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Abstract
The mixed Cauchy–Neumann and Cauchy–Robin problems for a class of hyperbolic
operators with double characteristics in presence of transition is investigated. Some
a priori estimates in Sobolev spaces with negative indexes are proved. Subsequently,
existence and uniqueness results for the mixed problems are obtained.
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1 Introduction

The aim of the paper is to establish existence and uniqueness results for the Cauchy–
Neumann and Cauchy–Robin problems associated to a class of hyperbolic operators
with double characteristics in presence of transition.

Let Ω =]0,+∞[×Ω0, where Ω0 is an open set of R2 with Lipschitz boundary.
Let x = (x0, x ′) where x ′ = (x1, x2), let ξ = (ξ0, ξ

′), where ξ ′ = (ξ1, ξ2). Let
D′ = (∂x1,β

2(x)∂x2) and let L ′ = (∂x1 − a1(x),β2(x)∂x2 − a2(x)), where β(x) =
x0 − α(x ′), being α a real function. Let n = (n0, n′) be the external normal versor to
the boundary of Ω , where n′ = (n1, n2).
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The mixed problems, we will study, are introduced in the sequel. Precisely, the
Cauchy–Neumann problem is

{
Pu = f , in Ω,

u|Ω0 = 0, du
dn |Ω0 = 0, D′u · n′|S = 0,

(1)

and the Cauchy–Robin problem is

{
Pu = f , in Ω,

u|Ω0 = 0, du
dn |Ω0 = 0, L ′u · n′|S = 0,

(2)

where S =]0,+∞[×∂Ω0 and

P = D2
x0 − D2

x1 − β2(x)D2
x2 +

2∑

j=0

a j (x)Dx j + b(x), in Ω, (3)

with coefficients belonging in C∞(Ω̃), where Ω̃ = [0,+∞[×Ω̃0, being Ω̃0 an open
set containing Ω0, Im a2(x) = (x0 − α(x ′))̃a2(x), where ã2(x) is a real function and

Dx j =
1
i
∂x j , j = 0, 1, 2.

For every x ′ = (x1, x2) and ξ = (ξ0, ξ
′),

p(x0, x ′, ξ) = −ξ20 + ξ21 + (x0 − α(x ′))2ξ22

is the principal symbol of P ,

& =
{
ρ = (x0, x ′, ξ) ∈ T ∗Ω : ξ ′ ̸= 0, p(ρ) = 0, ∇ p(ρ) = 0

}

is the characteristic set and

Fp(ρ) =
1
2

(
p′′
xξ (ρ) p′′

ξξ (ρ)

−p′′
xx (ρ) −p′′

ξ x (ρ)

)
, ∀ρ ∈ &.

is the fundamental matrix of P at ρ. The spectrum of Fp(ρ), Spec(Fp(ρ)), is very
important to analyze the well-posedness of the mixed problems associated to P .

Hörmander proved (see [9]):

z ∈ Spec(Fp(ρ)) ⇔ −z, z ∈ Spec(Fp(ρ)).

We have three possible cases, see for instance [8]. There exists a positive real number
λ such that {−λ, λ} ⊂ Spec(Fp(ρ)) and Spec(Fp(ρ))\{−λ, λ} ⊂ iR, the operator P
is called effectively hyperbolic at ρ. We introduce

&+ = {ρ ∈ & : P is effectively hyperbolic at ρ} .
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Moreover, Spec(Fp(ρ)) ⊂ iR and in the Jordan normal form of F(ρ) corresponding
to the eigenvalue 0, there are only Jordan blocks of dimension 2, namely KerFp(ρ)

2 ∩
ImFp(ρ)

2 = {0}, the operator P is called non-effectively hyperbolic of type 1 at ρ.
We set

&− = {ρ ∈ & : P is non−effectively hyperbolic of type 1 at ρ} .

Finally, Spec(Fp(ρ)) ⊂ iR and in the Jordan normal form of F(ρ) corresponding
to the eigenvalue 0, there is only a Jordan blocks of dimension 4 and no block of
dimension 3, namely KerFp(ρ)

2 ∩ ImFp(ρ)
2 is 2-dimensional, the operator P is

called non-effectively hyperbolic of type 2 at ρ. We denote by

&0 = {ρ ∈ & : P is non−effectively hyperbolic of type 2 at ρ} .

Obviously, it follows

& = &− - &0 - &+.

We say that we have a transition exactly if at least two among the above sets are
nonempty.

In [7] the authors study the well posedness of the Cauchy problem associated to
hyperbolic operators with douple characteristics in presence of transition in the cases
in which & = &0 - &+ or & = &0 - &−. In [2], a global existence and uniqueness
theorem for the Cauchy problem related to the class of hyperbolic operators with
double characteristics

P = D2
x0 − D2

x1 − (x0 + λ − α(x1))2D2
x2 , λ ̸= 0,

depending on the parameter λ in the half-space R2×]0,+∞[ is proved. In [4], the
authors consider a mixed Cauchy-Dirichlet problem associated to the previous class of
operators in a particular domain ofR3, instead in the class, here studied, the coeffiecient
β depends only on x0. In [3], a priori estimates for particular test functions useful for
the study of a Cauchy-Dirichlet problem are established. In this paper, unlike [7],
& = &− - &0 - &+ where all the sets &−, &0 and &+ can be nonempty on the
same connected components of &. Moreover, unlike [5], here some priori estimates
for general test functions (not particular test functions as in [5]) useful for proving the
existence of solutions to the mixed Cauchy–Neumann and Cauchy–Robin problems
are obtained. The class of operators (3) has both the case in which Fp(ρ) has two
distinct real eigenvalues and the case in which all the eigenvalues are purely imaginary
numbers can occur (see [1,2]). Precisely, if |∂x1α(x ′)| < 1, β ≡ 0 and ξ0 = ξ1 = 0,
then Fp(ρ) has two distint non-zero real eigenvalues. If |∂x1α(x ′)| > 1, β ≡ 0 and
ξ0 = ξ1 = 0, Fp(ρ) has two non-zero imaginary eigenvalues. Summarizing, let & be
the set of points ρ = (x0, x ′, ξ) of & such that β ≡ 0 and ξ0 = ξ1 = 0. It results that
ρ ∈ &+ if ρ ∈ & and |∂x1α(x ′)| < 1, ρ ∈ &− if ρ ∈ & and |∂x1α(x ′)| > 1, and
ρ ∈ &0 if ρ ∈ & and |∂x1α(x ′)| = 1. In this paper, the special class of operators (3), we
analyze, has transition from effectively hyperbolic to non-effectively hyperbolic. In [5]
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and [6], two classes more general of hyperbolic operators with double charateristics
are investigated.

