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Abstract

This paper focuses on the analysis of an economic equilibrium model under time and uncertainty

by using a stochastic variational inequality approach. Such an approach allows to capture, in

a �nite set of stages, the evolutionary aspects of the problem in response to an increasing level

of information.

KeywordsStochastic variational inequality; Nonanticipativity; Equilibrium problem, Uncer-
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1 Introduction

In [5], Debreu introduced an economic equilibrium model which evolves in a sequence of markets
under uncertainty on the future conditions. Subsequently, Radner in [13] generalized such equilib-
rium model by introducing the possibility of agents to transfer wealth among all possible future
time. Throughout two di�erent market structures, forward and spot markets, consumers' and �rms'
choices will depict not only their taste concerning the goods but also their beliefs regarding the
event chosen by Nature.
The market evolves in a �nite sequence of time and, at each future date, di�erent states of the
world are possible. At the beginning agents do not know the possible evolution of the market; the
environment is progressively revealed, and, all information is revealed at the �nal time. Agents have
to make their decisions under uncertainty conditions. In order to capture the essential dynamics
of stochastic decision processes, it is needed an approach which encompasses multistage models
responding to an increasing level of information.
The aim of this paper is to study an economic equilibrium problem under uncertainty by means of
a stochastic variational inequality formulation. Thanks to the variational inequality theory, a large
class of equilibrium problems has been studied (see, e.g., [1, 6, 7, 8, 11, 12]).
The stochastic variational inequalities have been introduced and studied in the last two decades as a
natural extension of deterministic ones. In particular, Rockafellar and Wets in [16] introduced a for-
mulation in an suitable functional setting relatively to a �nite set of �nal possible states and certain
information �elds. A key concept of this approach is the presence of nonanticipativity constraints
on the variables of the problem. Variables are not based on the information not yet known, but
they are related to the information �eld up to the considered time. In addition, nonanticipativity
constraints provide a powerful tool in both theoretical and computational aspects as they can be
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dualized by multipliers, providing a tool for a point-wise decomposition of the original stochastic
variational problem. The latter means that nonanticipativity formulation enables the decomposi-
tion of the original stochastic variational problem into a separate problem for each scenario.
The paper is organized as follows. In Section 2, we describe the general set up of a competitive
equilibrium model under time and uncertainty. In Section 3, we introduce the main tools dealing
with a scenario approach. Subsequently, in Section 4, we rewrite the problem introduced in Sec-
tion 2 in a probabilistic setting. In Section 5, we reformulate the equilibrium problem in terms of
a suitable stochastic quasi-variational inequality, both in basic and extensive form and, by using
variational tools, we give the existence of equilibrium. Finally, in Section 6, we provide a procedure
to compute the equilibrium solution using the Progressive Hedging Algorithm introduced in [17].

2 Set up of the Model

In this section we present a model of exchange and consumption under uncertainty, introduced in
[9]. Let us suppose that the market starts at time t = 0 and evolves in a �nite sequence of T future
dates. The sets T := {1, . . . , T} and T0 := {0}

⋃
T denote the sets of time periods, respectively,

without and with the initial date. At each time t ∈ T one or more than one situations are possible;
at the �nal time T , S states of the world are possible; we denote by Ω := {ω1, . . . , ωS} the set of
all alternative states at T . We can give a graphical representation of the evolution of the market
through an oriented graph G, consisting by a set of vertices Ξ := Ξ0 ∪ Ξ1 ∪ . . . ∪ ΞT , with |Ξt| = kt
and |Ξ| = N , such that

� Ξ0 := {ξ0} where ξ0 is the root vertex: it represents the initial situation and it is the unique
vertex without immediate predecessor.

� For all t ∈ T , the set Ξt :=
{
ξ1
t , . . . , ξ

kt
t

}
is a �nite set of vertices and represents all possible

situations at time t. Each ξjt has a unique immediate predecessor in Ξt−1.

� ΞT := Ω, that is ξjT = ωj for all j = 1, . . . , S are the terminal nodes of the graph.
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Each node ξjt of the graph represents a contingency of the market structure, that is, it identi�es
time and information. Now, in this structure of time and uncertainty, we can set an economy
in which a �nite number of agents, all with the same information, trade and consume a �nite
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number of di�erent commodities. We denote by I := {1, . . . , i, . . . , I} and H := {1 . . . , h . . . ,H},
respectively, the sets of agents and commodities. At each contingency ξjt , each agent i is endowed
with a strictly positive commodity vector ei(ξ

j
t ) ∈ RH++, where the component ehi (ξjt ) denotes the

endowment of commodity h of agent i at the contingency ξjt . Grouping in vectors, ei represents the
total endowment of the agent i:

ei := (ei0, ei1, . . . , eit, . . . , eiT ) ∈ RHN++ ,

where for all t ∈ T0, eit := (ei(ξ
1
t ), . . . , ei(ξ

kt
t )) = (ei(ξ))ξ∈Ξt

∈ RHkt++ . The economy is characterized
by two market structures: spot and forward markets.
Spot market: it opens at each contingency ξjt ∈ Ξ and agents consume or trade a certain amount
of commodities xi(ξ

j
t ) ∈ RH+ at prices p(ξjt ) ∈ RH+ . Grouping in vectors one has

xi := (xi0, xi1, . . . , xit, . . . , xiT ) ∈ RHN+ , p := (p0, p1, . . . , pt, . . . , pT ) ∈ RHN+

where each xit := (xi(ξ
1
t ), . . . , xi(ξ

kt
t )) = (xi(ξ))ξ∈Ξt

∈ RHkt+ represents the decisions that must be

made at time t at prices pt := (p(ξ1
t ), . . . , p(ξktt )) = (p(ξ))ξ∈Ξt

∈ RHkt+ for each contingency in Ξt.
Forward market: at t = 0 a further market opens and o�ers participants the opportunity to
reduce their exposure to future risks and randomness without, however, removing the incentive to
trade and consume in the spot markets that opens at each time period after the uncertainty is
revealed. Thanks to the forward market, agent can transfer wealth in terms of commodity-1 among
all future contingencies for immediate cash that will be used for spot consumption goods or for
future contracts in other contingencies. For each i ∈ I, we denote the forward contracts and the
relative prices through the vectors

zi := (zi1, . . . , zit, . . . , ziT ) ∈ RN−1, q := (q1, . . . , qt, . . . , qT ) ∈ RN−1
+

so that zit := (zi(ξ
1
t ), . . . , zi(ξ

kt
t )) = (zi(ξ))ξ∈Ξt

∈ Rkt and qt := (q(ξ1
t ), . . . , q(ξktt )) = (q(ξ))ξ∈Ξt

∈
Rkt+ , where zi(ξ

j
t ) is the commodity-1 amount at ξjt paid q(ξjt ) at time 0. We observe that the

components of zi can be negative: if zi(ξ
j
t ) < 0, it is an amount to be delivered by agent i at ξjt and

q(ξjt )zi(ξ
j
t ) represents an income at ξ0; while, if zi(ξ

j
t ) > 0, it is an amount to be received by agent i

at ξjt and q(ξ
j
t )zi(ξ

j
t ) represents an outcome at ξ0. Let, for all ξ

j
t ∈ Ξ \ {ξ0} , R(ξjt ) >

∑
i∈I

e1
i (ξ

j
t ); we

pose R :=
∏
ξjt∈Ξ\{ξ0}

[
− R(ξjt ), R(ξjt )

]
. Without loss of generality, we suppose that, for all i ∈ I,

zi ∈ R (see Radner [13]). Each agent i has a preference on the commodities which is expressed
by means of a utility function Ui : RHN+ → R. The aim of each agent is to maximize her own
preferences on spot consumptions under the natural budget constraints set at the current price
system (p, q):

Mi (p, q) :={(xi, zi) ∈ RHN+ ×R :

〈p (ξ0) , xi (ξ0)〉H + 〈q, zi〉N−1 ≤ 〈p (ξ0) , ei (ξ0)〉H
〈p(ξjt ), xi(ξ

j
t )〉H ≤ 〈p(ξ

j
t ), ei(ξ

j
t )〉H + p1(ξjt )zi(ξ

j
t ) ∀ξjt ∈ Ξt, t ∈ T } .

The �rst inequality represents the budget constraint at time 0 while, the second inequality represents
the expected budget constraints at each contingency ξjt , with t ∈ T . Furthermore, market clearing
conditions have to be satis�ed: at each contingency ξjt , the total spot consumption have not exceed
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the total endowment while the total forward contracts have the be zero. We denote by E the

economy E :=
(
G, (Ui, ei)i∈I

)
and we can, now, formalize the equilibrium conditions.

