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Abstract. This paper is concerned with a general fully parabolic Keller-

Segel system, defined in a convex bounded and smooth domain Ω of RN , for
N ∈ {2, 3}, with coefficients depending on the chemical concentration, per-

turbed by a logistic source and endowed with homogeneous Neumann bound-

ary conditions. For each space dimension, once a suitable energy function in
terms of the solution is defined, we impose proper assumptions on the data

and an exponential decay of such energies is established.

1. Introduction. There is a great interest in biology in studying bacteria and
their behavior. A key property of a large class of bacteria (as for instance the
E. coli) is that in presence of certain chemicals they move preferentially towards
higher concentration of the chemical when it is a chemoatractant, or towards a lower
concentration when it is a repellent. If Ω represents the environment occupied by
cells and chemicals and t > 0 the time, the mathematical model proposed by Keller
and Segel (see [7]) which precisely idealizes such a phenomenon in Q = Ω× (t > 0)
is the following

cell−rate of change︷︸︸︷
ut =

u−diffusion︷ ︸︸ ︷
div(g(v)∇u)−

chemotaxis︷ ︸︸ ︷
div(uχ(v)∇v) +

source︷ ︸︸ ︷
f(u), in Q,

chemical−rate of change︷︸︸︷
vt =

v−diffusion︷︸︸︷
α∆v +

proliferation︷ ︸︸ ︷
h(u, v), in Q,

∂u
∂n = 0 and ∂v

∂n = 0, on ∂Ω, t > 0,

u = u0(x) ≥ 0 and v = v0(x) ≥ 0, in Ω,

(1)

where, as usual, u = u(x, t) and v = v(x, t) represent respectively the cell den-
sity and the concentration of the chemical substance at time t and position x, ∂

∂n
is the outward normal derivative to the boundary ∂Ω and u0(x) = u(x, 0) and
v0(x) = v(x, 0) are the initial distributions for u and v. The homogeneous Neu-
mann boundary conditions (zero-flux boundary conditions) indicate that the domain
is totally insulated.

In 1, the chemoattractant spreads with rate α > 0 and its proliferation is modeled
by the function h, while f is a source which controls the evolution of the cell
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distribution; in particular, the case f(u) = 0 corresponds to the phenomenon in
which the amoeba production is negligible. On the other hand, both the chemotatic
sensitivity χ and mobility g may be a constant or functions depending on the
chemical v, according to biological situations: in particular as to the sensitivity it
may assume different forms as

χ(v) =
χ0

v
, χ(v) =

k χ0

(k + v)2
, v > 0, (2)

k, χ0 positive constants. Note that in each case as v decreases, χ(v) increases (for
other expressions of the chemotatic sensitivity, see Murray [12] and [13]).

We note the difference in sign of the terms div(g(v)∇u) and div(uχ(v)∇v), cor-
responding to the diffusion of the cells and to the cross diffusion term; precisely, the
effect of the former is to stabilize the distribution of the cells in the environment,
while the latter tends to break this stabilization working like a negative diffusion.
Exactly in line with such competition between these different effects, it is desirable
that the final balance between stabilizing and destabilizing forces in model 1 can
infer a global and bounded solutions (u, v) which further results in some steady
state for u and v. Conversely, this optimal situation is not always attained and
some singularities formations (the so called chemotactic collapse) in which u may
possibly become unbounded in a certain instant (blow-up time) may appear: for
instance in the N -dimensional setting, with N ≥ 2, and g and χ constants, f ≡ 0
and h behaving as h(u, v) = −u+ v, blowing up solutions to 1 have been detected
in [4] and [23] (see also [8], [9] and [10] for the analysis of techniques concerning
estimates of blow-up time to some parabolic problems).