Let us introduce

) =
{
x ∈ Ω : β(x) = 0

}
, )̃ =

{
x ∈ Ω̃ : β(x) = 0

}
,

)′ =
{
x ∈ ) : |∂x1α(x ′)| ≥ 1

}
, )̃′ =

{
x ∈ )̃ : |∂x1α(x ′)| ≥ 1

}
,

Ω ′
0 =

{
x ′ ∈ Ω0 : α(x ′) ≥ 0, |∂x1α(x ′)| ≥ 1

}
,

Ω̃ ′
0 =

{
x ′ ∈ Ω̃0 : α(x ′) ≥ 0, |∂x1α(x ′)| ≥ 1

}
,

S = ∂Ω0 × [0,+∞[,

furthermore g(x ′) = α(x ′)
∂x1α(x ′)

, h(x ′) = 1 − ∂x1g(x
′), for every x ′ ∈ Ω ′

0.

We consider a quadratic matrix-function B = (bhk)h,k=0,1 whose elements are:

b00(x) = h(x ′) − 2α(x ′)|̃a0(x)|, ∀x ∈ )′,
b01(x) = b10(x) = −g(x ′)̃a0(x) − α(x ′)̃a1(x), ∀x ∈ )′,
b11(x) = h(x ′) − 2|g(x ′)̃a1(x)|, ∀x ∈ )′,

where ã0 and ã1 are the imaginary parts of a0 and a1, respectively.
We suppose

(i) h(x ′) ∈ [h1, h2], ∀x ′ ∈ Ω̃ ′
0, with 0 < h1 < h2 < 4;

(ii) the matrix-function B is positive definite in )̃′, namely there exists M > 0 such
that B(x ′)η · η ≥ M∥η∥2, ∀η = (η1, η2) ̸= (0, 0), ∀x ∈ )̃′;

(iii) the connected components of the curve S ∩ )′ lie in parallel planes to Ω0.

We observe that if ã0 = ã1 = 0, on )′, assumption (ii) is satisfied.
The main result of the paper is the following existence and uniqueness theorem.

Theorem 1 Let f ∈ Hr
loc(Ω), with r ≥ 2. Let us suppose that assumptions (i), (ii) and

(iii) hold. The Cauchy–Neumann problem (1) and Cauchy–Robin problem (2) admit
a solution u ∈ Hr

loc(Ω).

Example 1 Let P = D2
x0 − D2

x1 − β2(x)D2
x2 + a0(x)Dx0 + β(x)(a1(x)Dx1 +

a2(x)Dx2) + b(x) be a hyperbolic operator in Ω =]0,+∞[×Ω0 where β(x) =
x0 − x21 + 1

x22 + 4
. It results that ∂x1α(x

′) = 2x1
x22 + 4

, g(x ′) = x21 + 1
2x1

, h(x ′) = x21 + 1

2x21
, in

Ω0. Assumption (i) is verified inΩ0. Assumption (ii) holds if Im |a0(x)| ≤ 1

2x21
in )′.

Assumption (iii) is fulfilled if )′ is constituited by arcs of hyperboles of type x21 +1 =
a(x22+4) (4a > 1). For example ifΩ0 =

{
x ′ ∈ R2 : x21 + 1 ≤ a(x22 + 4), x22 ≤ γ (x1)

}
,

with a > 2 and γ ∈ C1(R) such that γ (x1) ≥ 4(a − 1), assumptions (i) and (iii)

are satisfied and assumption (ii) is verified if |Im a0| <
1
8a2

. Furthermore we have a

transition on &.
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Example 2 Let P = D2
x0 − D2

x1 − β2(x)D2
x2 + b(x) be a hyperbolic operator in

Ω =]0,+∞[×Ω0 with β(x) = x0 − (x1 + x2)2. We have ∂x1α(x
′) = 2x1, g(x ′) =

x21 + x22
2x1

, h(x ′) = x21 + x22
2x1

, inΩ0. Assumption (i) is verified if |x2| ≤ 7
4
and |x1| ≥ 1

2
.

Assumption (ii) is always satisfied. Assumption (iii) holds if )′ is constituted by arcs
of circumferences with center (0, 0). For example if Ω0 is the circle in R2 with center

(0, 0) and radius r with
1
2
< r < 2, assumptions (i), (ii) and (iii) are fulfilled and we

have a transition on &.

The paper is organized as follows. In Sect. 2 some preliminary notations and defini-
tions are presented. Section 3 is devoted to a priori estimates near the boundary Ω0. In
Sect. 4 a priori estimates away from Ω0 are established. Section 5 concerns estimates
in Sobolev spaces making use of the pseudodifferential operator theory. Section 6
deals with some global estimates in Ω . In Sect. 7 existence and regularity results for
solutions to the mixed Cauchy–Neumann and Cauchy–Robin problems are proved.
At last, in Sect. 8, a uniqueness result for the mixed problems is obtained.

2 Notations and preliminaries

Let α = (α0,α1,α2) ∈ N3
0. Let ∂α be the derivative of order |α|, let ∂hx j be the

derivative of order h with respect to x j and let ∂hx j ,xp be the derivative of order h with
respect to x j and xp.

We indicate the L2-scalar product, the L2-norm and the Hr -norm by (·, ·), ∥ ·∥ and
∥ · ∥Hr (r ∈ N0), respectively.

LetC∞
0 (Ω) be the space of the restrictions toΩ of functions belonging toC∞

0 (R3).
For each K ⊆ Ω compact set, let C∞

0 (K ) be the set of functions ϕ ∈ C∞
0 (Ω) having

support contained in K . Set Ωk = [0, k[×Ω0, with k > 0, let

C∞
0 (Ωk) =

{
u ∈ C∞

0 (Ω) : supp u ⊆ [0, k[×Ω0
}
.

Let S(R3) be the space of rapidly decreasing functions. In particular, let S(Ω) be the
space of the restrictions to Ω of functions belonging to S(R3).

Fixed s ∈ R, we consider the following norm

∥u∥2H0,s =
1

(2π)2

∫ +∞

0
dx0

∫

R2
(1+ |ξ ′|2)s |̂u(x0, ξ ′)|2dξ ′,

∀u ∈ C∞
0 (Ω) : supp u ⊆ [0,+∞[×Ω0,

where the Fourier transform is computed only with respect to the variable x ′. Let us
introduce the pseudodifferential operator As : C∞

0 (Ω) → C∞(Ω) given by

Asu = 1
(2π)2

∫

R2
eix

′·ξ ′
(1+ |ξ ′|2) s

2 û(x0, ξ ′)dξ ′,
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∀u ∈ C∞
0 (Ω) : supp u ⊆ [0,+∞[×Ω0.

For every ϕ(x ′) ∈ C∞
0 (Ω0), the operator ϕAsu extends as a linear continuous operator

from H0,r
comp.(Ω) into H0,r−s

loc (Ω), where r , s ∈ R. If supp ϕ ⊆ Ω0\supp u, then ϕAsu
is a regularizing operator with respect to the variable x ′. It results

∥ϕAsu∥H0,r ≤ c∥u∥H0,r ′ , ∀r , r ′ ∈ R, u ∈ C∞(Ω) : supp u ⊆ [0,+∞[×Ω0.

We note that the norms ∥u∥H0,s (Ω) and ∥Asu∥L2(Ω) are equivalent for any s ∈ R.
Moreover, let H0,s(Ωk) be the space of u ∈ H0,s(Ωk) such that supp u ⊆ Ωk .