De�nition 1. An equilibrium of plans, prices, and price expectations for the economy E is a vector(
(x̄i, z̄i)i∈I , p̄, q̄

)
∈
∏
i∈IMi (p̄, q̄)× RHN+ × RN−1

+ , such that

� for any i ∈ I:
max Ui(xi) = Ui(xi)

s.t. (xi, zi) ∈Mi (p̄, q̄) ;
(1)

� for all t ∈ T0: ∑
i∈I

x̄i(ξ
j
t ) ≤

∑
i∈I

ei(ξ
j
t ) ∀ξjt ∈ Ξt; (2)

� for all t ∈ T : ∑
i∈I

z̄i(ξ
j
t ) = 0 ∀ξjt ∈ Ξt. (3)

3 Scenarios formulation: preliminary notions

This section is devoted to introduce the preliminary notions we need to study the economic equi-
librium problem, introduced in Section 2, in a stochastic framework and throughout a variational
approach. Firstly, we need to introduce the following information �elds.

De�nition 2. A family of information-partitions of Ω is P := {Ft : t ∈ T0} where, for all t ∈ T0,

Ft :=
{
F 1
t , . . . , F

kt
t

}
is a partition of Ω such that

(i) F0 = {Ω};

(ii) for all t ∈ T , Ft+1 ⊂ Ft, that is: if F jt+1 ∈ Ft+1 ⇒ F jt+1 ⊂ F kt for some F kt ∈ Ft;

(iii) FT = Ω.

For all t ∈ T0, the set F jt is called elementary event and the partition Ft is called event.

From an economic viewpoint, condition (i) means that at time t = 0 no uncertainty has resolved;
condition (ii) means that information about the environment are progressively revealed, i.e. one
has only partial information. Finally, (iii) tell us that all information are revealed at time T .

To link time-uncertainty structure introduced in Section 2 and the information-partitions, we can
consider the oriented graph G as an event-tree: at each pair (ω, t) identi�ed in P corresponds a
contingency ξjt and at each vertex ξjt of the oriented graph G we tie the elementary event F jt , that
is F jt

∼= ξjt . Each state of the world ω ∈ Ω identi�es a complete history of the environment up to
time T

ω ∼= (ξ0, ξ
j
1, . . . , ξ

j
T )
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Figure 1: Example

that is called scenario. If two scenarios ωs, ωc ∈ Ω are in the same set F jt ∈ Ft, then they are
indistinguishable at time t on the basis of available information: because they share the same path
up to time t, the known information are the same, that is

ωs ∼= (ξ0, ξ
j
1, . . . , ξ

j
t , ξ

s
t+1, . . . , ξ

s
T ) ωc ∼= (ξ0, ξ

j
1, . . . , ξ

j
t , ξ

c
t+1, . . . , ξ

c
T ) .

In this approach, the key point is to consider the uncertainty quantities as function instead of
vectors. We suppose that each scenario ω has a known probability π(ω) and, for G ∈ R, we
introduce LG (Ω, π) := LG the linear space of functions:

LG =
{
the collection of all functions y : Ω→ RG

}
.

The space LG is equipped with the following expectational inner product and the associated norm:

〈〈y, h〉〉G := Eω[〈y, h〉G] =
∑
ω∈Ω

π(ω)〈y(ω), h(ω)〉G, ‖y‖ := (Eω[〈y, y〉G])
1
2 (4)

where 〈·, ·〉G is the usual inner product in RG. The structure (4) makes LG a �nite-dimensions
Hilbert space. Moreover, if G = G0 + . . .+Gt+ . . .+GT one has LG = LG0 × . . .×LGt × . . .×LGT

where LGt
= { the collection of all functions yt : Ω → RGt}; hence, for all ω ∈ Ω we can consider

y(ω) = (yt(ω))t∈T0 .

De�nition 3. Given the information-partitions P = {Ft : t ∈ T0} of Ω, let Ft̄ ∈ P; we say that
y ∈ LG is Ft̄-measurable with respect to P if for all j = 1, . . . , kt̄ one has:

∀ωs, ωc ∈ F jt̄ yt (ωs) = yt (ωc) ∀t = 0, . . . , t̄ .

We say that y ∈ LG is measurable if it is Ft-measurable for all Ft ∈ P and t ∈ T0.
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We denote by N the set of measurable elements of LG:

N := {y ∈ LG : y is Ft −measurable ∀t ∈ T0} .

N is called nonanticipativity constrains subspace of LG. We recall the following existence results
for variational problems in the spaces RG and LG.

Theorem 1 (See [4], Corollary 3.1). Let X ⊆ RG be a compact set and let Φ : X ⇒ RG be an upper
semicontinuous set-valued map on X with compact and convex values. Then, there exists x̄ ∈ X
and ϕ ∈ Φ(x̄) solution to GV I(Φ, X)

〈ϕ, x− x̄〉G ≥ 0 ∀x ∈ X.

Theorem 2 (See [16], Theorem 3.5 and 3.6). Let C = {x ∈ LG : x(ω) ∈ C(ω) ∀ω ∈ Ω} be a
nonempty, closed, and convex subspace of LG and F : LG → LG be a continuous operator. The set
of solutions to the multistage stochastic variational inequality

〈〈F(x̄), x− x̄〉〉G ≥ 0 ∀x ∈ C ∩ N

is always closed. It is sure to be bounded and nonempty if C∩N 6= ∅ and the sets C(ω) are bounded.
Furthermore, under monotonicity of F relatively to C, the set of solutions to SV I(F , C) is convex;
under strict monotonicity, if a solution to SV I(F , C) exists at all, it must be unique.

4 The equilibrium model by scenarios

The aim of this section is to reformulate the model introduced in the Section 2 in a scenarios
setting. We consider an economy which is characterized by the information-partitions P of the set
of scenarios Ω and by a probability measure on elements of Ω, Π = (π(ω))ω∈Ω. For each i ∈ I, we
suppose that xi, p, ei ∈ LH(T+1) and zi, q ∈ L(N−1)(T+1). In particular, since zi and q represent a
decision in time 0, one has

zi0(ω) ∈ RN−1, zit(ω) = 0 ∀t ∈ T and q0(ω) ∈ RN−1
+ , qt(ω) = 0 ∀t ∈ T

Hence, thanks to the above remark, we can consider zi, q ∈ LN−1. Moreover, we require that
all vectors xi, p, ei and zi, q are measurable, that is for each F jt , xit(ω) and eit(ω) are constants
for all ω ∈ F jt . From an economic viewpoint, for all ω ∈ F jt , xit(ω) represents the bundle of
spot consumption chosen by agent i at contingency ξjt and eit(ω) represents the initial endowment

in contingency ξjt . Moreover, for any ω ∈ F jt , pt(ω) is the spot price at time t and
∑
ω∈F j

t

pt(ω)

represents the spot price vector at contingency ξjt = F jt , see e.g. [3]. Hence, from Ft-measurability
requirement, it follows that:

∀ω ∈ F jt xit(ω) = xi(ξ
j
t ) , eit(ω) = ei(ξ

j
t ) and

∑
ω∈F j

t

pt(ω) = p(ξjt ). (5)

Furthermore, for each ω ∈ Ω, zi(ω) represents the N − 1 quantities sold or bought at t = 0 of
commodity-1 eventually to be delivered or received by agent i in all possible contingencies ξjt ,
with t ∈ T and k = 1, . . . , kt. Although we allow the decisions to depend on Ω, then the use
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of measurability constraints restricts the choice of zi to the linear subspace of functions that are
constant for each ω ∈ Ω. In this way, we pose that zi(ω) = (ziF j

t
)j=1,...,kt
t∈T for each ω ∈ Ω. With

similar comments, for each ω ∈ Ω, the vector q(ω) = (qF j
t
)j=1,...,kt
t∈T represents the forward prices at

time 0 and it is such that, if we consider
∑
ω∈Ω q(ω) = |Ω| (qF j

t
)j=1,...,kt
t∈T , this sum represents the

forward price vector as de�ned in Section 2. Summarizing, from F0-measurability requirement, it
follows that:

∀ω ∈ Ω zi(ω) = (ziF j
t
)j=1,...,kt
t∈T = zi and

∑
ω∈Ω

q(ω) = |Ω| (qF j
t
)j=1,...,kt
t∈T = q . (6)

We point out that zi can't really depend on ω, but the requirement that zi ∈ N allow us to study
the problem by events.
We use following notations for the nonanticipativity sets: N 1 ⊆ LH(T+1) and N 2 ⊆ LN−1 respec-
tively the sets of commodities x and e and contracts z which satis�es the �rst conditions (5) and

(6); Ñ 1 ⊆ LH(T+1) and Ñ 2 ⊆ LN−1 the sets of prices p and q which satis�es the second conditions
(5) and (6). Hence, for sake of simplicity, we pose C = H(T + 1), D = H(T + 1) +N − 1 and

L := LH(T+1) × LN−1, N := N 1 ×N 2, Ñ := Ñ 1 × Ñ 2 .