With the aim of suppressing the aforementioned singularities, the introduction
of a logistic-type source f(u) = au− bu2 (a, b positive) in the model may avoid this
scenario. In fact, since the positive contribution +au corresponds to a birth rate
while the negative −bu2 to a death rate, if the last one prevails on the first, an
uncontrolled growth of the population u can be prevented. For instance, for the
problem {

ut = ∆u− χ∇ · (u∇v) + f(u) x ∈ Ω, t > 0,

τvt = ∆v − v + u x ∈ Ω, t > 0,
(3)

under zero-flux boundary conditions and defined in a convex smooth and bounded
domain Ω of RN , N ≥ 1, where f verifies f(0) ≥ 0 and f(s) ≤ a−bs2, for s ≥ 0, and
a ≥ 0, b, χ, τ positive constants, in [21] the author proves that if b is big enough, for
all sufficiently smooth and nonnegative initial data u0 and v0, it possesses a unique
bounded and global-in-time classical solution. Additionally, for the same problem
3, also defined in a convex smooth and bounded domain Ω of RN , N ≥ 1, but with
source term f controlled, respectively from below and above, by −c0(s + sα) and
a − bsα, for s ≥ 0, and with some α > 1, a ≥ 0 and b, c0 > 0, global existence of
very weak solutions, as well their boundedness properties and long time behavior
are discussed in [18], [19] and also [20]. Nevertheless, if the death rate does not
sufficiently strong contribute in the source f once again blow-up scenarios may
manifest (see for instance [11], [17] and [22] for models related to this aspect).

2. Main results and assumptions. In accordance with all of the above, the
present work considers the following chemotaxis system{

ut = div(g(v)∇u)− div(uχ(v)∇v) + au− bu2, x ∈ Ω, t > 0,
vt = α∆v − k(v)v + uh(v), x ∈ Ω, t > 0,

(4)
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in a convex smooth and bounded domain Ω ⊂ RN , N ∈ {2, 3}. Equations 4 are
equipped with homogeneous Neumann boundary conditions and initial data:

∂u

∂n
= 0 and

∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u = u0(x) ≥ 0 and v = v0(x) ≥ 0, x ∈ Ω.
(5)

Inspired by the contribution by Payne and Straughan, where in [14] they discuss
the decay of the solution to 4-5 in the case a = b = 0, the aim of our paper is
to derive sufficient conditions on the data in order to establish the same long time
behavior for the solution but in the case where the logistic term strongly affects
the u-evolution. Precisely, for both N = 2 and N = 3, we define a suitable energy
function in terms of the solution (u, v) and successively we deduce that, in the
sense of this measure-function, (u, v) approaches to a steady solution (ū, v̄), that
we suppose constant; as a consequence of that we can conclude that not only no
formation of spatial instabilities is plausible but also that (u, v) decays to a constant
distribution. Hence, the novelty of our result is the investigation of the Keller-Segel
system when the coefficients depend on v and in the presence of a source term of
logistic type. In fact a large part of the articles on Keller-Segel-type systems focus
their analysis when the mobility and the chemotactic sensitivity are constants or
depend on u (see for instance [1], [2], [15] and [16]). Moreover, the logistic type
source makes the analysis more complex with respect to that in the original model
and it is herein addressed by means of some mathematical deductions linked to
technical Sobolev-type inequalities. In this way, we get a decay result for a larger
classes of Keller-Segel system, since in [14] no source term is present.

Our conclusions rely on some assumptions and statements: throughout the paper
we assume that χ(v) is a regular function such that

|χ| ≤ χ1, |χ′| ≤ χ2, v ≥ 0, (6)

for constants χ1, χ2, where χ′ = ∂χ
∂v . We note that the assumptions 6 are verified

by both choices in 2.
Moreover α, a and b are positive constants and the function k(v) is assumed to

satisfy

k(v) =
m

1 +Kv
, v ≥ 0, (7)

where m, K are positive constants (view the notation of Keller and Segel in [6]).
Moreover, g(v) and h(v) are regular functions which satisfy

g ≥ g0 > 0, v ≥ 0,

|h| ≤ h1, |h′| ≤ h2, v ≥ 0,
(8)

where g0, h1 and h2 are constants and h′ = ∂h
∂v . We will denote by ‖ · ‖2 the

L2(Ω)-norm, with

ū(x, t) =
1

|Ω|

∫
Ω

u(x, t) dx, (9)

and v̄ the solution of the equation

v̄ k(v̄) = ū h(v̄). (10)
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Since we are interested in constant steady solution of 4, we observe that if ū = a
b

by integration of the first equation in 4 we find

ū = ū0,

v̄k(v̄) = ū0h(v̄).
(11)