Let s ∈ R and p ≥ 0. Let H p,s(R3) be the space of all the distributions onR3 such
that

∥u∥2H p,s (R3)
= 1

(2π)2
∑

|h|≤p

∫

R3
(1+ |ξ ′|2)s |∂hx0 û(x0, ξ ′)|2dx0dξ ′ < +∞.

Let H p,s(Ω) be the space of all the restrictions toΩ of elements of H p,s(R3) endowed
with the norm

∥u∥H p,s (Ω) = inf
U ∈ H p,s (R3)

U |Ω = u

∥U∥H p,s (R3).

Analogously we can define the space H p,s(Ωk).
Finally, let us consider the transposed operator t P given by:

t P = −∂2x0 + ∂2x1 + (x0 − α(x ′))2∂2x2 − 4(x0 − α(x ′))(∂x2α)∂x2

−1
i

2∑

j=0

a j (x)∂x j − 1
i

2∑

j=0

∂x j a j (x) − 2(∂x2α)
2 + b(x).

3 A priori estimates near the boundaryÄ0

We enunciate the following preliminary result which synthesizes Lemmas 3.1 and 3.2
proved in [5].

Lemma 1 Let u ∈ S(Ω) and let p,α0,α1,α2 ∈ N0. Then

∥x
p
2
0 ∂α0,α1,α2u∥ ≤ 2

p + 1
∥x

p+2
2

0 ∂α0+1,α1,α2u∥ (4)

and
∫

Ω0

|u(0, x ′)|2dx ′ ≤ 2∥u∥∥∂x0u∥.
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The proof of the following preliminary result is analogous to the one of Lemma
3.3 in [5] with some modification, therefore for reader’s convenience we write it. As
in Lemma 3.3 in [5], let us consider the set

Ik,δ =
{
x ∈ Ω : x0 < k, |x0 − α(x ′)| > δ

}
,

with k, δ positive and small enough.

Lemma 2 For every ε, δ > 0, there exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ik,δ, D′u · n′|S = 0.

Proof Let us denote the principal part of t P by t P2, the part of the first order of t P by
t P1 and the part of the zero order of t P by t P0.

Integrating by parts and taking into account the boundary conditions, we obtain

(eτ x0∂x0u,
t P2u)+ ( t P2u, eτ x0∂x0u)

= 2(eτ x0∂x0u(x),
t P2u)

= τ∥e 1
2 τ x0∂x0u∥2 + τ∥e 1

2 τ x0∂x1u∥2 + τ∥e 1
2 τ x0(x0 − α(x ′))∂x2u∥2

+2
(
eτ x0(x0 − α(x ′))∂x2u, ∂x2u

)

+4
(
eτ x0∂x0u, (x0 − α(x ′))∂x2α∂x2u

)

+2
∫

S
eτ x0∂x1u · n1∂x0udσ + 2

∫

S
eτ x0β2(x)∂x2u · n2∂x0udσ

+
∫

Ω0

(∂x0u)
2dx ′ +

∫

Ω0

(∂x1u)
2dx ′ +

∫

Ω0

((x0 − α(x ′))∂x2u)
2dx ′

≥ τ∥e 1
2 τ x0∂x0u∥2 + τ∥e 1

2 τ x0∂x1u∥2 + τ∥e 1
2 τ x0(x0 − α(x ′))∂x2u∥2

−2
δ
∥e 1

2 τ x0(x0 − α(x ′))∂x2u∥2 − 2∥e 1
2 τ x0∂x0u∥2

−2∥e 1
2 τ x0 |∂x2α(x ′)| 12 (x0 − α(x ′))∂x2u∥2,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ik,δ, D′u · n′|S = 0. (5)

Moreover, we have

(eτ x0∂x0u,
t (P − P2)u)+ ( t (P − P2)u, eτ x0∂x0u)

≥ −c
(
∥e 1

2 τ x0∂x0u∥2 − ∥e 1
2 τ x0∂x1u∥2 − ∥e 1

2 τ x0(x0 − α(x ′))∂x2u∥2

+∥e 1
2 τ x0u∥

)
. (6)

Adding (5) and (6) and applying Lemma 1, it results, for 1
2τ x0 < 1,

(eτ x0∂x0u,
t Pu)+ ( t Pu, eτ x0∂x0u)
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≥ τ
(
∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2

)
− c

(1
δ
∥(x0 − α(x ′))∂x2u∥2

+∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥x
1
2
0 ∂x0u∥2

)
. (7)

Making use of (7) and choosing x0 <
1
τ
, we have

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2

≤ 1
τ

∥∥ t Pu
∥∥ ∥∂x0u∥ + c

τδ
∥(x0 − α(x ′))∂x2u∥2 + c

τ
∥∂x0u∥2

+ c
τ

∥(x0 − α(x ′))∂x2u∥2 + c
τ

∥∂x1u∥2 + c
τ

∥u∥2. (8)

Taking into account Lemma 1 and considering τ large enough, the claim is archieved.
⊓-

Now, we establish the following result.

Theorem 2 Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every
ε > 0, there exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωk = [0, k[×Ω0, D′u · n′|S = 0.

Proof If ) ∩ Ω0 = ∅, we are able to use Lemma 2. Hence, the claim is proved. If

) ∩ Ω0 ̸= ∅, we distinguish two regions. More precisely, for every
4
5
< η < 1, let

Ωk,η =
{
x ∈ Ω : x0 ∈ [0, k[, (1 − η)α(x ′) ≤ x0 ≤

(
1
5
+ η

)
α(x ′)

}

and let Ωk\Ωk,η. Then, let us set

Ω ′
k,η =

{
x ∈ Ωk,η : |∂x1α(x ′)| ≥ 1

}
, Ω ′

k,η,η′ =
{
x ∈ Ωk,η : |∂x1α(x ′)| ≥ 1 − η′} .

Evidently Ω ′
k,η,η′ ⊇ Ω ′

k,η. Moreover, we choose k, η and η′ such that assumptions (i)

and (ii) are satisfied. Let us consider a function u ∈ C∞
0 (Ω) with supp u ⊆ Ω ′

k,η,η′

and D′u · n′|S = 0. Let us remark that Ωk,η ∩ Ω0 has measure zero in R2. Moreover,
Ωk,η ∩ S is empty or has measure zero in R2, for k small enough. Let us consider the
inner products:

( t Pu, Au)+ (Au, t Pu), ∀u ∈ C∞
0 (Ω) : supp u ⊆ Ω ′

k,η,η′ , D′u · n′|S = 0,

where Au = x0∂x0u + g(x ′)∂x1u. It results

( t Pu, Au)+ (Au, t Pu) = ( t P2u, Au)+ (Au, t P2u)+ ( t P1u, Au)
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+(Au, t P1u)+ ( t P0u, Au)+ (Au, t P0u),

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ω ′

k,η,η′ , D′u · n′|S = 0.