In this setting, we suppose that the utility functions are represented by the expected utility

Ui : LC → R Ui (xi) = Eω [fiω (xi)] =
∑
ω∈Ω

π (ω) fiω (xi (ω)) ,

where, for each ω ∈ Ω, fiω : RC+ → R. Hence the economy is characterized by the vector E :=(
P,Π, (Ui, ei)i∈I

)
. The budget constraint space, at the price system (p, q) ∈ Ñ , can be rewritten

in the following form:

Bi (p, q) := {(xi, zi) ∈ L : (xi (ω) , zi (ω)) ∈ Biω (p, q) ∀ω ∈ Ω}

where, for all ω ∈ Ω

Biω (p, q) :={(xi (ω) , zi (ω)) ∈ RC+ ×R(ω) :

〈p0 (ω) , xi0 (ω)〉H + 〈q (ω) , zi (ω)〉N−1 ≤ 〈p0 (ω) , ei0 (ω)〉H
〈pt (ω) , xit (ω)〉H ≤ 〈pt (ω) , eit (ω)〉H + p1

t (ω) zit(ω) ∀t ∈ T }.
(7)

The element R(ω) is introduced similarly as in Section 2. We pose B (p, q) :=
∏
i∈I Bi (p, q). The

aim of each agent is to maximize the expected utility on the set Bi (p, q)∩N , which is a nonempty,
closed, and convex set of L. Finally, we can reformulate the equilibrium from a viewpoint of
scenarios and, then, we can set the problem in the space of functions L.

De�nition 4. An equilibrium of plans, prices, and price expectations for the economy E :=(
P,Π, (Ui, ei)i∈I

)
is a vector

(
(x̄i, z̄i)i∈I , p̄, q̄

)
∈
∏
i∈I(Bi (p̄, q̄) ∩N )× Ñ , such that

� for any i ∈ I:
max

(xi,zi)∈Bi(p̄,q̄)∩N
E [fiω (xi)] = E [fiω (x̄i)] ; (8)
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� for any ω ∈ Ω ∑
i∈I

x̄i (ω) ≤
∑
i∈I

ei (ω) ; (9)

� for any ω ∈ Ω ∑
i∈I

z̄i (ω) = 0. (10)

Conditions (9) and (10) can be rewritten in terms of components of the vectors x̄i (ω), ei (ω) and
z̄i (ω): ∑

i∈I
x̄it (ω) ≤

∑
i∈I

eit (ω) ∀t ∈ T0 ,
∑
i∈I

z̄iF j
t

= 0 ∀F jt ∈ P \ F0 .

Remark 1. We introduce, for all i ∈ I and ω ∈ Ω, the maximization problem

max
(xi(ω),zi(ω))∈Biω(p̄,q̄)

fiω(xi(ω)) = fiω(x̄i(ω)). (11)

We observe that if x̄i ∈ LC is such that, for all ω ∈ Ω, x̄i(ω) is a solution to (11) and x̄i ∈ N 1,
then x̄i is a solution to (8).

Following proposition shows that the de�nitions in terms of contingencies and in terms of scenarios
are equivalent.

Proposition 1. The vector (x̄, z̄, p̄, q̄) ∈
∏
i∈I(Bi (p̄, q̄) ∩ N ) × Ñ is an equilibrium according to

De�nition 4 if and only if it is an equilibrium according to De�nition 1.

Proof. Since each pair (ω, t) identi�es the contingency ξjt , it follows that conditions (2), (3) and
(9), (10) are equivalent. We have to prove that Bi (p̄, q̄)∩N ∼= Mi (p̄, q̄). Let (xi, zi) ∈ Bi (p̄, q̄)∩N .
For all ω ∈ Ω one has:

〈p0 (ω) , xi0 (ω)〉H + 〈q (ω) , zi (ω)〉N−1 ≤ 〈p0 (ω) , ei0 (ω)〉H .

Summing up ω ∈ Ω, it follows that:∑
ω∈Ω

〈p0 (ω) , xi0 (ω)〉H +
∑
ω∈Ω

〈q (ω) , zi (ω)〉N−1 ≤
∑
ω∈Ω

〈p0 (ω) , ei0 (ω)〉H .

Since (xi, zi) ∈ N , (p, q) ∈ Ñ and ei measurable, from (5) and (6) we get

〈p (ξ0) , xi (ξ0)〉H + 〈q, zi〉N−1 ≤ 〈p (ξ0) , ei (ξ0)〉H

that is the �rst inequality of the constraint set Mi (p̄, q̄). In similar way, we can prove that all
constraints of Bi (p̄, q̄) ∩ N hold if and only if constraints in Mi (p̄, q̄) hold. We conclude that
(x̄, z̄, p̄, q̄) ∈ L is an equilibrium according to De�nition 4 if and only if it is an equilibrium according
to De�nition 1.
We introduce, for all i ∈ I, the following assumptions.

Assumptions F
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(F.1) fiω is C1 and concave.

(F.2) fiω is strictly increasing in commodity-1: ∀x̃i (ω) , ˜̃xi (ω) ∈ RC+ with x̃i (ω) ≥ ˜̃xi (ω), then

x̃1
it (ω) > ˜̃x1

it (ω) for some t ∈ T0 ⇒ fiω (x̃i) > fiω
(
˜̃xi
)
.

(F.3) fiω is non-satiated: ∀xi (ω) ∈ RC+ ∃x̃i (ω) ∈ RC+ s.t. fiω (x̃i) > fiω (xi).

Assumptions U

(U.1) Ui is C1 and concave.

(U.2) Ui is strictly increasing in commodity-1: ∀x̃i, ˜̃xi ∈ LC with x̃i ≥ ˜̃xi, then

x̃1
i (ω) > ˜̃x1

i (ω) for some ω ∈ Ω ⇒ Ui (x̃i) > Ui
(
˜̃xi
)
.

(U.3) Ui is non-satiated: ∀xi ∈ LC ∃x̃i ∈ LC s.t. Ui (x̃i) > Ui (xi).

Proposition 2. Let i ∈ I. If for each ω ∈ Ω, fiω satis�es Assumptions F, then the expected utility
Ui satis�es Assumptions U. Moreover, the gradient of Ui is monotone decreasing.

Proof. Firstly, we introduce the gradient operator ∇Ui : LC → LC , such that for all xi ∈ LC
associates the map ∇Ui (xi), with

∇Ui (xi) :Ω→ RC

ω → ∇fiω (xi (ω)) .

It follows that Ui and ∇Ui are continuous (see Section 4 in [16]). The concavity and the strictly
increasing in commodity-1 of Ui are immediate consequences of Assumptions (F.1) and (F.2). Fur-
thermore, for all xi, x̃i ∈ LC , since from Assumption (F.1) fiω is concave, so ∇fiω is monotonic
decreasing. For all ω ∈ Ω one has:

〈∇fiω(xi)−∇fiω(x̃i), xi(ω)− x̃i(ω)〉C ≤ 0 ∀xi(ω), x̃i(ω) ∈ RC+ .

Hence:∑
ω∈Ω

π(ω)〈∇fiω(xi)−∇fiω(x̃i), xi(ω)− x̃i(ω)〉C = 〈〈∇Ui(xi)−∇Ui(x̃i), xi − x̃i〉〉C ≤ 0

that is ∇Ui is a monotone operator. Now, we prove that Ui is non-satiated. Let xi ∈ LC , ω̃ ∈ Ω
such that π(ω̃) > 0 and xi(ω̃) ∈ RC+. From Assumption (F.3), there exists x̃i(ω̃) ∈ RC+ such that

fiω̃ (x̃i) > fiω̃ (xi). Let ˜̃xi ∈ LC be such that ˜̃xi(ω) = xi(ω) for all ω 6= ω̃ and ˜̃xi(ω̃) = x̃i(ω̃). One
has:

Ui(˜̃xi) =
∑
ω∈Ω

π(ω)fiω
(
˜̃xi
)

=
∑
ω 6=ω̃

π(ω)fiω (xi) + π(ω̃)fiω̃ (x̃i) >

>
∑
ω 6=ω̃

π(ω)fiω (xi) + π(ω̃)fiω̃ (xi) =
∑
ω∈Ω

π(ω)fiω (xi) = Ui(xi) ⇒ Ui(˜̃xi) > Ui(xi) .