From the above remarks we easily derive the following

Lemma 2.1. Assume that the
∫

Ω
u0(x) dx is bounded. Then there exists a positive

constant Cū depending on u0, such that for all t > 0∫
Ω

u(x, t) dx ≤ Cū. (12)

Finally, we also need some geometrical definitions connected to the domain Ω:
for some origin inside in Ω we write

ρ0 = min
∂Ω

xini > 0, d2 = max
Ω̄

xixi, (13)

ni being the i-th component of the unit normal vector directed outward on ∂Ω.
We consider classical solutions of 4-5 in the sense that the solution belongs the

space C0(Ω̄× [0,∞))
⋂
C2,1(Ω× (0,∞)).

Now, our main results are given by the following theorems.
For Ω ∈ R2, σ > 0 constant and t > 0, let us introduce the energy function

Φ(t) :=
1

2
‖u− ū‖22 +

σ

2
‖∇v‖22, Φ(0) := Φ0. (14)

Theorem 2.2. Let (u, v) be a classical solution of 4-5 in Ω × (t > 0), Ω bounded
and convex domain in R2. Assume that χ, k(v), g(v) and h(v) satisfy 6-8. Then,
for any σ > 0 and M > 0 it is possible to find α and g0 sufficiently large such that
there exist positive constants αi, i = 1, . . . , 4 to have

Φ′(t) ≤ −
(
α1‖∆v‖22 + α2‖∇u‖22

)(
1− α3Φ− α4Φ

1
2

)
, t > 0 (15)

with Φ defined in 14, provided that
∫

Ω
u0dx = M .

Moreover if the initial data satisfy

α3Φ0 + α4Φ
1
2
0 < 1, (16)

then Φ(t) is exponentially decreasing in time.

For Ω ⊂ R3, let us introduce now another energy function:

Ψ(t) := 1
2‖u− ū‖

2
2 + σ

2 ‖∇v‖
2
2 + σ1

2 ‖∆v‖
2
2, Ψ(0) := Ψ0, (17)

with σ and σ1 positive constants.

Theorem 2.3. Let (u, v) be a classical solution of 4-5 in Ω × (t > 0), Ω bounded
and convex domain in R3. Assume that χ, k(v), g(v) and h(v) satisfy 6-8. Then,
for any σ, σ1 and M > 0 it is possible to find α and g0 sufficiently large such that
there exist positive constants ξi, i = 1, . . . , 5 to have

Ψ′(t) ≤ −A
(

1− ξ4Ψ
1
2 − ξ5Ψ

)
, t > 0, (18)

where

A = ξ1‖∇u‖22 + ξ2‖∆v‖22 + ξ3‖∇∆v‖22,
and Ψ defined in 17, provided that

∫
Ω
u0dx = M .
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Moreover if the initial data satisfy

ξ4Ψ
1
2
0 + ξ5Ψ0 < 1, (19)

then Ψ(t) is exponentially decreasing in time.

Remark 1. As a consequence of the expressions 15 and 18, the solution (u, v)
of problem 4-5 decays to a constant steady state (ū, v̄), respectively in Φ- and Ψ-
measure. As a consequence, blow up cannot occur.

3. Auxiliary materials. We state some inequalities in the form that will be suit-
able for our purposes later. The following two inequalities are well known, but we
include them since they will be used through the paper.

