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Abstract

We introduce a variational approach to study a maximization problem

of preferences that cannot be represented by a utility function. In such

conditions, we reformulate the problem as a suitable variational problem

and we give regularity properties of the solutions map. The theoretical

results are applied in studying an equilibrium problem under uncertainty.
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1 Introduction

In decision theory, preferences characterize each individual's attitudes, percep-
tions, tastes, and inclinations with respect to the alternatives that are the object
of choice. Once these are de�ned, the behavior of individuals considers the pref-
erence relation together with any other factor and/or constraint in order to
make the best possible decision. This preference is described by means of a
binary relation, and the individual does make the best according to it and the
constraints in place. In [10], Debreu proved that, under suitable assumptions
on the set of alternatives and/or the binary relation, a preference can be repre-
sented by means of a real function (see, e.g., Section 2). Hence, the preference
maximization problem can be treated as the maximization problem of functions,
and the literature contains several well-known approaches to deal with the re-
sulting optimization problem. In particular, the variational inequalities theory
provides powerful and �exible tools to deal with the above described class of
problems, in both analysis and computations (see, e.g., [1, 9, 21, 27, 34]).
In [22], the authors gave a �rst example of variational inequality which arises
from an optimization problem. Maximizing a concave di�erentiable function f
on a closed convex set is equivalent to solving a variational inequality problem
where the operator is the gradient of f . If the function is not di�erentiable
the gradient can be replaced by the supergradient. In the setting of quasicon-
cave functions, necessary and su�cient conditions include the normal cone to
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the superlevel set (see, e.g., [5]). Thanks to this characterization, the varia-
tional inequalities theory has been applied to a variety of equilibrium problems
on convexity/concavity and quasiconvexity/quasiconcavity assumptions on the
resulting utility/payo� functions. It is worth mentioning Nash equilibrium,
competitive economic equilibrium problems, tra�c equilibrium problems (see,
e.g., [4, 14, 15, 16, 30]). In [28] and [29], the authors studied two economic
equilibrium problems in which the consumers' preferences are described by a
binary relation. In these papers, equilibria are studied using generalized quasi-
variational inequalities without representing the preferences by a utility func-
tion. In particular, in the �rst one, the authors considered preferences to be
complete, transitive, continuous, non-satiated, and semistrictly convex. In the
latter, the assumption of completeness dropped. Hence, in [29], due to the lack
of completeness on the considered preferences, a utility representation could
not be possible. The present paper aims to provide a variational approach to
study a general maximization problem of binary relations where a numerical
representation of the preference relations is not given. After a theoretical study
with strict preferences, in Section 4 we deal with an equilibrium problem un-
der assumptions weaker than those considered in [28]. Moreover, to solve the
variational problem here we propose a di�erent approach to the one considered
in [29]. Indeed, instead of solving a quasi-variational problem, we handle varia-
tional inequality problems. To this aim, we apply the regularity results shown
in Section 3. To the best of our knowledge, there are no studies in which the
preferences maximization is studied through a variational approach without nu-
merical representation.
Usually, with preferences there are two di�erent approaches. The �rst one is
to de�ne a weak relation �, and then deduce a strict preference � (see, e.g.,
[24]). The other approach instead considers a strict relation � from which a
weak preference relation is deduced (see, e.g., [20, 23]). Since in our study we
use the strict upper counter set, we follow the latter approach. Moreover, we do
not require that the strict preference is asymmetric and negatively transitive.
The assumption of completeness means that an individual should be able to
compare any two possible alternatives. One can imagine real-life situations in
which this assumption does not hold, for instance, when an individual is not able
to rank his preferences between two or more choices. For instance, this can occur
under uncertain conditions and/or with a lack of information. Furthermore, in
many real-world situations, the set of alternatives is vectors, that is, the outcome
of a choice involves di�erent features to be evaluated separately. Hence, it is
natural to work without the completeness requirement on the individuals' pref-
erences. Indeed, from the second half of the last century, the study of incomplete
preferences has attracted the attention of many scholars (see, e.g., [2, 25, 26])
and this interest has grown in recent years (see, e.g., [7, 13, 17, 18, 31, 32]). It
was Von Neumann and Morgenstern, in [37], who �rst raised the question of
the completeness assumption as a trait of rationality. Subsequently, Shapley,
in [35], dropped the completeness assumption on the players' preferences. In
[2], Aumann generalized Shapley's result. More recently, in [6], Bade extended
Shapley and Aumann's results. In most of the quoted papers, scalarization ap-
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proaches are used; in particular, decision-makers/players have to coordinate a
suitable scalarization to get the desirable properties on the scalarized problem.
In doing this, some questions can arise. For instance, in [13], the authors re-
marked the crucial role in the investigation about the stability of the solution
with respect to perturbations on the selected scalarization. Instead, we point
out that the strength of our variational approach is that it relies only on the
study of the strict upper counter set and the associated normal cone.
The paper is organized as follows. Section 2 is devoted to some preliminary
de�nitions and tools to deal with preference relations. Section 3 is dedicated to
studying a maximization problem of a preference relation by using a variational
approach. In particular, we characterize the problem as a variational inequality
and we prove regularity properties on the map of solutions for a parametric
variational inequality. In Section 4, we apply the theoretical results to an equi-
librium problem under time and uncertainty. This application is constructive
for future possible developments and applications. Finally, a section of the Con-
clusions is given.