We observe that, in order to have the non-satiated assumption of Ui, it is su�cient that there exists
at least one ω, with π(ω) > 0, such that fiω satis�es Assumption (F.3).
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Proposition 3. Let Assumption (U.2) be satis�ed. Let (x̄, z̄, p̄, q̄) ∈ (B(p̄, q̄) ∩ N )× Ñ and (x̄, z̄)
be such that for all i ∈ I, x̄i is maximal for Ui in Bi(p̄, q̄) ∩ N . Then, for any ω ∈ Ω and t ∈ T0,
p̄1
t (ω) > 0 and q̄F j

t
> 0 for each F jt ∈ P \ F0.

Proof. We assume that there exist ω ∈ Ω and t∗ ∈ T0, with ω ∈ F jt∗ , such that p̄1
t∗ (ω) = 0. Fixed

i ∈ I, we de�ne x̂i ∈ LC such that

∀ω ∈ Ω : if ω /∈ F jt∗ x̂i (ω) = x̄i (ω)

if ω ∈ F jt∗ x̂i (ω) =

{
x̄it∗ (ω) +Ke1

x̄it (ω) ∀t 6= t∗.

where K > 0 and e1 = (1, 0, . . . , 0) ∈ RH+ . Then, (x̂i, z̄i) ∈ Bi (p̄, q̄) ∩ N and since Ui is strictly
increasing in commodity-1 and x̂i > x̄i we have that Ui (x̂i) > Ui (x̄i) which contradicts the fact
that x̄i is a maximum point of Ui in Bi (p̄, q̄) ∩N .
The proof of q̄F j

t
> 0, for all F jt ∈ P \ F0, is close to the latter.

Thanks to the Proposition 3, without loss of generality, for all ω ∈ Ω and t ∈ T0, we pose:

� ∆0
ω :=

(p0(ω), q(ω)) ∈ RH+ × RN−1
+ :

∑
h∈H

ph0 (ω) +
∑

F j
t ∈P\F0

qF j
t

=
1

|Ω|


and ∆F0

:=
{

(p0, q) ∈ L : (p0(ω), q(ω)) ∈ ∆0
ω ∀ω ∈ Ω

}
;

� ∆t
ω :=

pt(ω) ∈ RH+ :
∑
h∈H

pht (ω) =
1∣∣∣F jt ∣∣∣ with F jt ⊆ Ω s.t. ω ∈ F jt


and ∆F j

t
:=
{
pt ∈ LH : pt(ω) ∈ ∆t

ω ∀ω ∈ F jt
}
.

Therefore, by considering ∆ω :=
∏
t∈T0 ∆t

ω, the following simplex subspace is obtained

∆ := {(p, q) ∈ Ñ :
(
(p0 (ω) , q (ω)) , (pt (ω))t∈T

)
∈ ∆ω ∀ω ∈ Ω}. (12)

5 A stochastic variational formulation

In this section, our aim is to reformulate the equilibrium problem as a suitable stochastic quasi-
variational problem (SQVI). To this end, we follow the approach used in [16]. We introduce the
following problem:

Find (x̄, z̄, p̄, q̄) ∈ (B (p̄, q̄) ∩N )×∆ such that∑
i∈I
〈〈∇Ui (x̄i) , xi − x̄i〉〉C + 〈〈(

∑
i∈I

(x̄i − ei) ,
∑
i∈I

z̄i), (p, q)− (p̄, q̄)〉〉D ≤ 0 (13)

∀ (x, z, p, q) ∈ (B (p̄, q̄) ∩N )×∆ .
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Remark 2. The vector (x̄, z̄, p̄, q̄) is a solution of the SQV I (13) if and only if following inequalities
simultaneously hold:

(i) for each i ∈ I, (x̄i, z̄i) is a solution to

〈〈∇Ui (x̄i) , xi − x̄i〉〉C ≤ 0 ∀ (xi, zi) ∈ Bi (p̄, q̄) ∩N . (14)

(ii) (p̄, q̄) is a solution to

〈〈(
∑
i∈I

(x̄i − ei) ,
∑
i∈I

z̄i), (p, q)− (p̄, q̄)〉〉D ≤ 0 ∀ (p, q) ∈ ∆ . (15)

The following proposition will be useful to obtain the characterization.

Proposition 4. Let (x̄i, z̄i) ∈ Bi(p̄, q̄) ∩N be a solution to (8). Then, for each ω ∈ Ω one has:

〈p̄0 (ω) , x̄i0 (ω)− ei0 (ω)〉H + 〈q̄ (ω) , z̄i (ω)〉N−1 = 0 , (16)

〈p̄t (ω) , x̄it (ω)〉H = 〈p̄it (ω) , eit (ω)〉H + p̄1
t (ω) z̄iF j

t
∀t ∈ T . (17)

Proof. If there exists ω̃ ∈ Ω such that 〈p̄0 (ω̃) , x̄i0 (ω̃)− ei0 (ω̃)〉H + 〈q̄ (ω̃) , z̄i (ω̃)〉N−1 < 0, from
F0-measurability the strict inequality holds for each ω ∈ Ω. We de�ne x̂i ∈ LC such that, for all
ω ∈ Ω:

x̂it(ω) :=

{
x̄i0 (ω) +Ke1

x̄it (ω) ∀t ∈ T
with 0 < K ≤ −

〈p̄0 (ω) , x̄i0 (ω)− ei0 (ω)〉H + 〈q̄ (ω) , z̄i (ω)〉N−1

p̄1
0 (ω)

.

(18)
Since

〈p̄0 (ω) , x̂i0 (ω)− ei0 (ω)〉H + 〈q̄ (ω) , z̄i (ω)〉N−1 =

= 〈p̄0 (ω) , x̄i0 (ω)− ei0 (ω)〉H + 〈q̄ (ω) , z̄i (ω)〉N−1 +Kp̄1
0 (ω) ≤

≤〈p̄0 (ω) , x̄i0 (ω)− ei0 (ω)〉H + 〈q̄ (ω) , z̄i (ω)〉N−1 +

+

(
−
〈p̄0 (ω) , x̄i0 (ω)− ei0 (ω)〉H + 〈q̄ (ω) , z̄i (ω)〉N−1

p̄1
0 (ω)

)
p̄1

0 (ω) = 0 ,

one has that (x̂i, z̄i) ∈ Bi (p̄, q̄) ∩ N . Since Ui is strictly increasing in commodity-1 and x̂i > x̄i we
have that Ui (x̂i) > Ui (x̄i), contradicting the fact that x̄i is a maximum point of Ui in Bi (p̄, q̄)∩N .
In similar way, we get relation (17).

Remark 3. Let (x, z) = (xi, zi)i∈I be such that (xi, zi) is a solution to (8); then from Proposition
4, summing up to i inequalities (16) and (17) one has

〈p̄0 (ω) ,
∑
i∈I

(x̄i0 (ω)− ei0 (ω))〉H + 〈q̄ (ω) ,
∑
i∈I

z̄i (ω)〉N−1 = 0 , (19)

〈p̄t (ω) ,
∑
i∈I

(x̄it (ω)− eit (ω))〉H = p̄1
t (ω)

∑
i∈I

z̄iF j
t
. (20)
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Theorem 3. For all i ∈ I, let E be an economy which satis�es the Assumptions U . Then, (x̄, z̄, p̄, q̄)
is a solution to the SQV I (13) if and only if it is an equilibrium vector of plans, prices, and price
expectations for E.