(9)

Integrating by parts, for every u ∈ C∞
0 (Ω) such that supp u ⊆ Ω ′

k,η,η′ , and D′u ·n′|S =
0, we have

( t P2u, Au)+ (Au, t P2u)

= 2( t P2u, Au)

= 2( t P2u, x0∂x0u)+ 2( t P2u, g(x ′)∂x1u)

= (∂x0u, ∂x0u)+ (∂x1u, ∂x1u)+
(
(x0 − α(x ′))2∂x2u, ∂x2u

)

+2
(
(x0 − α(x ′))x0∂x2u, ∂x2u

)
+ 4

(
(x0 − α(x ′))∂x2α(x

′)∂x2u, x0∂x0u
)

−(∂x0u, ∂x1g(x
′)∂x0u) − (∂x1g(x

′)∂x1u, ∂x1u)
+4((x0 − α(x ′))∂x2α(x

′)g(x ′)∂x2u, ∂x1u)

−2
(
(x0 − α(x ′)2∂x2g(x

′)∂x2u, ∂x1u
)

+
(
(x0 − α(x ′))2∂x1g(x

′)∂x2u, ∂x2u
)

−2
(
(x0 − α(x ′))2∂x1α(x

′)g(x ′)∂x2u, ∂x2u
)
.

From which, it follows

2( t P2u, Au)

= ∥h 1
2 (x ′)∂x0u∥2 + ∥h 1

2 (x ′)∂x1u∥2 + ∥(4 − h(x ′))
1
2
(
x0 − α(x ′)

)
∂x2u∥2

+4
(
(x0 − α(x ′))∂x2α(x

′)∂x2u, x0∂x0u
)

+4
(
(x0 − α(x ′))∂x2α(x

′)g(x ′)∂x1u, ∂x2u
)

−24
(
(x0 − α(x ′))2∂x2g(x

′)∂x2u, ∂x1u
)
, (10)

since we used that the boundary integrals are zero because the set Ω ′
k,η,η′ ∩ ∂Ω has

zero measure.
Let us consider

( t P1u, Au)+ (Au, t P1u)

= −8
(
(x0 − α(x ′))∂x2α(x

′)∂x2u, x0∂x0u + g(x ′)∂x1u
)

−2
(
ã0(x)∂x0u + ã1(x)∂x1u + (x0 − α(x ′))̃a2(x)∂x2u, x0∂x0u + g(x ′)∂x1u

)

= −8
(
(x0 − α(x ′))2∂x2α(x

′)∂x2u, ∂x0u
)

−8
(
(x0 − α(x ′))α(x ′)∂x2α(x

′)∂x2u, ∂x0u
)

−8
(
(x0 − α(x ′))∂x2α(x

′)g(x ′)∂x2u, ∂x1u
)

−2
(
(x0 − α(x ′))̃a0(x)∂x0u, ∂x0u

)
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−2
(
ã0(x)α(x ′)∂x0u, ∂x0u

)
− 2

(
ã0(x)g(x ′)∂x0u, ∂x1u

)

−2
(
ã1(x)(x0 − α(x ′))∂x1u, ∂x0u

)
− 2

(
ã1(x)α(x ′)∂x1u, ∂x0u

)

−2
(
ã1(x)g(x ′)∂x1u, ∂x1u

)
− 2

(
ã2(x)(x0 − α(x ′))2∂x2u, ∂x0u

)

−2
(
ã2(x)(x0 − α(x ′))α(x ′)∂x2u, ∂x0u

)

−2
(
ã2(x)(x0 − α(x ′))g(x ′)∂x2u, ∂x1u

)
. (11)

Making use of assumptions (i) and (ii), it follows

∥h 1
2 (x ′)∂x0u∥2 + ∥h 1

2 (x ′)∂x1u∥2 + ∥(4 − h(x ′))
1
2 (x0 − α(x ′))∂x2u∥2

−2
(
ã0(x)α(x ′)∂x0u, ∂x0u

)
− 2

(
ã0(x)g(x ′)∂x1u, ∂x0u

)

−2
(
ã1(x)α(x ′)∂x1u, ∂x0u

)
− 2

(
ã1(x)g(x ′)∂x1u, ∂x1u

)

≥ L
(
∥∂x0u∥2 + ∥∂x1u∥2

)
+ (4 − h2)∥(x0 − α(x ′))∂x2u∥2,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ω ′

k,η,η′ , D′u · n′|S = 0. (12)

Moreover, we remark that the functions α, g,β are zero on Ω ∩). As a consequence,
we can choose k small enough and an appropriate η such that (12) holds and it results

4
(
(x0 − α(x ′))2∂x2α(x

′)∂x2u, ∂x0u
)
+ 4

(
(x0 − α(x ′))∂x2α(x

′)g(x ′)∂x1u, ∂x2u
)

+4
(
(x0 − α(x ′))α(x ′)∂x2α(x

′)∂x2u, ∂x0u
)

−2
(
(x0 − α(x ′))∂x2α(x

′)g(x ′)∂x2u, ∂x1u
)

−2
(
ã0(x)(x0 − α(x ′))∂x0u, ∂x0u

)
− 2

(
ã1(x)(x0 − α(x ′))∂x1u, ∂x0u

)

−2
(
ã2(x)(x0 − α(x ′))2∂x2u, ∂x0u

)
− 2

(
ã2(x)(x0 − α(x ′))α(x ′)∂x2u, ∂x0u

)

−2
(
ã2(x)(x0 − α(x ′))g(x ′)∂x2u, ∂x1u

)

≥ −δ
(
∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2

)
, (13)

with δ < min(L, 4−h2). Adding (9), (10), (11) and taking into account (13), we have

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2
≤ c|( t Pu, Au)+ (Au, t Pu)|
≤ c

(
∥x

1
2
0

t Pu∥∥x
1
2
0 ∂x0u∥

+∥g 1
2 (x ′) t Pu∥ + ∥g 1

2 (x ′)∂x1u∥
)
.

For k small enough and an appropriate η, taking into account the previous inequality
and Lemma 1, we obtain

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ω ′
k,η,η′ , D′u · n′|S = 0, (14)
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with ck < ε and c|g(x ′)| < ε in Ω ′
k,η,η′ .

Now,we consider supp u ⊆ Ωk,η\Ω ′
k,η,η′ andwe remind that it results |∂x1α(x ′)| <

1 in Ωk,η\Ω ′
k,η,η′ . Integrating by parts, we obtain

( t Pu, x0∂x0u)+ (x0∂x0u,
t Pu)

= ∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + 2(x0(x0 − α(x ′))∂x2u, ∂x2u)
+4((x0 − α(x ′))∂x2α(x

′), x0∂x0u)+ ( t P1u, x0∂x0u)+ (x0∂x0u,
t P1u)

+( t P0u, x0∂x0u)+ (x0∂x0u,
t P0u),

∀u ∈ C∞
0 (Ωk,η\Ω ′

k,η,η′) : D′u · n′|S = 0.

