/l ”H0,0,—S + ||u||Ho,o,—s <c (” Ql/l ”HO,I,—S + ” Ql/tllH0,0,—s+1) ,

namely (28). O

5 Proof of Theorem 1

For every u € C3°(£2,,7), where 2, 7 = [0, h[x] — T, T2, let Y = "Qu = Qu
and let F () = (f, u). It results

|[F )] < 1 | go.os @y, o1l go.o.s (g, 7)-

Making use of (28), it follows

|FW)| < cll fllgoos g, (|| "Qull o5y + |l tQM||H0’0»—s+1(Qh,T)>

< C/ ” w || HO,1,—s+1 (-Qh,T) .
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Hence, the functional F can be extended in H 0’1’_”1([2;1]) and, therefore, there
exists w € HO’_I’S_I(Qh,T) such that

F(Y) = (w,¥) = (w, "Qu) = (g, u), Yu e C°(2n,1).
Then, we have
Qw=g, inD'(27).

Written Qw = L(0yyw) + X702 0x,w + bxj 93 w, we obtain

L(Oyw) =g — x128f28xow - bxfagzw.
For s > 4, we deduce 9, ,w € H95=1 and, hence, u € H'*~!. Repeating the same
procedure more times, we have that if g € H" then w € H r=2 Therefore, if r > 5,
we have

(w, "Qu) = (g, u), Yu € C°(2n,1). (33)
Choosen a suitable u, for instance, such that u(0,x") = 0, d,,u(0,x) = 0 and

Bfou(O, x') = @'), with g € Cg°(1 - T, T[?), integrating by parts in the left-hand
side of (33), we obtain

(Qw, u) + f o (Ywdx' = (g u).

[(-T,T1?

As a consequence, we get

/ o(xHwdx' = 0.
[-T.T1?

For the arbitrariness of ¢, it follows
w(0, x") = 0.

Instead, choosing u € C{°(£2y,,7) such that u(0, x’) = 0, d,u(0, x") = @(x’) and
afou(O, x') =0, with ¢ € o’ -, T[?), and proceeding as above, it results

drw (0, x") = 0.

Finally, if we chose u € C3°(§2,,7) such that u(0, x") = ¢(x'), dx,u(0, x") = 0 and
92 u(0, x") = 0, with ¢ € C5°(1 — T, T[?), we obtain

9z w(0,x") = 0.
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Then we have proved that there exists w € H” _Z(Qh,r), with r > 5, such that
(w, "Qu) = (g, u), Yu e C (1),

w(0,x") =0, 3y, w(0,x") = 0 and Bfow(O, x') = 0. Hence, if g € H", with r > 5,
there exists a solution w € H” 2 to the problem

Qw=g, in&r
w(0,x") =0, d,w(0,x") =0, afow(O, x)=0

where ¢ = if, with f € Hj (§2). Therefore there exists a solution to problem (1)
also in £2j 7.

6 Conclusions

The paper deals with a class of hyperbolic operators with triple characteristics. A priori
estimate in Sobolev spaces with negative indexes are obtained. Thanks to this estimate,
the existence of solutions to the associated Cauchy problem can be established.
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