2 Preference Relations

In this section, we recall de�nitions and properties of preference relations. For
further details, the interested reader can refer to [23, 24].

We deal with the behavior of an individual, also called the consumer. Let
X ⊆ RC , with X 6= ∅, be the set of alternatives and � be a binary relation
which describes the preferences of consumer over the set X. If the consumer
says that x is better than y, we write x � y and we read x is strictly preferred
to y.

De�nition 1. Let � be a preference relation over X. We say that � is

1. asymmetric: there is no pair x, y from X such that x � y and y � x;

2. negatively transitive: if x � y, then for any z ∈ X, either x � z, or z � y,
or both;

3. irre�exive: for no x is x � x.

We observe that, since in the de�nition we not require x 6= y, then if � is
asymmetric, it is irre�exive.

De�nition 2. Let � be a preference relation over X. We say that � is

1. lower semicontinuous: if {xn}n∈N ⊆ X converges to x with x � y, then
there exists ν ∈ N such that xn � y for all n > ν;

2. upper semicontinuous: if {xn}n∈N ⊆ X converges to x with y � x, then
there exists ν ∈ N such that y � xn for all n > ν;
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3. continuous: it is lower and upper semicontinuous.

De�nition 3. Let � be a preference relation over X. We say that � is non-
satiated if for any x ∈ X there exists y ∈ X such that y � x.

In the literature several kind of convexity of preferences are given; we introduce
the following, as done, for instance, in [25].

De�nition 4. Let � be a preference relation over X. We say that � is convex
if for every pair y and z with y � x and z � x, for every λ ∈ (0, 1) one has
λy + (1− λ)z � x.

A key concept in our approach is represented by the following sets. For all
x ∈ X, we denote by U(x) the strict upper contour set, that is the set of all
elements of X strictly preferred to x, hence U(x) := {y ∈ X : y � x}. We can
rewrite the properties of preference relations in terms of strict upper contour
sets. Indeed, if � is non-satiated, then U(x) 6= ∅ for all x ∈ X; � is lower
semicontinuous if and only if U(x) is an open set for all x ∈ X; furthermore �
is convex if and only if U(x) is a convex set for all x ∈ X.
An important tool in decision theory is to study when the preference relation
can be represented by means of a real-valued function.

De�nition 5. Given � on a set X, a numerical representation for those pref-
erences is any function u : X → R such that

x � y if and only if u(x) > u(y).

Debreu in [10] gave necessary and su�cient conditions to ensure that a prefer-
ence relation is representable.

Theorem 1. For � to admit a numerical representation, it is necessary that �
is asymmetric and negatively transitive.

Theorem 2. Let X = RC
+. If � is asymmetric, negatively transitive, and

continuous, then � can be represented by a continuous function u.

Up to now, we have taken the strict preference relation as primitive. From it,
two further relations can be derived.

De�nition 6. For x and y in X, write x � y, which is read x is weakly
preferred to y, if it is not the case that y � x. And we write x ∼ y, read as x
is indi�erent to y, if it is not the case that either x � y or y � x.

De�nition 7. Let � be a preference relation over X. We say that � is

1. complete: for every pair x, y ∈ X either x � y or y � x or both;

2. transitive: if x � y and y � z, then x � z.

Proposition 1. If strict preference � is asymmetric and negatively transitive,
the weak preference relation, de�ned from strict preference relation according to
the De�nition 6, is complete and transitive.