Making use of the previous inequality for k small enough and Lemma 1, it follows

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2

≤ ε∥ t Pu∥2 + ε∥(x0 − α(x ′))
1
2 ∂x2u∥2. (15)

Inorder to estimate∥(x0−α(x ′))
1
2 ∂x2u∥2,we consider the inner products (∂x0u, t Pu)+

( t Pu, ∂x0u) and integrate by parts in the principal part for x0 ≤ α(x ′) and, then, for
x0 ≥ α(x ′). In particular, for x0 ≤ α(x ′), it results

−((x0 − α(x ′))∂x2u, ∂x2u)+
∫

)
((∂x0u)

2 + 2∂x1α(x
′)∂x0u∂x1u + (∂x1u)

2)dσ

−4((x0 − α(x ′))∂x2α(x
′)∂x2u, ∂x0u)

= −( t (P − P2)u, ∂x0u) − (∂x0u,
t (P − P2)u)

+( t Pu, ∂x0u)+ (∂x0u,
t Pu), ∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωk,η\Ω ′
k,η,η′ .

(16)

Moreover, for x0 ≥ α(x ′), we have

−((x0 − α(x ′))∂x2u, ∂x2u)+
∫

)
((∂x0u)

2 + 2∂x1α(x
′)∂x0u∂x1u + (∂x1u)

2)dσ

−4((x0 − α(x ′))∂x2α(x
′)∂x2u, ∂x0u)

= −( t (P − P2)u, ∂x0u) − (∂x0u,
t (P − P2)u)+ ( t Pu, ∂x0u)

+(∂x0u,
t Pu), ∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωk,η\Ω ′
k,η,η′ . (17)

Adding (16) and (17), and taking into account that |∂x1α(x ′)| < 1 in the considered
part, we get

∥(x0 − α(x ′))
1
2 ∂x2u∥2

≤ c(∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2 + ∥ t Pu∥2). (18)
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Making use of (18), (15) and Lemma 1, for k small enough and, hence, ε small enough,
it follows

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 ≤ ε∥ t Pu∥2,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωk.η\Ω ′
k,η,η′ , D′u · n′|S = 0. (19)

Let us consider u ∈ C∞
0 (Ω) such that supp u ⊆ Ωk\Ωk,η and compute the following

inner products

( t Pu, x0∂x0u)+ (x0∂x0u,
t Pu)

= ∥∂x0u∥2 + ∥∂x1u∥2 + 1
2
∥(x0 − α(x ′))∂x2u∥2

+
((

1
2
(x0 − α(x ′))2 + 2x0(x0 − α(x ′))

)
∂x2u, ∂x2u

)

+2
∫

S
(∂x1u · n1 + β2(x)∂x2u · n2)x0∂x0udσ

+4(x0(x0 − α(x ′))∂x2α(x
′)∂x2u, ∂x0u)

+( t (P − P2)u, x0∂x0u)+ (x0∂x0u,
t (P − P2)u)

≥ ∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2

−c
(

∥x
1
2
0 ∂x0u∥2 + ∥x

1
2
0 ∂x1u∥2 + ∥x

1
2
0 (x0 − α(x ′))∂x2u∥2 + ∥x

1
2
0 u∥2

)

+
((

1
2
(x0 − α(x ′))2 + 2x0(x0 − α(x ′))

)
∂x2u, ∂x2u

)
. (20)

Making use of Lemma 1 and taking 4
5 < η < 1, we have 1

2 (x0 − α(x ′))2 +
2x0(x0α(x ′)) > 0, in Ωk\Ωk,η. For k small enough, it results

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωk\Ωk,η, D′u · n′|S = 0. (21)

Since Ω0 ∩ ) has zero measure, without lost generality, we consider u ∈ C∞
0 (Ω)

with supp u ⊆ Ωk\(Ω0 ∩ )). Let ϕ ∈ C∞
0 (Ω), with ϕ ≡ 1 on Ωk, 45

∩ supp u,

suppϕ ⊆ Ωk,η1 ,withη1 >
4
5 and 0 ≤ ϕ ≤ 1 inΩ . Furthermore, letϕ′ ∈ C∞

0 (Ω), with
ϕ′ ≡ 1 on Ω ′

k,η and suppϕϕ′ ⊆ Ωk,η1,η′ . We rewrite (14) for ϕϕ′u, with u ∈ C∞
0 (Ω),

and for k small enough:

∥∂x0ϕϕ′u∥ + ∥∂x1ϕϕ′u∥ + ∥(x0 − α(x ′)∂x2ϕϕ′u∥ ≤ ε∥ t Pϕϕ′u∥.

Taking into account (19), we have

∥∂x0ϕ(1 − ϕ′)u∥ + ∥∂x1ϕ(1 − ϕ′)u∥
+∥(x0 − α(x ′)∂x2ϕ(1 − ϕ′)u∥ ≤ ε∥ t Pϕ(1 − ϕ′)u∥.
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Adding the previous inequalities and taking ε small enough, we obtain

∥∂x0ϕu∥ + ∥∂x1ϕu∥ + ∥(x0 − α(x ′))∂x2ϕu∥ + ∥ϕu∥ ≤ ε∥ t Pϕu∥.

With analogous techniques, it follows

∥∂x0ϕu∥ + ∥∂x1ϕu∥ + ∥(x0 − α(x ′)∂x2ϕu∥ + ∥ϕu∥
≤ ε

(
∥ϕ t Pu∥ + ∥[ t P,ϕ]u∥

)

≤ ε∥ t Pu∥ + cε
(
∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥

)
. (22)

Then, set ψ = 1 − ϕ, we rewrite (21) for ψu

∥∂x0ψu∥ + ∥∂x1ψu∥ + ∥(x0 − α(x ′)∂x2ψu∥ + ∥ψu∥
≤ ε∥ t Pψu∥
≤ ε

(
∥ψ t Pu∥ + ∥[ t P,ψ]u∥

)

≤ ε∥ t Pu∥ + cε
(
∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥

)
. (23)

Adding (22) and (23), it follows

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′)∂x2u∥ + ∥u∥
≤ ε∥ t Pu∥ + cε

(
∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥

)
.

Then, taking ε small enough, the claim is achieved. ⊓-

Now, we prove the counterpart results for the Cauchy–Robin problem.

Lemma 3 For every ε, δ > 0 there exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ik,δ, L ′u · n′|S = 0.

Proof Integrating by parts, for every u ∈ C∞
0 (Ω) such that supp u ⊆ Ik,δ and L ′u ·

n′|S = 0, we have

( t P2u, x0∂x0u)+ (x0∂x0u,
t P2u)

= ∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + 2
(
x0(x0 − α(x ′))∂x2u, ∂x2u

)

+4
(
x0(x0 − α(x ′))∂x2α(x

′)∂x2u, ∂x0u
)

+2
∫

S

(
∂x1u · n1 + β2(x)∂x2u · n2

)
x0∂x0u dσ

= ∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + 2
(
x0(x0 − α(x ′))∂x2u, ∂x2u

)

+4
(
x0(x0 − α(x ′))∂x2α(x

′)∂x2u, ∂x0u
)

+2
∫

S

(
ã1(x)n1 + β2(x )̃a2(x)n2

)
ux0∂x0u dσ, (24)
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where we toke into account that L ′u · n′|S = 0. It results