Proof.
Claim 1 For all i ∈ I, (x̄i, z̄i) is a solution of the maximization problem (8) if and only if it is a
solution of (14).
It follows from Proposition 2 and from Example 1 of Section 4 in [16], where G = −U and
C = B (p̄, q̄).
Claim 2 If (x̄, z̄, p̄, q̄) is a solution to the SQV I (13), then ∀ω ∈ Ω

∑
i∈I z̄i (ω) ≤ 0 and∑

i∈I (x̄i (ω)− ei (ω)) ≤ 0.
Let G0 = H + N − 1 and Gt = H for each t ∈ T , from Remark 2, it follows that the following
inequalities simultaneously hold

〈〈(
∑
i∈I

(x̄i0 − ei0) ,
∑
i∈I

z̄i), (p0, q)− (p̄0, q̄)〉〉H+N−1 ≤ 0 ∀ (p0, q) ∈ ∆F0
(21)

and for all t ∈ T
〈〈
∑
i∈I

(x̄it − eit) , pt − p̄t〉〉H ≤ 0 ∀pt ∈ ∆F j
t
. (22)

Since, for all i ∈ I, (x̄i, z̄i) ∈ Bi (p̄, q̄) ∩N , summing up i the inequalities of (7), one has:

(i)
〈
q̄ (ω) ,

∑
i∈I z̄i (ω)

〉
N−1

+
〈
p̄0 (ω) ,

∑
i∈I (x̄i0 (ω)− ei0 (ω))

〉
H
≤ 0 for all ω ∈ Ω, that is

〈〈q̄,
∑
i∈I

z̄i〉〉N−1 + 〈〈p̄0,
∑
i∈I

(x̄i0 − ei0)〉〉H ≤ 0 , (23)

(ii)
〈
p̄t (ω) ,

∑
i∈I (x̄it (ω)− eit (ω))

〉
H
− p̄1

t (ω)
(∑

i∈I z̄iF j
t

)
≤ 0 for all t ∈ T and ω ∈ Ω, that is

〈〈p̄t,
∑
i∈I

(x̄it − eit)〉〉H − 〈〈p̄1
t ,
∑
i∈I

z̄iF j
t
〉〉1 ≤ 0 . (24)

From (21) and (23), we get

〈〈q,
∑
i∈I

z̄i〉〉N−1 + 〈〈p0,
∑
i∈I

(x̄i0 − ei0)〉〉H ≤ 0 ∀ (p0, q) ∈ ∆F0 . (25)

For all h∗ ∈ H, we pose (p̃0, q̃) ∈ LH+N−1 such that

∀ω ∈ Ω : p̃h0 (ω) :=

{
1
|Ω| if h = h∗

0 ∀h 6= h∗
, q̃(ω) = 0N−1 .

Being (p̃0, q̃) ∈ ∆F0 , we can replace it in (25) and since xi and ei are F0-measurable one has:

∑
ω∈Ω

(
π(ω)p̃h

∗

0 (ω)
∑
i∈I

(
x̄h

∗

i0 (ω)− eh
∗

i0 (ω)
))

=

(∑
ω∈Ω

π(ω)
1

|Ω|

)∑
i∈I

(
x̄h

∗

i0 (ω)− eh
∗

i0 (ω)
)

=

=
∑
i∈I

(
x̄h

∗

i0 (ω)− eh
∗

i0 (ω)
)
≤ 0.
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Hence, it follows that ∑
i∈I

(
x̄hi0 (ω)− ehi0 (ω)

)
≤ 0 ∀ω ∈ Ω and ∀h ∈ H.

Further, �xed F j
∗

t∗ , we pose (p̃0, q̃) ∈ LH+N−1 such that

∀ω ∈ Ω : p̃0(ω) := 0H , q̃ (ω) :=

{
1
|Ω| if F jt = F j

∗

t∗

0 ∀F jt 6= F j
∗

t∗

Being (p̃0, q̃) ∈ ∆F0 , we can replace it in (25) and from measurability of zi one has:∑
ω∈Ω

(
π(ω)q̃(ω)

∑
i∈I

z̄i (ω)

)
=

(∑
ω∈Ω

π(ω)
1

|Ω|

)∑
i∈I

z̄iF j
t

=
∑
i∈I

z̄iF j
t
≤ 0 .

Moreover, from the previous result and from (24), we have for all t ∈ T

〈〈p̄t,
∑
i∈I

(x̄it − eit)〉〉H ≤ 〈〈p̄1
t ,
∑
i∈I

z̄iF j
t
〉〉1 ≤ 0

so that by (22) we get for all t ∈ T

〈〈pt,
∑
i∈I

(x̄it − eit)〉〉H ≤ 0 ∀pt ∈ ∆F j
t
. (26)

Fixed a F jt , we pose p̃t ∈ LH such that

∀ω ∈ F jt , p̃ht (ω) :=

{
1

|F j
t |

if h = h∗

0 ∀h 6= h∗ .

Being p̃t ∈ ∆F j
t
, we can replace it in (26) and since xi and ei are Ft-measurable one has:

∑
ω∈F j

t

(
π(ω)p̃t(ω)

∑
i∈I

(x̄h
∗

it (ω)− eh
∗

it (ω))

)
=

∑
ω∈F j

t

π(ω)
1∣∣∣F jt ∣∣∣
∑

i∈I

(
x̄h

∗

it (ω)− eh
∗

it (ω)
)

=

=
∑
i∈I

(
x̄h

∗

it (ω)− eh
∗

it (ω)
)
≤ 0.

Hence, it follows that for all t ∈ T and for all h ∈ H∑
i∈I

(
x̄hit (ω)− ehit (ω)

)
≤ 0 ∀ω ∈ Ω .

Claim 3 If (x̄, z̄, p̄, q̄) is a solution to the SQV I (13), then ∀ω ∈ Ω
∑
i∈I z̄i (ω) = 0.

From Claim 1, Proposition 3, and Claim 2, one has q̄(ω) > 0 and
∑
i∈I z̄i(ω) ≤ 0 ∀ω ∈ Ω, hence

〈〈q̄,
∑
i∈I z̄i〉〉N−1 ≤ 0. If we suppose that

〈
q̄ (ω) ,

∑
i∈I z̄i (ω)

〉
N−1

< 0 for some ω ∈ Ω, from
Proposition 4 one has

〈p̄0 (ω) ,
∑
i∈I

(x̄i0 (ω)− ei0 (ω))〉H > 0
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which, being p0 ∈ ∆F0 , contradicts Claim 2. Then, one has 〈〈q̄,
∑
i∈I z̄i〉〉N−1 = 0 and since

q̄(ω) > 0 for all ω ∈ Ω, we get
∑
i∈I z̄i (ω) = 0 for all ω ∈ Ω.

Then, thanks to Claims 1, 2 and 3, if (x̄, z̄, p̄, q̄) is a solution to SQVI (13), then it is an equilibrium
solution. Moreover, if (x̄, z̄, p̄, q̄) is an equilibrium solution, from (19) and (20), condition (15) hold,
and from Claim 1 (14) is satis�ed. Then (x̄, z̄, p̄, q̄) is a solution to (13).
From theoretical and computational viewpoints, sometimes it will be useful to relax the nonan-
ticipativity constraints of the decision variables. In doing this, we get the tools to formulate an

equivalent problem allowing for point-wise optimization (see [14]). We pose M1 :=
(
N 1
)⊥

and

M2 :=
(
N 2
)⊥

respectively the subspaces of the nonanticipativity multipliers relative to x and z

and we poseM :=M1 ×M2, so that ρ =
(
ρ1, ρ2

)
∈M.

Hence, for the Riesz orthogonal decomposition, one has LC = N 1 +
(
N 1
)⊥

and LN−1 = N 2 +(
N 2
)⊥

, that is

LC = N 1 +M1 LN−1 = N 2 +M2. (27)

We �x (p̄, q̄) ∈ ∆ and we introduce, as in [16], the following stochastic variational inequality in
extensive form

Find (x̄i, z̄i) ∈ N such that exists ρ̄i ∈M and for all ω ∈ Ω one has〈(
∇fiω (x̄i) + ρ̄1

i (ω) , ρ̄2
i (ω)

)
, (xi (ω) , zi (ω))− (x̄i (ω) , z̄i (ω))

〉
D
≤ 0 ∀ (xi (ω) , zi (ω)) ∈ Biω (p̄, q̄) .

(28)

Proposition 5. The stochastic variational problems (28) and (14) are equivalent.

Proof. We suppose that (x̄i, z̄i) is a solution to (28); for each ω ∈ Ω, it follows that

〈
(
∇fiω (x̄i) + ρ̄1

i (ω) , ρ̄2
i (ω)

)
, (xi (ω) , zi (ω))− (x̄i (ω) , z̄i (ω))〉D =

=〈∇fiω (x̄i) , xi (ω)− x̄i (ω)〉C + 〈ρ̄1
i (ω) , xi (ω)− x̄i (ω)〉C + 〈ρ̄2

i (ω) , zi (ω)− z̄i (ω)〉N−1 ≤ 0

∀ (xi (ω) , zi (ω)) ∈ Biω (p̄, q̄) .