In this way, thanks to Proposition 1, Theorem 2 can be reformulated in terms
of a weak preference relation (see, e.g., Proposition 1.15 of [24]).
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3 A Variational Approach for Preference Rela-

tions

The aim of this section is to study the problem of maximization of a strict
preference relation by means of a variational inequality. From now on, let K
be a non-empty, convex, and closed subset of X, with X ⊆ RC , and let �
be an irre�exive preference relation. We introduce the following preference
maximization problem.

Problem 1. Find x̃ ∈ K such that if x � x̃ ⇒ x /∈ K.

A solution of Problem 1 is called a � maximal element of K.

Remark 1. The de�nition of a maximal element is more general than the
de�nition of the greatest element of K, which requires that

x̃ � x for all x ∈ K with x 6= x̃ .

The greatest element of K is still a maximal element; the converse, in general,
is not true. Furthermore, if � is asymmetric and negatively transitive, from
Proposition 1 the weak preference relation � is complete; then, if x̃ is a �
maximal element of K, it is the � greatest element of K.

If the preference relation is representable by means of the utility u : X → R, the
Problem 1 can be reformulated as the following utility maximization problem.

Problem 2. Find x̃ ∈ K such that u(x̃) = max
x∈K

u(x).

Hence, if � is asymmetric, negatively transitive, and continuous, from Theorem
2, it can be represented by a continuous function u, and Problems 1 and 2
are equivalent. Moreover, if � is non-satiated and convex too, Problem 2 is
equivalent to a suitable variational inequality (see, e.g., [5, 14, 16]).
Here, we want to operate in a general setting, where asymmetric and negatively
transitive assumptions on � are not required. Hence, we study Problem 1 by
means of a variational approach without the numerical representation.
To our aim, we introduce the set-valued map N : RC ⇒ RC such that for all
x ∈ X

N(x) := {h ∈ RC : 〈h, y − x〉C ≤ 0 ∀y ∈ U(x)}
and N(x) := ∅ for all x /∈ X. Let S(0, 1) and B(0, 1), respectively, be the
boundary and the closed unit ball of RC . Let G : X ⇒ RC be the set-valued
map such that for all x ∈ X

G(x) :=


conv (N(x) ∩ S(0, 1)) if U(x) 6= ∅ ,

B(0, 1) if U(x) = ∅ .
(1)

Remark 2. If � is a non-satiated preference relation on X, for all x ∈ X one
has that U(x) 6= ∅ and then G(x) := conv (N(x) ∩ S(0, 1)). Furthermore, if �
is convex, N(x) is the normal cone to the convex set U(x) at x.
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We introduce the following generalized variational inequality problem.

Problem 3. Find x̃ ∈ K such that there exists h ∈ G(x̃) and 〈h, x − x̃〉C ≥
0 ∀x ∈ K.

Theorem 3. Let � be a preference relation over X.

(a) If � is convex, and x ∈ U(x) for all x such that U(x) 6= ∅, every solution
to Problem 1 is a solution to Problem 3.

(b) If � is lower semicontinuous, every solution to Problem 3 is a solution to
Problem 1.

Proof. (a) Let x̃ be a solution to Problem 1.
If U(x̃) = ∅, then h = 0 ∈ G(x̃) and 〈h, x− x̃〉C = 0 ∀x ∈ K.
If U(x̃) 6= ∅. For any x ∈ U(x̃) one has x /∈ K. Hence U(x̃) and K are convex
sets such that U(x̃) ∩K = ∅ and, from the separation theorem (see, e.g., [8]),
there exists h ∈ RC \ {0C} such that

〈h, r − s〉C ≥ 0 ∀s ∈ U(x̃) , ∀r ∈ K . (2)

If we replace r = x̃ in (2), it follows that 〈h, s − x̃〉C ≤ 0 ∀s ∈ U(x̃), hence
h ∈ N(x̃) \ {0C} and h̃ = h

‖h‖ ∈ G(x̃). From (2), it follows

〈h̃, r − s〉C ≥ 0 ∀s ∈ U(x̃) , ∀r ∈ K . (3)

Being U(x̃) 6= ∅ and x̃ ∈ U(x̃), there exists {yn}n∈N ⊆ U(x̃) such that yn → x̃.
By replacing s = yn in (3), one has 〈h̃, r − yn〉C ≥ 0 for all r ∈ K. Passing to
the limit, we get