∫

S
(̃a1(x)n1 + β2(x )̃a2(x)n2)ux0∂x0udσ

=
∫

Ωk

x0∂x1 (̃a1(x)u∂x0u)dx +
∫

Ωk

x0∂x2 (̃a2(x)(x0 − α(x ′))u∂x0u)dx

= 1
2
(x0∂x1 ã1(x), ∂x0u

2) − (̃a1(x)u, ∂x1u) − (x0∂x0 ã0(x)u, ∂x1u)

+1
2
(x0∂x2 (̃a2(x)(x0 − α(x ′))), ∂x0u

2) − (̃a2(x)(x0 − α(x ′))u, ∂x2u)

−(x0∂x0 (̃a2(x)(x0 − α(x ′)))u, ∂x2u). (25)

Making use of (24), (25) and Lemma 1, it follows

( t P2u, x0∂x0u)+ (x0∂x0u,
t P2u)

≥ ∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 − 1
δ
∥x

1
2
0 (x0 − α(x ′))∂x2u∥2

−c
(
∥x

1
2
0 ∂x0u∥2 − ∥x

1
2
0 ∂x1u∥2 − ∥x

1
2
0 (x0 − α(x ′))∂x2u∥2 − ∥x

1
2
0 u∥2

)
. (26)

On the other hand, we have

( t (P − P2)u, x0∂x0u)+ (x0∂x0u,
t (P − P2)u)

≥ −c
(
∥x

1
2
0 ∂x0u∥2 − ∥x

1
2
0 ∂x1u∥2 − ∥x

1
2
0 (x0 − α(x ′))∂x2u∥ − ∥x

1
2
0 u∥2

)
. (27)

Adding (26) and (27) and using Lemma 1, we obtain

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2

≤ ∥x
1
2
0 ∂x0u∥∥x

1
2
0

t Pu∥ + 1
δ
∥x

1
2
0 (x0 − α(x ′))∂x2u∥2 + c

(
∥x

1
2
0 ∂x0u∥2

+∥x
1
2
0 ∂x1u∥2 + ∥x

1
2
0 (x0 − α(x ′))∂x2u∥2 + ∥x

1
2
0 u∥2

)
,

from which the claim follows taking x0 ≤ k and k small enough. ⊓-

We prove the following result by using similar arguments as above.

Theorem 3 Let us suppose that assumptions (i), (ii) and (iii) hold. It results that for
every ε > 0 there exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωk = [0, k[×Ω0, L ′u · n′|S = 0.

Proof We can proceed as in the proof of Theorem 2making use of Lemma 3 instead of
Lemma 2. Moreover, the integral 2

∫
S

(
∂x1u · n1 + β2(x)∂x2u · n2

)
x0∂x0u dσ in (20)
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has be estimated as in (25). More precisely, using the same arguments in (25), we
obtain

2
∫

S

(
∂x1u · n1 + β2(x)∂x2u · n2

)
x0∂x0u dσ

≥ −c
(

∥x
1
2
0 ∂x0u∥2 + ∥x

1
2
0 ∂x1u∥2 + ∥x

1
2
0 (x0 − α(x ′))∂x2u∥2 − ∥x

1
2
0 u∥2

)2

.

As a consequence, the anologous estimate of (20) can be deduced. ⊓-

Taking into account Theorems 2 and 3, we deduce easily the next theorem.

Theorem 4 Let us suppose that assumptions (i), (ii) and (iii) hold. It results that for
every ε > 0 there exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω̃) : supp u ⊆ Ω̃k = [0, k[×Ω̃0.

4 A priori estimates array fromÄ0

Let us set

Ωx0,k,η =
{
x ∈ Ω : x0 ∈ [x0, x0 + k[,

ηx0 + (1+ η)α(x ′) ≤ x0 ≤
(
1
5
+ η

)
α(x ′)+

(
4
5

− η

)
x0

}
,

Ω ′
x0,k,η =

{
x ∈ Ωx0,k,η : |∂x1α(x ′)| ≥ 1

}
,

Ω ′
x0,k,η,η′ =

{
x ∈ Ωx0,k,η : |∂x1α(x ′)| ≥ 1 − η′} ,

where x0 > 0, 4
5 < η < 1, k > 0. Evidently Ω ′

x0,k,η,η′ ⊇ Ω ′
x0,k,η

. Moreover, it is
possible to choose k, η, η′ such that assumptions (i) and (ii) are verified in Ω ′

x0,k,η,η′ .
The following result holds.

Theorem 5 Let us assume that assumptions (i), (ii) and (iii) hold. Then, for every
x0 > 0 and for every ε > 0 there exists k > 0 such that

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥ t Pu∥ + ∥∂x0u∥ + ∥∂x1u∥ + ∥u∥

)
,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k,η, D′u · n′|S = 0. (28)

Moreover, for every x0 > 0 there exist k > 0 and c > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k,η, D′u · n′|S = 0. (29)
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Proof If the intersection between ) and the plane x0 = x0 is empty, integrating by
parts, as in the proof of Lemma 2, in the following inner products

(
eτ (x0−x0) t Pu, ∂x0u

)
+

(
eτ (x0−x0)∂x0u,

t Pu
)

we easily obtain that for every ε > 0 there exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k, D′u · n′|S = 0.

If the intersection between ) and the plane x0 = x0 is nonempty, we proceed as
follows. We remark that the intersection between Ωx0,k,η and the plane x0 = x0 has
zero measure. Moreover, the intersection between Ωx0,k,η and the surface S is empty
or has zero measure, for k small enough. Let us set

gx0(x
′) = α(x ′) − x0

∂x1α(x ′)
, hx0(x

′) =
∣∣∣∣∣
∂2x1α(x

′)(α(x ′) − x0)

(∂x1α(x ′))2

∣∣∣∣∣ .

Let us observe that, for a fixed ε > 0, there exists k > 0 such that |x0 − x0| < ε,
|α(x ′) − x0| < ε, |gx0(x ′)| < ε, |hx0(x ′)| < ε, for every x ∈ Ωx0,k,h . Let Ax0u =
gx0(x

′)∂x1u + (x0 − x0)∂x0u. Integrating by parts in the following inner products

( t Pu, Ax0u)+ (Ax0u,
t Pu)

and since the intersections between Ωx0,k,η and the plane x0 = x0 and the surface S,
respectively, have zero measure, we have

(hx0(x
′)∂x0u, ∂x0u)+ (hx0(x

′)∂x1u, ∂x1u)+ ((4 − hx0(x
′))(x0 − α(x ′))2∂x2u, ∂x2u)

≤ 4|(gx0(x ′)(x0 − α(x ′))∂x2α(x
′)∂x2u, ∂x1u)|

+4|((x0 − x0)(x0 − α(x ′))∂x2α(x
′)∂x2u, ∂x0u)|

+2|((x0 − α(x ′))2∂x2gx0(x
′)∂x2u, ∂x2u)| + 2|Re( t P1u, Ax0u)|

+2|Re( t P0u, Ax0u)| + |( t Pu, Ax0u)| + |(Ax0u,
t Pu)|,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k,h, D′u · n′|S = 0.