Lemma 3.1. Let Ω be a convex domain in RN , N ≥ 1, and w be a solution of the
free membrane problem {

∆w + µw = 0, in Ω,

∂w
∂n = 0, on ∂Ω.

(20)

Then the first non zero eigenvalue µ2 satisfies

µ2‖∇w‖22 ≤ ‖∆w‖22, (21)

and

µ2||∆w||22 ≤ ||∇∆w||22. (22)

Values for µ2 are given in [3] and [5].

Lemma 3.2. Let Ω be a bounded domain in R2, w a regular function in Ω with
∂w
∂n = 0 on ∂Ω. Then there exists a positive constant c1 such that∫

Ω
w4dx ≤ c1

∫
Ω
w2dx

∫
Ω
|∇w|2dx, if w with mean value zero. (23)

Moreover there exists a positive constant c2 such that∫
Ω
|∇w|4dx ≤ c2

∫
Ω
|∇w|2dx

∫
Ω
|∆w|2dx. (24)

For the proof of 23 we use a combination of Gagliardo-Nirenberg and Poincaré’s
inequalities

‖w‖44 ≤ CGN‖w‖2W 1,2‖w‖22 ≤ CGNCP ‖∇w||22‖w‖22,
where CGN and CP are the constants in the Gagliardo-Nirenberg and Poincaré’s
inequalities. Then, with c1 = CGNCP , 23 holds. For the proof of 24 see (49) in
[14].

Lemma 3.3. Let Ω be a bounded domain in R3, w regular function in Ω with
∂w
∂n = 0 on ∂Ω. Then there exist positive constants c̄1, c̄2 such that∫

Ω

(w − w̄)4dx ≤ c̄1
(∫

Ω

(w − w̄)2dx
) 1

2
(∫

Ω

|∇w|2dx
) 3

2

, (25)

and ∫
Ω

|∇w|4dx ≤ c̄2
(∫

Ω

|∇w|2dx
) 1

2
(∫

Ω

|∆w|2dx
) 3

2

. (26)

For the proof of Lemma 3.3 see par. 6.3 and 6.4 in [14].
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4. Proof of Theorem 2.2.

Proof. Differentiating 14 we obtain

Φ′(t) =

∫
Ω

(u− ū)utdx+ σ

∫
Ω

∇v∇vtdx

=

∫
Ω

(u− ū)∇ ·
(
g(v)∇u

)
dx−

∫
Ω

(u− ū)∇ ·
(
uχ(v)∇v

)
dx

+

∫
Ω

(u− ū)(au− bu2)dx+ σ

∫
Ω

∇v∇vtdx = I1 + I2 + I3 + I4.

(27)

Now, we estimate the four terms of 27 separately.
By the divergence theorem, the boundary conditions 5 and the first assumption

in 8, we have

I1 =
∫

Ω
(u− ū)∇ ·

(
g(v)∇u

)
dx = −

∫
Ω
g(v)|∇u|2dx ≤ −g0

∫
Ω
|∇u|2dx, (28)

and

I2 =−
∫

Ω

(u− ū)∇ ·
(
uχ(v)∇v

)
dx =

∫
Ω

uχ(v)∇u∇vdx

=

∫
Ω

(u− ū)χ(v)∇u∇vdx+ ū

∫
Ω

χ(v)∇u∇vdx.
(29)

In the first term at the right hand side of 29 we now use the divergence theorem,
the Cauchy-Schwarz inequality and 6 to obtain∫

Ω

(u− ū)χ(v)∇u∇vdx

=
1

2

∫
Ω

∇ ·
[
(u− ū)2χ(v)∇v

]
dx− 1

2

∫
Ω

(u− ū)2∇ ·
[
χ(v)∇v

]
dx

=− 1

2

∫
Ω

(u− ū)2χ′(v)|∇v|2dx− 1

2

∫
Ω

(u− ū)2χ(v)∆vdx

≤χ2

2

(∫
Ω

(u− ū)4dx
) 1

2
(∫

Ω

|∇v|4dx
) 1

2

+
χ1

2

(∫
Ω

(u− ū)4dx
) 1

2
(∫

Ω

|∆v|2dx
) 1

2

.