〈h̃, r − x̃〉C ≥ 0 ∀ r ∈ K . (4)

Hence, from (4) and being h̃ ∈ G(x̃), we can conclude that x̃ is a solution to
Problem 3.
(b) Let x̃ be a solution to Problem 3.
Clearly, if U(x̃) = ∅, x̃ is a solution to Problem 1. If U(x̃) 6= ∅, we suppose that
there exists x′ ∈ K such that x′ � x̃. Since x′ ∈ K and x̃ is a solution to Problem
3 one has 〈h, x′− x̃〉C ≥ 0. Moreover, being h ∈ G(x̃) = conv (N(x̃)∩S(0, 1)) ⊆
conv N(x̃) = N(x̃), one has h ∈ N(x̃), with h 6= 0C , and from de�nition of the
set-valued map N , it follows that 〈h, x′ − x̃〉C ≤ 0. Hence 〈h, x′ − x̃〉C = 0.

Now, for all n ∈ N, we pose xn := x′ +
1

n
h; since xn → x′, from lower semicon-

tinuity of �, there exists ν ∈ N such that xn � x̃ for all n ≥ ν. Hence, since
xn ∈ U(x̃), one has 〈h, xn − x̃〉C ≤ 0. Then

0 ≥ 〈h, xn − x̃〉C = 〈h, x′ − x̃〉C +
1

n
‖h‖2 =

1

n
‖h‖2 ≥ 0 ;

this contradicts the fact that h 6= 0C .

The existence of the solutions of Problems 1 and 3 are now investigated.
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Theorem 4. Let � be upper semicontinuous and convex and K a compact set.
Then, there exists x̃ solution to Problem 3.

Proof. Firstly, we observe that for all x ∈ K there exists h ∈ N(x) \ {0C},

that is h′ =
h

‖h‖
∈ G(x), then it follows that G is with non-empty values for

all x ∈ K. Moreover, from de�nition, G is with compact, and convex values.
We prove that G is a closed set-valued map. Let {xn}n∈N ⊆ K, {hn}n∈N ⊆ RC

be such that hn ∈ G(xn) and hn → h and xn → x. We have to verify that
h ∈ G(x).
If U(x) = ∅, being hn ∈ G(xn) ⊆ B(0, 1), one has h ∈ B(0, 1) = G(x).
If U(x) 6= ∅, there exists x′ ∈ K such that x′ � x and, from upper semiconti-
nuity, there exists ν ∈ N such that x′ � xn for all n > ν and then U(xn) 6= ∅
and hn ∈ conv(N(xn) ∩ S(0, 1)). Since hn ∈ conv(N(xn) ∩ S(0, 1)) there exist

gkn ∈ N(xn) ∩ S(0, 1) with k = 1, . . . , n + 1, and λkn ≥ 0 such that

n+1∑
k=1

λkn = 1

and hn =

n+1∑
k=1

λkng
k
n. Since for all k = 1, . . . , n + 1, {gkn}n∈N ⊆ S(0, 1) one

has gkn → gk ∈ S(0, 1). Moreover gk ∈ N(x); indeed, for all y ∈ U(x), from
upper semicontunity, there exists ν ∈ N such that y � xn, hence y ∈ U(xn)
and, since gkn ∈ N(xn) one has 〈gkn, y − xn〉C ≤ 0. Passing to the limit it fol-

lows 〈gk, y − x〉C ≤ 0, that is gk ∈ N(x). Then, since h =
∑n+1

k=1 λ
kgk with

gk ∈ N(x)∩ S(0, 1), one has h ∈ G(x); this proves that G is a closed set-valued
map.
Then, being K a compact set and G a closed set-valued map and with non-
empty, compact, and convex values, from existence theorem given in [36] there
exists at least a solution to Problem 3.

Theorem 5. Let � be continuous and convex and K a compact set. Then,
there exists x̃ solution to Problem 1.

Proof. Thesis follows from Theorems 3 and 4.

To complete our theoretical study we consider the case in which the constraint
set depends on a parameter, and we analyze the regularity of the solution map
for the parametric problem.
Let L ⊂ RM be non-empty and closed andK : L⇒ RC be a set-valued map. Let
us introduce the following parametric generalized variational inequality problem.