We multiply for π(ω) and we sum up to ω; one has

〈〈∇U (x̄i) , xi − x̄i〉〉C + 〈〈ρ̄1
i , xi − x̄i〉〉C + 〈〈ρ̄2

i , zi − z̄i〉〉N−1 ≤ 0 ∀ (xi, zi) ∈ Bi (p̄, q̄) . (29)

Moreover, since ρ̄1
i ∈M1 =

(
N 1
)⊥

and ρ̄2
i ∈M2 =

(
N 2
)⊥

, from (29) one has

〈〈∇U (x̄i) , xi − x̄i〉〉C ≤ 0 ∀ (xi, zi) ∈ Bi (p̄, q̄) ∩N . (30)

Hence, (x̄i, z̄i) is a solution to (14).
Being Biω (p̄, q̄) a polyhedron for each ω ∈ Ω, from Theorem.3.2 in [16], the converse still holds.
Thanks to Proposition 5 we can characterize the equilibrium vector as a solution to a variational
problem in extensive form.
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Corollary 1. For all i ∈ I and ω ∈ Ω, let Assumptions F be satis�ed. Then, (x̄, z̄, p̄, q̄) ∈
(B(p̄, q̄) ∩N )×∆ is a solution of the stochastic variational problem∑

i∈I

〈(
∇fiω (x̄i) + ρ̄1

i (ω) , ρ̄2
i (ω)

)
, (xi (ω) , zi (ω))− (x̄i (ω) , z̄i (ω))

〉
D

+

+ 〈(
∑
i∈I

(x̄i(ω)− ei(ω)) ,
∑
i∈I

z̄i(ω)), (p(ω), q(ω))− (p̄(ω), q̄(ω))〉D ≤ 0

∀ (xi (ω) , zi (ω) , p(ω), q(ω)) ∈ Biω (p̄, q̄)×∆ω

(31)

for all ω ∈ Ω and for some (ρ̄1, ρ̄2) ∈ M if and only if it is an equilibrium vector of plans, prices,
and price expectations for E.

Proof. From Proposition 5 condition (28) is equivalent to the variational problem (14) which is
equivalent to the equilibrium conditions.

Proposition 6. For each i ∈ I, the set-valued map Bi : ∆ ⇒ L is lower semicontinuous, closed
and with nonempty, closed, and convex values.

Proof. Bi is a closed map.
Let {(pn, qn)}n∈N ⊆ ∆ and {(xi,n, zi,n)}n∈N ⊆ L be such that (xi,n, zi,n) ∈ Bi(pn, qn) for all n,

(pn, qn)
L→ (p, q) and (xi,n, zi,n)

L→ (xi, zi).
Firstly, we observe that since (pn, qn) ⊆ ∆, one has, for each ω ∈ Ω, {(p0,n(ω), qn(ω))}n∈N ⊆ ∆0

ω

and {pt,n(ω)}n∈N ⊆ ∆t
ω for each t ∈ T ; hence this sequence converges to (p(ω), q(ω)). For each

n ∈ N, when (xi,n, zi,n) ∈ Bi(pn, qn) one has (xi,n(ω), zi,n(ω)) ∈ Biω(pn, qn) for each ω ∈ Ω, that is

0 ≤ 〈p0,n (ω) , xi0,n (ω)〉H ≤ −〈qn (ω) , zi,n (ω)〉N−1 + 〈p0,n (ω) , ei0 (ω)〉H
0 ≤ 〈pt,n (ω) , xit,n (ω)〉H ≤ 〈pt,n (ω) , eit (ω)〉H + p1

t,n (ω) zit,n(ω) ∀t ∈ T .
(32)

Since zi,n (ω) ∈ R(ω) one has that, for all ω ∈ Ω, {zi,n(ω)}n∈N converges to zi (ω). Hence,
from (32), one has that the sequence {xi,n(ω)}n∈N is bounded and converges to xi(ω). Then
(xi(ω), zi(ω)) ∈ Biω(p, q), for all ω ∈ Ω, and (xi, zi) ∈ Bi(p, q); hence, Bi is a closed map.

Bi is with nonempty, closed, and convex values.
We �x (p, q) ∈ ∆. Since (ei, 0L) ∈ Bi(p, q), it follows that Bi(p, q) is nonempty and, from de�nition,
Bi(p, q) is a convex set. Being Bi a closed map, then its values are necessarily closed.

Bi is lower semicontinuous.
Let {(pn, qn)}n∈N ⊆ ∆ be converging to (p, q); for all (xi, zi) ∈ Bi(p, q) we have to prove that

there exists a sequence {(xi,n, zi,n)}n∈N ⊆ L such that (xi,n, zi,n) ∈ Bi(pn, qn) and (xi,n, zi,n)
L→

(xi, zi). It is clear that, for all ω ∈ Ω, we can consider (xi(ω), zi(ω)) and it is su�cient to �nd
(xi,n(ω), zi,n(ω)) ∈ Biω(pn, qn) such that (xi,n(ω), zi,n(ω))→ (xi(ω), zi(ω)). Fixed ω ∈ Ω, if

〈p0 (ω) , xi0 (ω)〉H + 〈q (ω) , zi (ω)〉N−1 < 〈p0 (ω) , ei0 (ω)〉H
〈pt (ω) , xit (ω)〉H < 〈pt (ω) , eit (ω)〉H + p1

t (ω) zit(ω) t ∈ T
(33)

then

〈p0,n (ω) , xi0 (ω)〉H + 〈qn (ω) , zi (ω)〉N−1 < 〈p0,n (ω) , ei0 (ω)〉H
〈pt,n (ω) , xit (ω)〉H < 〈pt,n (ω) , eit (ω)〉H + p1

t,n (ω) zit(ω) t ∈ T .
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Hence (xi(ω), zi(ω)) ∈ Biω(pn, qn) and then (xi(ω), zi(ω)) ∈ LiBiω(pn, qn), where we identify with
LiBiω(pn, qn) the lower limit, in Kuratowski sense, of the sequence Biω(pn, qn). We suppose that
(xi(ω), zi(ω)) is such that at least one inequality of (33) is not satis�ed. Being ei(ω) ∈ RC++, there
exists xi(ω) ∈ RC++ such that (xi(ω), 0N−1) satis�es the strict inequalities of (33), hence it belongs
to the interior of Biω(p, q). Then, from Proposition 1.1.14 (v) of [10] and being Biω(p, q) a closed
set, one has cl int Biω(p, q) = cl Biω(p, q) = Biω(p, q). Clearly, from de�nition of LiBiω(pn, qn),
one has int Biω(p, q) ⊂ LiBiω(pn, qn) and, from Proposition 8.2.1 of [10], LiBiω(pn, qn) is a closed
set. Hence:

Biω(p, q) = cl int Biω(p, q) ⊂ cl LiBiω(pn, qn) = LiBiω(pn, qn).

We can conclude that Bi is lower semicontinuous.

Theorem 4. Let Assumptions F be satis�ed for each ω ∈ Ω and i ∈ I. Then, there exists an
equilibrium vector of plans, prices, and price expectations for E.

Proof. In order to prove the existence of equilibrium, thank to Theorem 3, we prove that the SQVI
(13) admits at least one solution. For each ω ∈ Ω and (p(ω), q(ω)) ∈ ∆ω, we introduce the bounded
set

B̃iω(p, q) :=
∏
i∈I

[
Biω(p, q) ∩

([
0,
∑
i∈I

ei(ω) + M̃

]
× RN−1

)]
(34)

where M̃ ∈ R+. We observe that from properties of map Biω, proved in Proposition 6, the map

B̃iω is lower semicontinuous, closed, and with nonempty, closed, and convex values. We denote by
SQV I(B̃) the variational problem (13) in the convex set B̃(p, q).

There exists the solution of SQV I(B̃).
For each i ∈ I and (p, q) ∈ ∆, we consider the parametric stochastic variational inequality SVI(p, q):

Find (x̄i, z̄i) ∈ B̃i(p, q) ∩N such that

〈〈∇Ui(x̄i), xi − x̄i〉〉C ≤ 0 ∀(xi, zi) ∈ B̃i(p, q) ∩N . (35)

We introduce the map of the solutions Φi : ∆ ⇒ L such that, for all (p, q) ∈ ∆,

Φi(p, q) := {(x̄i, z̄i) : (x̄i, z̄i) is solution of SV I(p, q) (35)} .