(30)

In 30 we use the Sobolev inequalities 23 and 24 with respectively w = u − ū and
w = v and we get∫

Ω

(u− ū)χ(v)∇u∇vdx

≤χ2

2

(
c2

∫
Ω

|∇v|2dx
∫

Ω

|∆v|2dx
) 1

2
(
c1

∫
Ω

(u− ū)2dx

∫
Ω

|∇u|2dx
) 1

2

+
χ1

2

(∫
Ω

|∆v|2dx
) 1

2
(
c1

∫
Ω

(u− ū)2dx

∫
Ω

|∇u|2dx
) 1

2

≤
χ2
√
c1c2√
σ

Φ‖∆v‖2‖∇u‖2 +
χ1
√
c1√

2
Φ

1
2 ‖∆v‖2‖∇u‖2

=
(χ2
√
c1c2√
σ

Φ +
χ1
√
c1√

2
Φ

1
2

)
‖∆v‖2‖∇u‖2.

(31)
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In the last term at right hand of 29 we use 6, the Schwarz inequality and relation
21, to infer

ū

∫
Ω

χ(v)∇u∇vdx ≤ūχ1‖∇u‖2‖∇v‖2 ≤ ūχ1µ
− 1

2
2 ‖∇u‖2‖∆v‖2

≤ ūχ1µ
− 1

2
2

2ε
‖∇u‖22 +

ūχ1µ
− 1

2
2 ε

2
‖∆v‖22,

(32)

where in the last inequality we have used the arithmetic-geometric inequality

arbs ≤ ra+ sb, a > 0, b > 0, r > 0, s > 0, r + s = 1, (33)

and with ε a positive constant. Substituting 31 and 32 in 29 we can write

I2 ≤
(χ2
√
c1c2√
σ

Φ +
χ1
√
c1√

2
Φ

1
2

)
‖∆v‖2‖∇u‖2 +

ūχ1µ
− 1

2
2

2ε
‖∇u‖22

+
ūχ1µ

− 1
2

2 ε

2
‖∆v‖22.

(34)

By Hölder’s inequality, |Ω|ū3 ≤
∫

Ω
u3dx. Hence concerning I3 we can deduce

I3 =

∫
Ω

(u− ū)(au− bu2)dx = a

∫
Ω

u(u− ū)dx− b
∫

Ω

u2(u− ū)dx

≤ a
∫

Ω

u2dx+ bū

∫
Ω

u2dx− a
∫

Ω

uūdx− b
∫

Ω

u3dx

≤ (a+ bū)

∫
Ω

u2dx− a|Ω|ū2 − b|Ω|ū3.

(35)

By Poincaré’s inequality,∫
Ω

w2dx ≤ CP
∫

Ω

|∇w|2dx+ |Ω|w̄2, for all w ∈W 1,2.

Therefore,

I3 ≤ γ
∫

Ω
|∇u|2dx+ (a+ bū)|Ω|ū2 − a|Ω|ū2 − b|Ω|ū3 = γ

∫
Ω
|∇u|2dx, (36)

where γ = CP (a+ bCū), Cū in 12.
Finally, by using the second equation of 4, the divergence theorem and 5, the

last term I4 of 27 can be estimated as

I4 =σ

∫
Ω

∇v∇vtdx

=− σα
∫

Ω

|∆v|2dx+ σ

∫
Ω

vk(v)∆vdx− σ
∫

Ω

uh(v)∆vdx.