Problem 4. Fixed l ∈ L. Find x̃ ∈ K(l) such that there exists h ∈ G(x̃) and
〈h, x− x̃〉C ≥ 0 ∀x ∈ K(l).

Let S : L⇒ RC be the set-valued map of solutions such that for all l ∈ L

S(l) := {x̃ ∈ K(l) : x̃ is a solution to Problem 4} .

We introduce the parametric maximization problem.
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Problem 5. Fixed l ∈ L. Find x̃ ∈ K(l) such that if x � x̃ ⇒ x /∈ K(l).

Clearly, if � is lower semicontinuous, then every solution to Problem 4 is still a
solution to Problem 5.

Theorem 6. Let � be upper semicontinuous and convex, and let K be a closed,
lower semicontinuous set-valued map and with non-empty, closed, and convex
values and such that K(L) is a bounded set. Then the set-valued map of solutions
S is upper semicontinuous and with non-empty and compact values.

Proof. From Theorem 4, for all l ∈ L it follows that S(l) 6= ∅ . We prove that S
is with closed values. For all l ∈ L, let {x̃n}n∈N ⊆ S(l) be a sequence converging
to x̃. For all n ∈ N, there exists hn ∈ G(x̃n) such that 〈hn, x− x̃n〉C ≥ 0 for all
x ∈ K(l); the sequence {hn}n∈N converges to h and, being G a closed set-valued
map (as proved in Theorem 4), h ∈ G(x̃). Hence, passing to the limit, one has
〈h, x− x̃〉C ≥ 0 for all x ∈ K(l), that is, x̃ ∈ S(l).
Since for all l ∈ L, S(l) is a closed set and S(l) ⊆ K(L) that is a bounded set,
it follows that S(l) is compact.
We prove that S is closed. Let {ln}n∈N ⊆ L and {x̃n}n∈N ⊆ RC be two sequences
with x̃n ∈ S(ln) and such that ln → l and x̃n → x̃. Being K a closed set-
valued map, x̃ ∈ K(l). From lower semicontinuity of K, for all x ∈ K(l) there
exists a sequence {xn}n∈N converging to x such that xn ∈ K(ln). Since for all
n ∈ N, x̃n ∈ S(ln), there exists hn ∈ G(x̃n) such that 〈hn, xn − x̃n〉C ≥ 0 and
moreover, since {hn}n∈N ⊆ B(0, 1), one has hn → h with h ∈ G(x̃), being G a
closed set-valued map. Hence, passing to the limit, we get 〈h, x− x̃〉C ≥ 0, that
is, x̃ ∈ S(l).
Finally, being S(L) ⊆ K(L), which is a bounded set, one has that S is compact.
Hence, being S closed and compact, S is upper semicontinuous.

4 Applications

In this section, we apply the theoretical results given in Section 3 to an economic
equilibrium problem under time and uncertainty introduced by Debreu in [11].
Let us suppose that the trade takes place sequentially in two periods of time:
t = 0, say today, and t = 1, say tomorrow. We set T := {0, 1}. The uncertainty
is expressed through a �nite set of all possible states of the world, which can
occur tomorrow. We denote by S1 := {1, . . . , S} the set of states of the world at
time 1 and S := {0} ∪ S1. We pose Ξ = {ξ0} ∪Ξ1, with |Ξ| = S + 1; {ξ0} is the
initial situation of the market and the set Ξ1 := {ξ1, . . . , ξs, . . . , ξS} represents
all possible situations that can occur tomorrow. Hence, the evolution of the
market can be represented by means of the oriented graph G with nodes Ξ and
root ξ0. Each node ξs ∈ Ξ, with s ∈ S, of the graph represents a contingency
of the market structure, that is, it identi�es time and information.
In this structure of time and uncertainty, we set a market economy in which
a �nite number of agents, with the same information, trade and consume a
�nite number of di�erent commodities. The market opens only once, at date
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t = 0, before the beginning of the physical history of the economic system. We
denote by I := {1, . . . , i, . . . , I} and H := {1 . . . , h . . . ,H}, respectively, the set
of agents and commodities.
At each contingency ξs ∈ Ξ, the agent i is endowed with every commodity
ehi (ξs) > 0 and consumes the commodities xhi (ξs) ≥ 0. Moreover, ph(ξs) ≥ 0 is
the price of commodity h. Hence:

xi := ((xhi (ξs))h∈H)s∈S ∈ RD
+ ei := ((ehi (ξs))h∈H)s∈S ∈ RD

++

p := ((ph(ξs))h∈H)s∈S ∈ RD
+ \ {0D} ,

where, for simplicity, we pose D := H(S + 1). Each agent is characterized by
an irre�exive preference relation �i over the consumption set RD

+ . The aim of
the agent is to consume or trade according to his preference under the budget
constraint:

〈p, xi〉D ≤ 〈p, ei〉D.