From Proposition 2, it follows that operator ∇Ui is continuous and monotone; moreover, since
(ei, 0) ∈ B̃i(p, q), which is measurable, we get B̃i(p, q)∩N 6= ∅. Thanks to Theorem 2, it follows that,
for all (p, q) ∈ ∆ , Φi(p, q) is nonempty, bounded, closed, and convex. We prove that Φi is closed.
Let {(pn, qn)}n∈N ⊆ ∆ and {(x̄i,n, z̄i,n)}n∈N ⊆ L be two sequences with (x̄i,n, z̄i,n) ∈ Φi(pn, qn),

and such that (pn, qn)
L→ (p, q) and (x̄i,n, z̄i,n)

L→ (x̄, z̄), we have to prove that (x̄i, z̄i) ∈ Φi(p, q).

Since B̃i is a closed map then (x̄i, z̄i) ∈ B̃i(p, q). Being B̃i is lower semicontinuous, it follows that

for each (xi, zi) ∈ B̃i(p, q) there exists a sequence {(xi,n, zi,n)}n∈N converging to (xi, zi) such that

(xi,n, zi,n) ∈ B̃i(pn, qn) for all n. Since (x̄i,n, z̄i,n) ∈ Φi(pn, qn), then

〈〈∇Ui(x̄i,n), xi,n − x̄i,n〉〉C ≤ 0 and passing to the limit 〈〈∇Ui(x̄i), xi − x̄i〉〉C ≤ 0 ,

that is (x̄i, z̄i) ∈ Φi(p, q). Hence, for each (p, q) ∈ ∆, since Φ(p, q) ⊆
([

0,
∑
i∈I ei(ω) + M̃

]
×R

)
,

it follows that Φi(p, q) is also a compact map. Being Φi(p, q) a closed and compact map, it is upper
semicontinuous. Furthermore the map Φ(p, q) :=

∏
i∈I Φi(p, q) is upper semicontinuous.

Now, we consider the following stochastic generalized variational inequality:
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Find (p̄, q̄) ∈ ∆ such that there exists (x̄, z̄) ∈ Φ(p̄, q̄) and

〈〈(
∑
i∈I

(x̄i − ei) ,
∑
i∈I

z̄i), (p, q)− (p̄, q̄)〉〉D ≤ 0 ∀ (p, q) ∈ ∆ . (36)

From properties of ∆ and Φ and thanks to Theorem 1, there exists (p̄, q̄) ∈ ∆ and (x̄, z̄) ∈ Φ(p̄, q̄) so-

lutions to (36). So, (x̄, z̄, p̄, q̄) ∈
(
B̃ (p̄, q̄) ∩N

)
×∆, with (p, q) solution to (36) and (x, z) ∈ Φ(p, q),

is a solution to SQV I(B̃).

Any solution of the SQV I(B̃) is a solution of SQV I (13).

Let (x̄, z̄, p̄, q̄) be a solution of SQV I(B̃). Thanks to Remark 2, it is su�cient to prove that (x̄i, z̄i)
is a solution to (14). We suppose that there exists (x̂i, ẑi) ∈ Bi (p̄, q̄) ∩N such that

〈〈∇Ui(x̄i), x̂i − x̄i〉〉C > 0. (37)

Let λ ∈ [0, 1] be such that

0 < λ < min

{
1;

∑
i∈I e

h
i (ω) + M̃ − x̄hi (ω)

x̂hi (ω)− x̄hi (ω)
, with h ∈ H s.t. x̂hi (ω)− x̄hi (ω) > 0

}
(38)

and we pose (x̃i, z̃i) = λ(x̂i, ẑi) + (1− λ)(x̄i, z̄i). From convexity of B (p̄, q̄) ∩ N one has (x̃i, z̃i) ∈
Bi (p̄, q̄) ∩N and it results that (x̃i, z̃i) is still in (34). Indeed, for each ω ∈ Ω and h ∈ H, one has:∑

i∈I
ehi (ω) + M̃ − x̃hi (ω) =

∑
i∈I

ehi (ω) + M̃ − λx̂hi (ω)− (1− λ)x̄hi (ω) =

=
∑
i∈I

ehi (ω) + M̃ − λ
[
x̂hi (ω)− x̄hi (ω)

]
− x̄hi (ω).

Hence, for all h ∈ H, one has:

(i) if x̂hi (ω)− x̄hi (ω) = 0 ⇒
∑
i∈I e

h
i (ω) + M̃ − x̃hi (ω) =

∑
i∈I e

h
i (ω) + M̃ − x̄hi (ω) ≥ 0 ;

(ii) if x̂hi (ω)− x̄hi (ω) < 0 ⇒
∑
i∈I e

h
i (ω) + M̃ − x̃hi (ω) >

∑
i∈I e

h
i (ω) + M̃ − x̄hi (ω) ≥ 0;

(iii) if x̂hi (ω)− x̄hi (ω) > 0 ⇒ from (38) one has
∑
i∈I e

h
i (ω) + M̃ − x̃hi (ω) > 0.

Hence (x̃i, z̃i) ∈ B̃ (p̄, q̄) ∩N and moreover, from inequality (37)

〈〈∇Ui(x̄i), x̃i − x̄i〉〉C = 〈〈∇Ui(x̄i), λx̂i + (1− λ)x̄i − x̄i〉〉C = λ〈〈∇Ui(x̄i), x̂i − x̄i〉〉C > 0 .

This contradicts the fact that (x̄i, z̄i) is a solution to SV I (35). Thus, we can conclude that
(x̄, z̄, p̄, q̄) is still a solution of SQV I (13).
We point out that a quasi-variational inequalities problem is characterized by the fact that the
convex set depends on the solution of the problem; this fact can represent a di�culty to solve the
problem. With the operative approach used to prove Theorem 4, we overcame this di�culty: instead
of solving a stochastic quasi-variational inequality, we handle stochastic variational inequalities
problems. From this, the next remark follows.
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Remark 4. In the assumption (F.1) if we replace the concavity of fiω with the strict concavity,
with similar arguments of Proposition 2, one has that Ui is strictly concave and ∇Ui is a strictly
monotone operator. Then the parametric stochastic variational inequality (35) admits a unique
solution and the map of the solutions Φi reduces to a single-valued map. Hence, the problem (36)
becomes the variational inequality

Find (p̄, q̄) ∈ ∆ such that 〈〈(
∑
i∈I

(x̄i − ei) ,
∑
i∈I

z̄i), (p, q)− (p̄, q̄)〉〉D ≤ 0 ∀ (p, q) ∈ ∆ .

However, we observe that in order to guarantee the uniqueness of equilibrium we need to prove that
the map of solution Φ is strictly monotone, so that we obtain the uniqueness of solution of (36) too.

6 Computation procedure

In this section, we present a computational procedure to �nd the equilibrium solution by solving the
SQV I (31). To this aim we use the same procedure used to prove Theorem 4. Under Assumptions
F, for all i ∈ I and ω ∈ Ω, we build two sequences {(x̂ν , ẑν)}ν∈N ⊆ L and {(p̂n, q̂n)}n∈N ⊆ ∆ which
converge to a solution of (31).
The procedure is structured in two sequential phases. At each phase, we split the stochastic varia-
tional problem into a �nite number of deterministic ones and we solve them in parallel. This allow
us to deal e�ciently with large-scale problems arising from real-world applications in a dynamic-
stochastic framework.

Procedure: Phase 1

In the �rst phase, we �x (p, q) ∈ ∆ and we solve the parametric stochastic variational inequality
(35). We use the procedure known in literature as Progressive Hedging Algorithm, which allows
us to split the variational problem, which is set in the space of functions L, into |I| · |Ω| = IS
variational problems [SV I (i, ω)] in RD.

Progressive Hedging Algorithm

We introduce two sequences {(x̂ν , ẑν)}ν∈N ⊆ L and {ρ̂ν}ν∈N ⊆M:
let ρ̂0 = 0 as starting point, r > 0 a �xed parameter and ν ∈ N an iteration index.

ν = 1

(i) Choice of (x̂1, ẑ1) ∈ L. For all i ∈ I and ω ∈ Ω, we consider the [SV I (i, ω)]:〈
∇fiω

(
x̂1
i

)
, xi(ω)− x̂1

i (ω)
〉
C
≤ 0 ∀ (xi (ω) , zi (ω)) ∈ B̃iω(p, q) (39)

Since the operator is continuous and B̃iω(p, q) is a bounded set, there exists at least one
solution of (39). We choose

(
x̂1
i (ω) , ẑ1

i (ω)
)
arbitrarily, among the solution set of (39).