(37)

In the second and third terms of the last inequality of 37 we use the divergence
theorem, 7 and 8 to obtain∫

Ω

vk(v)∆vdx = −
∫

Ω

(k + vk′)|∇v|2dx = −m
∫

Ω

|∇v|2

(1 +Kv)2
dx (38)

and

−
∫

Ω

uh(v)∆vdx ≤1

2
h1‖u− ū‖22 +

1

2
h1‖∆v‖22 + ūh2‖∇v‖22

≤ h1

2µ2
‖∇u‖22 +

1

2
h1‖∆v‖22 +

ūh2

µ2
‖∆v‖22,

(39)
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where in the last inequality we have used 21 and the following inequality

µ2

∫
Ω

(u− ū)2dx ≤
∫

Ω

|∇u|2dx, (40)

proved by Hardy et al. in [3] (note that u− ū has zero mean value).
Replacing 38 and 39 in 37 we arrive at

I4 ≤ −
(
σα− σ

[h1

2
+
ūh2

µ2

])
‖∆v‖22 + σ

h1

2µ2
‖∇u‖22. (41)

Combining 27 with 28, 34 36 and 41 we deduce

Φ′(t) ≤−
(
σα− σh1

2
− σ ūh2

µ2
− ūχ1µ

− 1
2

2 ε

2

)
‖∆v‖22

−
(
g0 − γ −

ūχ1µ
− 1

2
2

2ε
− σ h1

2µ2

)
‖∇u‖22

+
(χ2
√
c1c2√
σ

Φ +
χ1
√
c1√

2
Φ

1
2

)
‖∆v‖2‖∇u‖2

=− α1‖∆v‖22 − α2‖∇u‖22 +
(χ2
√
c1c2√
σ

Φ +
χ1
√
c1√

2
Φ

1
2

)
‖∆v‖2‖∇u‖2,

(42)

with

α1 =σα− σh1

2
− σ ūh2

µ2
− ūχ1µ

− 1
2

2 ε

2
,

α2 =g0 − γ −
ūχ1µ

− 1
2

2

2ε
− σ h1

2µ2
.

Once σ > 0 and ε > 0 are fixed, if

α >
h1

2
+
ūh2

µ2
+
ūχ1µ

− 1
2

2 ε

2σ

g0 >γ +
ūχ1µ

− 1
2

2

2ε
+
σh1

2µ2
,

(43)

then α1 > 0 and α2 > 0. In particular, the inequalities 43 justify the largeness
assumptions on α and g0 claimed in the hypothesis of this theorem.

Using the Schwarz inequality in the third term of 42 we have

‖∆v‖2‖∇u‖2 ≤
1

2
√
α1α2

(
α1‖∆v‖22 + α2‖∇u‖22

)
,

from which we obtain 15 with

α3 =
χ2
√
c1c2

2
√
σα1α2

, α4 =
χ1
√
c1

2
√

2α1α2
.

Now, if 43 and 16 hold, then Φ(t) decays exponentially in time.

5. Proof of Theorem 2.3.

Proof. Differentiating 17 we have

Ψ′(t) =

∫
Ω

(u− ū)utdx+ σ

∫
Ω

∇v∇vtdx+ σ1

∫
Ω

∆v∆vtdx

=J1 + J2 + J3.
(44)
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To estimate J1 we can follow the steps of section 4 up to 29 so that we can write

J1(t) =

∫
Ω

(u− ū)utdx ≤ −g0‖∇u‖22 +

∫
Ω

(u− ū)χ(v)∇u∇vdx

+ ū

∫
Ω

χ(v)∇u∇vdx+ a

∫
Ω

u(u− ū)dx− b
∫

Ω

u2(u− ū)dx

≤− g0‖∇u‖22 +

∫
Ω

(u− ū)χ(v)∇u∇vdx+ ū

∫
Ω

χ(v)∇u∇vdx

+ (a+ bū)

∫
Ω

u2dx− a|Ω|ū2 − b|Ω|ū3.