This implies

(4 − ε)∥(x0 − α(x ′))∂x2u∥2

≤ cε
(
∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2

)
+ ε∥ t Pu∥2,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k,η,η′ , D′u · n′|S = 0.

Hence, taking ε small enough, we deduce

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥∂x0u∥ + ∥∂x1u∥

)
+ ε∥ t Pu∥,
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∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k,η,η′ , D′u · n′|S = 0. (30)

For ε small enough, it follows

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥∂x0u∥ + ∥∂x1u∥

)
+ ε∥ t Pu∥,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ω ′

x0,k,η,η′ , D′u · n′|S = 0. (31)

Now, we obtain (29) integrating by parts in the following inner products:

( t Pu, Au)+ (Au, t Pu).

In fact, we have

h1∥∂x0u∥2 + h1∥∂x1u∥2 + (4 − h2)∥(x0 − α(x ′))∂x2u∥2
≤ c∥(x0 − α(x ′))∂x2u∥

(
∥∂x0u∥ + ∥∂x1u∥

)
+ c∥(x0 − α(x ′))∂x0u∥

+∥(x0 − α(x ′))∂x1u∥ + c∥(x0 − α(x ′))∂x1u∥
+c∥u∥

(
∥∂x0u∥ + ∥∂x1u∥

)
+ c∥ t Pu∥

(
∥∂x0u∥ + ∥∂x1u∥

)
,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ω ′

x0,k,η,η′ ,
4
5

≤ h < 1, D′u · n′|S = 0. (32)

Making use of (32) and Lemma 1, it follows

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ω ′

x0,k,η,η′ ,
4
5

≤ h < 1, D′u · n′|S = 0. (33)

If supp u ⊆ Ωx0,k,η\Ω ′
x0,k,η,η′ , we integrate by parts in the inner products

( t Pu, (x0 − x0)∂x0u)+ ((x0 − x0)∂x0u,
t Pu)

≤ ∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2
+2((x0 − x0)(x0 − α(x ′))∂x2u, ∂x2u)
+4((x0 − x0)(x0 − α(x ′))∂x2α(x

′)∂x2u, ∂x0u)
+( t (P − P2)u, (x0 − x0)∂x0u)

+((x0 − x0)∂x0u,
t (P − P2)u).

Then, for k small enough and taking into account Lemma 1, it follows

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2

≤ ε∥ t Pu∥2 + ε
(
∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2

)

+ε∥(x0 − α(x ′))
1
2 ∂x2u∥2.
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Hence, for ε small enough, it results

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2

≤ ε
(
∥ t Pu∥2 + ∥(x0 − α(x ′))

1
2 ∂x2u∥2

)
. (34)

We estimate ∥(x0 − α(x ′))∂x2u∥, as done in (18). Computing the inner products

( t Pu, ∂x0u)+ (∂x0u,
t Pu), ∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k,η\Ω ′
x0,k,η,

and proceeding with the same technique, we deduce

∥(x0 − α(x ′))
1
2 ∂x2u∥2 +

∫

)

[
(∂x0u)

2 + 2∂x1α(x
′)∂x0u∂x1u + (∂x1u)

2
]
dσ

≤ ∥ t Pu∥2 + |((x0 − α(x ′))∂x2u, ∂x0u)|. (35)

Making use of (34) and (35), we have

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2 + ∥u∥2 ≤ ε∥ t Pu∥2,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k,η\Ω ′
x0,k,η. (36)

Since)∩Ωx0 has zeromeasure, without lost generality, we consider u ∈ C∞
0 (Ω)with

supp u ⊆ Ωx0,k\() ∩ Ωx0), where Ωx0 = {x ∈ Ω : x0 = x0}. Now, let ϕ ∈ C∞
0 (Ω)

such that ϕ ≡ 1 on Ω ′
x0,k,η

and ϕ ≡ 0 on Ωx0,k,η\Ω ′
x0,k,η,η′ . If u ∈ C∞

0 (Ω) such that
supp u ⊆ Ωx0,k,η and D′u · n′|S = 0, we can apply (31) to ϕu obtaining

∥(x0 − α(x ′))∂x2ϕu∥ ≤ ε(∥∂x0ϕu∥ + ∥∂x1ϕu∥)+ ε∥ t Pϕu∥, (37)

then it follows

∥∂x0ϕu∥ + ∥∂x1ϕu∥ + ∥(x0 − α(x ′))∂x2ϕu∥ + ∥ϕu∥ ≤ c∥ t Pϕu∥. (38)

On the other hand, by (36), it results

∥∂x0(1 − ϕ)u∥ + ∥∂x1(1 − ϕ)u∥ + ∥(x0 − α(x ′))∂x2(1 − ϕ)u∥
+∥(1 − ϕ)u∥ ≤ c∥ t P(1 − ϕ)u∥. (39)

Taking into account (37), (39) and for ε small enough, we have

∥(x0 − α(x ′))∂x2u∥ ≤ ε(∥∂x0u∥ + ∥∂x1u∥ + ∥ t Pu∥).

As a consequence, (28) holds. Moreover, by (38) and (39) and for ε small enough, we
obtain

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
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∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k,η, D′u · n′|S = 0,

and, hence, (29) is also proved. ⊓-
The following results holds.

Theorem 6 For every x0 > 0 and ε > 0 there exists k > 0 such that for every
η ∈

] 4
5 , 1

[
it results

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k\Ωx0,k,η, D′u · n′|S = 0. (40)

Proof Itegrating by parts in the following inner products

( t Pu, (x0 − x0)∂x0u)+ ((x0 − x0)∂x0u,
t Pu),

we obtain

∥∂x0u∥2 + ∥∂x1u∥2 + 1
2
∥(x0 − α(x ′))∂x2u∥2 + 1

2

(
(x0 − α(x ′))2∂x2u, ∂x2u

)

+2
(
(x0 − x0)(x0 − α(x ′))∂x2u, ∂x2u

)

≤ ε
(
∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x0u∥2 + c∥(x0 − α(x ′))∂x2u∥2 + ∥ t Pu∥2

)
.

For c|x0 − x0| < ε, taking into account that

1
2

(
(x0 − α(x ′))2∂x2u, ∂x2u

)
+ 2

(
(x0 − x0)(x0 − α(x ′))∂x2u, ∂x2u

)
≥ 0,

in Ωx0,k\Ωx0,k,η, for
4
5 < η < 1, by using Lemma 1 and for ε small enough, there

exists k > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ ε∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k\Ω ′
x0,k,η,η′ , D′u · n′|S = 0.

As a consequence, the claim is achieved. ⊓-
Hence, we obtain the following theorem.

Theorem 7 Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every
x0 > 0 and for every ε > 0 there exists k > 0 such that

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥ t Pu∥ + ∥∂x0u∥ + ∥∂x1u∥ + ∥u∥

)
,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k, D′u · n′|S = 0. (41)

Moreover, for every x0 > 0 there exist k > 0 and c > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k, D′u · n′|S = 0. (42)
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Proof Let ϕ ∈ C∞
0 (Ω) such that ϕ ≡ 1 onΩx0,k,η1 ∩supp u, and letψ ∈ C∞

0 (Ω) such
that ψ ≡ 1 on Ωx0,k\Ωx0,k,η1 and ψ ≡ 0 on Ωx0,k\Ωx0,k,η2 , with

4
5 < η1 < η2 < 1.