(ii) We pose
(
x̃1
i , z̃

1
i

)
= PN

(
x̂1
i , ẑ

1
i

)
and ρ̂1

i = rPM
(
x̂1
i , ẑ

1
i

)
. We denote by PN

(
x̂1
i , ẑ

1
i

)
and

PM
(
x̂1
i , ẑ

1
i

)
the projection of

(
x̂1
i , ẑ

1
i

)
to sets, respectively, N andM.
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∀ ν ∈ N

(i) Choice of (x̂ν , ẑν) ∈ L. For all i ∈ I and ω ∈ Ω, we consider the stochastic variational
problem

〈∇fiω (x̂νi , ẑ
ν
i ) + ρ̂ν−1

i (ω)

+r
[
(x̂νi (ω) , ẑνi (ω))−

(
x̃ν−1
i (ω) , z̃ν−1

i (ω)
)]
, (xi (ω) , zi (ω))− (x̂i (ω) , ẑi (ω))〉D ≤ 0

(40)

∀(xi (ω) , zi (ω)) ∈ B̃iω(p, q) .

The operator is strongly monotone, then there exists a unique solution (x̂νi (ω) , ẑνi (ω)).
Hence, we set (x̂νi , ẑ

ν
i ) ∈ L such that, for all ω ∈ Ω, (x̂νi (ω) , ẑνi (ω)) is the unique solution

to (40).

(ii) We pose (x̃νi , z̃
ν
i ) = PN (x̂νi , ẑ

ν
i ) and ρ̂νi = ρ̂ν−1

i + rPM
(
x̂ν−1
i , ẑν−1

i

)
.

Convergence

From Theorem 2 of [17] it follows that (x̂ν , ẑν)
L→ (x̄, z̄) ∈ N and ρ̂ν

L→ ρ̄ ∈M . Moreover,
(x̄, z̄) is a solution to the parametric SVI in extensive form (28) and, thanks to Proposition

5, (x̄, z̄) ∈ B̃(p, q) ∩N is a solution to (35). We call (x̄, z̄) as optimal strategy solution.

Procedure: Phase 2

In this phase we use the Projected Subgradient Algorithm to solve the SVI (36), where for all
(p, q) ∈ ∆, (x̄(p, q), z̄(p, q)) is the optimal strategy solution obtained in Phase 1. We pose

ϕ(p, q) := −(ϕ1(p, q), ϕ2(p, q)) ϕ1(p, q) :=
∑
i∈I

(x̄i(p, q)− ei) , ϕ2(p, q) :=
∑
i∈I

z̄i(p, q)

and, for each ω ∈ Ω, we consider the problem

Find (p̄(ω), q̄(ω)) ∈ ∆ω such that

〈ϕω(p̄, q̄), (p(ω), q(ω))− (p̄(ω), q̄(ω))〉D ≥ 0 ∀(p(ω), q(ω)) ∈ ∆ω . (41)

Thanks to the structure of ∆ and the measurability of (x̄(p, q), z̄(p, q)), we can consider the S
deterministic variational problems (41) in RD and solving them in parallel. We introduce the
Auslender's gap function (see, e.g. [2]):

Ψω : ∆ω → R
(p̃(ω), q̃(ω))→ Ψω(p̃, q̃) = max

(p(ω),q(ω))∈∆ω

〈ϕω(p̃, q̃), (p̃(ω), q̃(ω))− (p(ω), q(ω))〉D (42)

For this map following properties hold. From Theorem 4, since ϕω is a single-valued map, it follows
that ϕω is continuous; hence, from compactness of ∆ω, one has that Ψω is well posed. Moreover,
from Theorem 8.3. in [15], it follows that operator Ψω is proper, convex, and lower semicontinuous
being the maximum of a family of a�ne continue functions and Ψω(p̃, q̃) ≥ 0 for all (p̃, q̃). We pose
∂Ψω the subdi�erential of Ψω:

∂Ψω(p̃, q̃) =
{
τ ∈ RD : Ψω(p, q)−Ψω(p̃, q̃) ≥ 〈τω, (p(ω), q(ω))− (p̃(ω), q̃(ω))〉D ∀(p(ω), q(ω)) ∈ ∆ω

}
.

From Theorem 3.2.15 in [10], ∂Ψω(p, q) 6= ∅ for all (p, q) ∈ ri dom Ψω. Moreover, one has:
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Ψω(p̃, q̃) = 0 if and only if (p̃(ω), q̃(ω)) is a solution to (41).

Projected Subgradient Algorithm

We introduce the sequence {(p̂n(ω), q̂n(ω))} ⊆ ∆ω. We �x a starting point (p̂1(ω), q̂1(ω)) ∈
∆ω; it is usual to consider the centroid of ∆ω. Clearly, if Ψω(p̂1, q̂1) = 0, one has that
(p̂1(ω), q̂1(ω)) is a solution to (41). We suppose that Ψω(p̂1, q̂1) > 0.

n ∈ N

Choice of (p̂n+1(ω), q̂n+1(ω)) ∈ ∆ω. For all n ∈ N:

(
p̂n+1 (ω) , q̂n+1 (ω)

)
= P∆ω ((p̂n (ω) , q̂n (ω))− τnωρnω) (43)

where

τnω ∈ ∂Ψω (p̂n, q̂n) and ρnω =
Ψω(p̂n, q̂n)

‖τnω ‖
2

Also in this case, at each iteration n ∈ N, the variational sub-problems are solved in par-
allel through a warm start procedure, until a suitable solution of (36) is obtained, that
is up to we get for each ω ∈ Ω a limit point (p̂(ω), q̂(ω)), of the approximating sequence
{(p̂n(ω), q̂n(ω))}n∈N, such that Ψω(p̂, q̂) = 0.

Convergence

Let {(p̂n, q̂n)}n∈N ⊆ ∆ be the sequence such that for all ω ∈ Ω, {(p̂n(ω), q̂n(ω))}n∈N ⊆ ∆ω is
given by (43) with {τnω }n∈N bounded. We prove that the sequence converges to the solution
to SVI (36).
Let (p̄(ω), q̄(ω)) be a solution to (41); it is su�cient to prove that for all ω ∈ Ω, {(p̂n(ω), q̂n(ω))}n∈N
converges to (p̄(ω), q̄(ω)). Firstly, we observe that

〈τnω , (p̄(ω), q̄(ω))− (p̂n(ω), q̂n(ω))〉D ≤ Ψω(p̄, q̄)−Ψω(p̂n, q̂n) = −Ψω(p̂n, q̂n) . (44)

Hence, from (44), (43) and from nonexpansivity of projection mapping, it follows that∥∥(p̂n+1(ω), q̂n+1(ω))− (p̄(ω), q̄(ω))
∥∥2

=

= ‖P∆ω
((p̂n(ω), q̂n(ω))− τnωρnω)− P∆ω

(p̄(ω), q̄(ω))‖2 ≤ ‖(p̂n(ω), q̂n(ω))− τnωρnω − (p̄(ω), q̄(ω))‖2 =

= ‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2 + (ρnω)2 ‖τnω ‖
2

+ 2ρnω〈τnω , (p̄(ω), q̄(ω))− (p̂n(ω), q̂n(ω))〉 ≤

≤‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2 + (ρnω)2 ‖τnω ‖
2 − 2ρnωΨω(p̂n, q̂n) =

= ‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2 +
Ψω(p̂n, q̂n)2

‖τnω ‖
4 ‖τnω ‖

2 − 2
Ψω(p̂n, q̂n)

‖τnω ‖
2 Ψω(p̂n, q̂n) =

= ‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2 − Ψω(p̂n, q̂n)2

‖τnω ‖
2 ≤ ‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2 .

Hence, the sequence
{
‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2

}
n∈N

is decreasing, and we get

0 ≤ Ψω(p̂n, q̂n)2 ≤ ‖τnω ‖
2
(
‖(p̂n(ω), q̂n(ω))− (p̄(ω), q̄(ω))‖2−

∥∥(p̂n+1(ω), q̂n+1(ω))− (p̄(ω), q̄(ω))
∥∥2
)
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and since {τnω }n∈N is bounded, it follows that lim
n→+∞

Ψω(p̂n, q̂n) = Ψω(p̂, q̂) = 0, hence

(p̂(ω), q̂(ω)) is a solution to (41). Then, we can conclude that (p̂, q̂) is a solution to (36).

So, when ν →∞ and n→∞, we get that the sequences converge to (x̄, z̄, p̄, q̄) ∈ (B̃(p̄, q̄)∩N )×∆.
This limit point is still a solution of (13) and thanks to Theorem 3, it is an equilibrium of plans,
prices, and price expectations for E .
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