(45)

To bound the second term of 45 we use 6 and Schwarz’s inequality and we have∫
Ω

(u− ū)χ(v)∇u∇vdx ≤χ1

(∫
Ω

(u− ū)2|∇v|2dx
) 1

2
(∫

Ω

|∇u|2dx
) 1

2

≤χ1

(∫
Ω

(u− ū)4dx
) 1

4
(∫

Ω

|∇v|4dx
) 1

4
(∫

Ω

|∇u|2dx
) 1

2

≤
√

2χ1c̄
1
4
1 c̄

1
4
2

σ
1
8σ

1
4
1

Ψ
1
2 ‖∇u‖

7
4
2 ‖∆v‖

1
4
2 ,

(46)

where in the last inequality we have used 25 and 26 with respectively w = u and
w = v.

Now, we note that 32 is valid also in a domain of R3 so that the third term of
45 can be rewritten as

ū

∫
Ω

χ(v)∇u∇vdx ≤ ūχ1µ
− 1

2
2

2ε
‖∇u‖22 +

ūχ1µ
− 1

2
2 ε

2
‖∆v‖22. (47)

As in the estimates 35, for the last term in 45 we have that:

(a+ bū)

∫
Ω

u2dx− a|Ω|ū2 − b|Ω|ū3 ≤ γ̃‖∇u‖22, (48)

with γ̃ = CP (a+ bCū). Combining 45, 46, 47 and 48 we have

J1 ≤− g0‖∇u‖22 +

√
2χ1c̄

1
4
1 c̄

1
4
2

σ
1
8σ

1
4
1

Ψ
1
2 ‖∇u‖

7
4
2 ‖∆v‖

1
4
2 +

ūχ1µ
− 1

2
2

2ε
‖∇u‖22

+
ūχ1µ

− 1
2

2 ε

2
‖∆v‖22 + γ̃‖∇u‖22.

(49)

To estimate J2 we observe that 37-41 are also valid here, so that we can write

J2 =σ

∫
Ω

∇v∇vtdx ≤ −
(
σα− σ

[h1

2
+
ūh2

µ2

])
‖∆v‖22

+
σ

2
h1µ

−1
2 ‖∇u‖22.

(50)

Finally, we now fix our attention on J3:

J3 =σ1

∫
Ω

∆v∆vtdx = σ1α

∫
Ω

∆v∆2vdx− σ1

∫
Ω

∆v∆
(
k(v)v

)
dx

+ σ1

∫
Ω

∆v∆
(
uh(v)

)
dx.

(51)
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We recall that since ∂v
∂n = 0 and ∂u

∂n = 0 on ∂Ω, differentiating the second equation
of 4 with respect to n we obtain

∂∆v

∂n
= 0 on ∂Ω

so that

σ1α

∫
Ω

∆v∆2vdx = −σ1α‖∇∆v‖22. (52)

Replacing 52 in 51 and using the divergence theorem we arrive at

J3 =− σ1α‖∇∆v‖22 − σ1

∫
Ω

∆v∆
(
k(v)v

)
dx

+ σ1

∫
Ω

∆v∆
(
uh(v)

)
dx = −σ1α‖∇∆v‖22

+ σ1

∫
Ω

∇∆v∇
(
k(v)v

)
dx− σ1

∫
Ω

∇∆v∇
(
uh(v)

)
dx.

(53)

To estimate the second term in 53, we note that ∇
(
k(v)v

)
=

m∇v
(1 +Kv)2

and we

can write

σ1

∫
Ω

∇∆v∇
(
k(v)v

)
dx =σ1m

∫
Ω

∇∆v
∇v

(1 +Kv)2
dx

≤
(σ1

ε1

∫
Ω

(∇∆v)2dx
) 1

2
(
σ1m

2ε1

∫
Ω

|∇v|2

(1 +Kv)4
dx
) 1

2

≤ σ1

2ε1
‖∇∆v‖22 +

σ1m
2ε1

2
‖∇v‖22

≤ σ1

2ε1
‖∇∆v‖22 +

σ1m
2ε1

2µ2
‖∆v‖22,

(54)

with ε1 > 0 a suitable constant to be choose later on. In 54 we have also used
ε-Schwarz, arithmetic-geometric mean inequalities and 21.