The constraint means that, if p is the price vector in the market, the value of
the consumption plan of consumer i, 〈p, xi〉D, cannot exceed his wealth 〈p, ei〉D.

The vector E := (G, (�i, ei)i∈I) denotes the economy. The equilibrium condi-
tions are given by the following mathematical formulation. 1

De�nition 8. A vector (x̃, p̃) ∈ RID
+ × RD

+ \ {0D} is an equilibrium for the
economy E if

1. for any i ∈ I:
〈p̃, x̃i〉D ≤ 〈p̃, ei〉D ;

if xi �i x̃i ⇒ 〈p̃, xi〉D > 〈p̃, ei〉D ; (5)

2. for all h ∈ H and s ∈ S:∑
i∈I

x̃hi (ξs) ≤
∑
i∈I

ehi (ξs) and 〈
∑
i∈I

(x̃i − ei), p̃〉D = 0. (6)

We point out that in De�nition 8 we introduce a free-disposal equilibrium. It
relies on the fact that the prices are assumed to be nonnegative (see, e.g., [12]).
In this assumption, at the equilibrium the second condition of (6) is added:
if the total supply of some commodity h ∈ H in the market exceeds its total
demand, then the corresponding price p̃h is zero. This means that it is allowed
the excess supply of some commodities provided that they are free.

1Radner [33] presented an equilibrium model that generalizes the Debreu equilibrium to
make the market institutions more realistic. The economy, evolving in T trade periods, is
characterized by the possibility to trade, at each possible time and in each possible state that
can occur, after the uncertainty is revealed and the market reopens and by the introduction
of �nancial instruments that enable inter-temporal and insurance transfers of wealth through
markets in each possible occurrence. The interested reader can refer to [29].
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Without loss of generality, we can consider the prices in the following simplex-set
on RD:

∆ := {p ∈ RD
+ :
∑
s∈S

∑
h∈H

ph(ξs) = 1} .

For each i ∈ I, let �i be non-satiated. Then, from Remark 2, the set-valued
map (1) deduced from the preference �i becomes:

Gi : RD
+ ⇒ RD s.t. Gi(x) := conv(Ni(x) ∩ S(0, 1)) ∀x ∈ RD

+ ,

and we pose G(x) :=
∏

i∈I Gi(xi) for all x = (xi)i∈I ∈ RID
+ . Moreover, for all

i ∈ I, we set

Bi(p) :=
{
xi ∈ RD

+ : 〈p, xi〉D ≤ 〈p, ei〉D
}
∩
[
0,
∑
s∈S

∑
h∈H

∑
i∈I

ehi (ξs)
]D

and B(p) :=
∏

i∈I Bi(p). Now, the following generalized quasi-variational in-
equality problem is considered.

Problem 6. Find (x̃, p̃) ∈ B(p̃)×∆ for which there exists h := (hi)i∈I ∈ G(x̃)
such that∑

i∈I
〈hi, xi − x̃i〉D + 〈

∑
i∈I

(ei − x̃i), p− p̃〉D ≥ 0 ∀(x, p) ∈ B(p̃)×∆ .

Theorem 7. For all i ∈ I, let �i be convex, lower semicontinuous, non-
satiated, and such that xi ∈ Ui(xi) for all xi ∈ RD

+ . If (x̃, p̃) ∈ B(p̃) × ∆ is
a solution to Problem 6, then it is an equilibrium vector for E.

Proof. Let (x̃, p̃) ∈ B(p̃)×∆ be a solution to Problem 6.
1. For any i ∈ I, x̃i is a solution to the variational inequality:

〈hi, xi − x̃i〉D ≥ 0 ∀xi ∈ Bi(p̃) . (7)

Fixed j ∈ I, let (x̂, p̂) = (x̂, p̃) with x̂i = x̃i for all i 6= j and x̂j = xj ∈ Bj(p̃);
by replacing (x̂, p̂) in the Problem 6 one has:∑
i∈I
〈hi, x̂i − x̃i〉D + 〈

∑
i∈I

(ei − x̃i), p̂− p̃〉D = 〈hj , xj − x̃j〉D ≥ 0 ∀xj ∈ Bj(p̃) .