To estimate the third term in 53 we use ε-Schwarz and arithmetic-geometric
mean inequalities to write

− σ1

∫
Ω

∇∆v∇
(
uh(v)

)
dx

=− σ1

∫
Ω

∇∆v(u− ū)h′(v)∇vdx

− ūσ1

∫
Ω

∇∆vh′(v)∇vdx− σ1

∫
Ω

∇∆v∇uh(v)dx

≤ σ1

2ε2
‖∇∆v‖22 +

σ1h
2
2ε2

2

∫
Ω

|u− ū|2|∇v|2dx+
σ1

2ε3
‖∇∆v‖22

+
σ1ū

2h2
2ε3

2

∫
Ω

|∇v|2dx+
σ1

2ε4
‖∇∆v‖+

σ1h1ε4
2

∫
Ω

|∇u|2dx,

(55)

with εi, i = 2, .., 4 positive constants to be choose later on. To complete the estimate
55 we employ 21 and (36) in [14].

Following the steps at pag. 346 in [14] we choose εi = 4
α , i = 1, .., 4 and we get

J3 ≤ −γ1‖∇∆v‖22 + γ2‖∆v‖22 + γ3‖∇u‖22 + γ4Ψ‖∇u‖
3
2
2 ‖∆v‖

1
2
2 , (56)
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with

γ1 =σ1
α

2
, γ2 =σ1

(2m2

µ2α
+

2h2
2ū

2

µ2α

)
γ3 =

2σ1h
2
1

α
, γ4 =

2σ1
√
c̄1c̄2

σ
1
4σ

1
2
1

.

Combining 44, 49, 50 and 56 provides

Ψ′(t) ≤− ξ1‖∇u‖22 − ξ2‖∆v‖22 − ξ3‖∇∆v‖22

+ c̄Ψ
1
2 ‖∇u‖

7
4
2 ‖∆v‖

1
4
2 + γ4Ψ‖∇u‖

3
2
2 ‖∆v‖

1
2
2

(57)

with

ξ1 =g0 −
ūχ1µ

− 1
2

2

2ε
− γ̃ − σ

2
h1µ

−1
2 − γ3,

ξ2 =σα− σ
[h1

2
+
ūh2

µ2

]
− ūχ1µ

− 1
2

2 ε

2
− γ2,

ξ3 =γ1 > 0,

c̄ =

√
2χ1c̄

1
4
1 c̄

1
4
2

σ
1
8σ

1
4
1

.

Now, fixing σ >, σ1 > and ε > 0, if

α >
[h1

2
+
ūh2

µ2

]
+
ūχ1µ

− 1
2σ

2 ε

2
+ γ2,

g0 >
ūχ1µ

− 1
2

2

2ε
+ γ̃ +

σ

2
h1µ

−1
2 + γ3,

(58)

we have ξ1 > 0, ξ2 > 0. Again, inequalities 58 are in line with the largeness
assumptions on α and g0 of this theorem.

In the fourth and fifth terms of 57 we apply the arithmetic-geometric inequality
33 to obtain

c̄Ψ
1
2 ‖∇u‖

7
4
2 ‖∆v‖

1
4
2 ≤

c̄

ξ
7
8
1 ξ

1
8
2

Ψ
1
2

[
ξ1‖∇u‖22 + ξ2‖∆v‖22 + ξ3‖∇∆v‖22

]
,

γ4Ψ‖∇u‖
3
2
2 ‖∆v‖

1
2
2 ≤

γ4

ξ
3
4
1 ξ

1
4
2

Ψ
[
ξ1‖∇u‖22 + ξ2‖∆v‖22 + ξ3‖∇∆v‖22

]
.

(59)

Finally, we substitute 59 in 57 and we arrive at 18. Since 19 holds, then Ψ decays
exponentially fast in time. The Theorem 2.3 is proved.
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