2. For any h ∈ H and s ∈ S,
∑
i∈I

x̃hi (ξs) ≤
∑
i∈I

ehi (ξs).

Let (x̂, p̂) = (x̃, p̂) with p̂ ∈ ∆; by replacing (x̂, p̂) in Problem 6 one has:∑
i∈I
〈hi, x̂i − x̃i〉D + 〈

∑
i∈I

(ei − x̃i), p̂− p̃〉D = 〈
∑
i∈I

(ei − x̃i), p̂− p̃〉D ≥ 0 .

Since x̃i ∈ Bi(p̃) for all i ∈ I, one has 〈p̃,
∑
i∈I

(x̃i − ei)〉D ≤ 0, hence:

〈
∑
i∈I

(ei − x̃i), p̂〉D ≥ 〈
∑
i∈I

(ei − x̃i), p̃〉D ≥ 0 ∀p̂ ∈ ∆ .
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Fix s∗ ∈ S and h∗ ∈ H, let

p̂ :=

{
p̂h

∗
(ξs∗) = 1

p̂h(ξs) = 0 ∀h 6= h∗ , s 6= s∗

it follows
0 ≤ 〈

∑
i∈I

(ei − x̃i), p̂〉D =
∑
i∈I

(eh
∗

i (ξs∗)− x̃h
∗

i (ξs∗)) .

3. For all xj ∈ RD
+ such that 〈p, xj〉D ≤ 〈p, ej〉D, it results: 〈hj , xj − x̃j〉D ≥ 0 .

We suppose there exists x̂j ∈ RD
+ such that 〈p̃, x̂j〉D ≤ 〈p̃, ej〉D and 〈hj , x̂j − x̃j〉D <

0. From Step 2, for all i ∈ I and h ∈ H, it follows that

x̃hi (ξs) ≤
∑
i∈I

x̃hi (ξs) ≤
∑
i∈I

ehi (ξs) <
∑
s∈S

∑
h∈H

∑
i∈I

ehi (ξs) .

Hence there exists δ > 0 such that the intersection between RD
+ and the ball

centered at x̃i and radius δ is in
[
0,
∑
s∈S

∑
h∈H

∑
i∈I

ehi (ξs)
]D

. We pose:

y = λx̂j + (1− λ)x̃j such that 0 < λ < min
{ δ

‖x̂j − x̃j‖
, 1
}
.

One has 〈p̃, y〉D ≤ 〈p̃, ej〉D and ‖y − x̃i‖ < δ, that is y ∈ Bi(p̃). Moreover, one
gets 〈hj , y − x̃j〉D < 0 contradicting the condition (7).

4. For any i ∈ I if xi �i x̃i ⇒ 〈p̃, xi〉D > 〈p̃, ei〉D.
It follows from Step 3 and Theorem 3.

5. One has 〈
∑
i∈I

(x̃i − ei), p̃〉D = 0.

We suppose there exists i ∈ I such that 〈x̃i − ei, p̃〉D < 0. Since x̃i ∈ Ui(x̃i)
there exists {x̃i,n}n∈N ⊆ Ui(x̃i) converging to x̃i; hence, x̃i,n �i x̃i and 〈x̃i,n − ei, p̃〉D <
0, which contradicts Step 3. Hence, 〈x̃i − ei, p̃〉D = 0 for all i ∈ I, and

〈
∑
i∈I

(x̃i − ei), p̃〉D = 0 .

Lemma 1. For all i ∈ I, the set-valued map Bi is closed, lower semicontinuous
and with non-empty, compact, and convex values.

Proof. See, e.g., [28, 29].

In the next theorem, we give the existence of equilibrium by means of the Prob-
lem 6; the characteristics of our problem allow us to consider I + 1 variational
inequalities instead of a single quasi-variational inequality. We will proceed in
the following way: we �x a price p ∈ ∆ and we study for all i ∈ I the �rst part of
inequality of Problem 6 as a parametric generalized variational inequality. Once
the existence of at least one solution is ensured, we introduce the set-valued map

11



of the solutions. From this set-valued map, we de�ne the operator of the second
part of Problem 6; hence, we can solve this variational problem thanks to the
properties of the solution map proven in Theorem 6. The vector of solutions
given by the I + 1 variational problems represents the solution to Problem 6.

Theorem 8. For all i ∈ I, let �i be convex, continuous, non-satiated, and
such that xi ∈ Ui(xi) for all xi ∈ RD

+ . Then, the Problem 6 admits at least one
solution, and there exists an equilibrium vector for E.

Proof. For each i ∈ I and p ∈ ∆, we consider the parametric GV I(Gi, Bi(p)):

Find x̃i ∈ Bi(p) for which there exists hi ∈ Gi(x̃i) such that

〈hi, xi − x̃i〉D ≥ 0 ∀xi ∈ Bi(p) . (8)

We introduce the set-valued map of solutions Si : ∆ ⇒ RD such that, for all
p ∈ ∆, it results

Si(p) = {x̃i : x̃i is solution of (8)} .

From Lemma 1, being Bi(∆) ⊂
[
0,
∑
s∈S

∑
h∈H

∑
i∈I

ehi (ξs)
]D

and from Theorem 6

it follows that Si is upper semicontinuous and with non-empty, and compact
values; hence, the set-valued map S : ∆ ⇒ RID such that S(p) :=

∏
i∈I Si(p)

for all p ∈ ∆ has the same properties. Hence, thanks to Proposition 2.1 in [3],
the set-valued map conv S : ∆ ⇒ RID is upper semicontinuous. We introduce
the following GV I(conv S,∆):

Find p̃ ∈ ∆ such that there exists x̃ ∈ conv S(p̃) such that

〈
∑
i∈I

(ei − x̃i), p− p̃〉D ≥ 0 ∀p ∈ ∆ .

Thanks to the properties of the set-valued map convS and the set ∆, from The-
orem 2 in [36], there exists p̃ ∈ ∆ and x̃ ∈ convS(p̃) solution to GV I(convS,∆).
Furthermore, since ∆ is a convex set and the set-valued map S is with com-
pact values, from Lemma 3.2 in [3], it follows that the set of solutions to
GV I(conv S,∆) coincides with the set of solutions of the following GV I(S,∆):

Find p̃ ∈ ∆ such that there exists x̃ ∈ S(p̃) such that

〈
∑
i∈I

(ei − x̃i), p− p̃〉D ≥ 0 ∀p ∈ ∆ . (9)

Then, from (8), with p̃ ∈ ∆, and (9), we get that (x̃, p̃) is a solution to the
Problem 6. Hence, thanks to Theorem 7, we can conclude that (x̃, p̃) ∈ B(p̃) is
an equilibrium vector for E .

Remark 3. We observe that in Theorem 7 and Theorem 8 one can replace
(see, e.g., [28]) the requirements that �i is non-satiated and xi ∈ Ui(xi) for all
xi ∈ RD

+ with the locally non-satiated assumption:

∀xi ∈ RD
+ , ∀δ > 0 ∃ yi ∈ RD

+ ∩B(xi, δ) such that yi �i xi .
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5 Conclusions

In this paper, we made use of a variational approach to study a maximization
problem based on a preference relation. A strict preference relation � is con-
sidered. Under suitable assumptions � is representable by means of a utility
function; then, the preference maximization is equivalent to an optimization
problem of a real values function and, it is well known that it can be studied
by means of a variational inequality problem. However, here the considered
assumptions are not su�cient to guarantee the existence of a utility function
representing the preference relation, and then we can not apply the results
known in the literature. In order to introduce the operator of a suitable vari-
ational problem, the main tool is represented by the strictly upper counter set
and the normal cone associated with it. Hence, we opportunely characterize
the preference maximization problem and we prove regularity properties on the
map of solutions of the relative parametric variational problem.
We apply these results to an economic equilibrium problem. The aim of this ap-
plication is manifold. From an economic point of view, considering incomplete
preference relations may be an approach closer to the dynamics governing the
choices in the real world. Instead, from a mathematical point of view, quasi-
variational problems can be di�cult to be solved. To overcome this di�culty,
instead of solving a quasi-variational problem, we handle variational inequality
problems so that a lot of algorithms are available to compute the solution (see,
e.g, [19]). However, in doing this, we observe that the solution map studied in
Theorem 6 is not with convex values. Nevertheless, in the proof of Theorem
8, this fact is opportunely overtaken thanks to the properties of the considered
problem and Lemma 3.2 in [3].
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