Applying Theorem 5 to ϕu, Theorem 6 to ψu and adding the obtained inequalities,
the claims are achieved ⊓-

With analogous proof of Theorem 5, we are able to establish the following result.

Theorem 8 Let us suppose that assumptions (i), (ii) and (iii) hold. It results that for
every x0 > 0 and for every ε > 0 there exists k > 0 such that

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥ t Pu∥ + ∥∂x0u∥ + ∥∂x1u∥ + ∥u∥

)
,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k,η, L ′u · n′|S = 0.

Moreover, for every x0 > 0 there exist k > 0 and c > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k,η, L ′u · n′|S = 0.

Now, we prove a useful estimate.

Theorem 9 For every x0 > 0 and ε > 0 there exists k > 0 such that, for every
η ∈

] 4
5 , 1

[
, it results

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ωx0,k) : supp u ⊆ Ωx0,k\Ωx0,k,η, L ′u · n′|S = 0.

Proof Integrating by parts, we obtain

( t Pu, (x0 − x0)∂x0u)+ ((x0 − x0)∂x0u,
t Pu)

= ∥∂x0u∥2 + 1
2
∥∂x1u∥2 + 1

2
∥(x0 − α(x ′))∂x2u∥2

+1
2
((x0 − α(x ′))2∂x2u, ∂x2u)

+2((x0 − x0)(x0 − α(x ′))∂x2u, ∂x2u)
+4((x0 − x0)(x0 − α(x ′))∂x2α(x

′)∂x2u, ∂x0u)

+2
∫

S
(∂x1u · n1 + β2(x)∂x2u · n2)(x0 − x0)∂x0udσ. (43)

On the other hand, as done in (25), we have
∫

S
(̃a1(x)n1 + β(x )̃a2(x)n2)ux0∂x0udσ

= 1
2

(
x0∂x1 ã1(x), ∂x0u

2
)

−
(
ã1(x)u, ∂x1u

)
−

(
x0∂x0 ã1(x), ∂x1u

)

+1
2
(x0∂x2((x0 − α(x ′))̃a2(x)), ∂x0u

2) − ((x0 − α(x ′))̃a2(x)u, ∂x2u)
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−(x0∂x0((x0 − α(x ′))̃a2(x))u, ∂x2u). (44)

Making use of (43) and (44) and taking into acount

1
2

(
(x0 − α(x ′))2∂x2u, ∂x2u

)
+ 2

(
(x0 − x0)(x0 − α(x ′))∂x2u, ∂x2u

)
≥ 0,

for η ∈
] 4
5 , 1

[
, we deduce

∥∂x0u∥2 + ∥∂x1u∥2 + ∥(x0 − α(x ′))∂x2u∥2

≤
(
∥(x0 − x0)

1
2 ∂x0u∥2 + ∥(x0 − x0)

1
2 ∂x1u∥2 + ∥(x0 − x0)

1
2 (x0 − α(x ′))∂x2u∥2

+∥(x0 − x0)
1
2 u∥2 + ∥(x0 − x0)

1
2 t Pu∥2

)
.

Then, by using Lemma 1, the claim follows taking |x0−x0| > k, with k small enough.
⊓-

Proceeding as in the proof of Theorem 7, we obtain the following theorem.

Theorem 10 Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every
x0 > 0 and for every ε > 0 there exists k > 0 such that

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥ t Pu∥ + ∥∂x0u∥ + ∥∂x1u∥ + ∥u∥

)
,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωx0,k, L ′u · n′|S = 0.

Moreover, for every x0 > 0 there exist k > 0 and c > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ω) : supp u ⊆ Ωx0,k, L ′u · n′|S = 0.

As a consequence, the next result holds.

Theorem 11 Let us suppose that assumptions (i), (ii) and (iii) hold. Then, for every
x0 > 0 and for every ε > 0 there exists k > 0 such that

∥(x0 − α(x ′))∂x2u∥ ≤ ε
(
∥ t Pu∥ + ∥∂x0u∥ + ∥∂x1u∥ + ∥u∥

)
,

∀u ∈ C∞
0 (Ω̃) : supp u ⊆ Ω̃x0,k = [x0, x0 + k[×Ω̃.

Moreover, for every x0 > 0 there exist k > 0 and c > 0 such that

∥∂x0u∥ + ∥∂x1u∥ + ∥(x0 − α(x ′))∂x2u∥ + ∥u∥ ≤ c∥ t Pu∥,
∀u ∈ C∞

0 (Ω̃) : supp u ⊆ Ω̃x0,k .
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5 A priori estimates in Sobolev spaces with s < 0

First of all, let us obtain a priori estimate in Sobolev spaces with s < 0 by using the
theory of pseudodifferental operators.

Theorem 12 Let us suppose that assumptions (i), (ii) and (iii) hold. For every x0 ≥ 0
and for every s < 0 there exist k > 0 and c > 0 such that

∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s ≤ c∥ t Pu∥H0,s ,

∀u ∈ C∞
0 (Ω) : supp u ⊆ [x0, x0 + k[×Ω0 = Ωx0,k, D′u · n′|S = 0. (45)

Proof Let u ∈ C∞
0 (Ω̃x0,k), let ϕ ∈ C∞

0 (Ω̃) such that suppϕ ⊆ Ω̃x0,k , D
′ϕ · n′|S = 0

and ϕ ≡ 1 on the support of the projection of u on the plane x0 = x0. Let us set
vs = ϕ(x ′)Asu. Applying the claims of Theorems 4 and 11 if we have x0 = 0 or
x0 ̸= 0, respectively, it results

∥∂x0vs∥ + ∥∂x1vs∥ + ∥(x0 − α(x ′))∂x2vs∥ + ∥vs∥ ≤ c∥ t Pvs∥. (46)

We remark that

∥∂x0vs∥ = ∥∂x0ϕ(x ′)Asu∥
= ∥ϕ(x ′)As∂x0u∥
= ∥Asϕ(x ′)∂x0u + [ϕ, As]∂x0u∥
≥ ∥As∂x0u∥ − ∥R∂x0u∥
≥ ∥∂x0u∥H0,s − ∥R∂x0u∥, (47)

where R = [ϕ, As]u is a regularizing operator with respect to the variable x ′.
On the other hand, making use of Lemma 1 and taking into account that

∂2x0u = − t Pu + ∂2x1u + (x0 − α(x ′))2∂2x2u + 4(x0 − α(x ′))∂x2α ∂x2u

−1
i

2∑

j=0

a(x)∂x j u − 1
i

2∑

j=0

∂x j a(x)u − 2(∂x2α)
2u + b(x)u,

we obtain

∥R∂x0u∥ ≤ ∥R(x0 − x0)∂2x0u∥
≤ c∥(x0 − x0) t Pu∥H0,s + c∥(x0 − x0)∂x0u∥H0,s

+c∥(x0 − x0)u∥H0,s . (48)

Making use of (47) and (48), it follows

∥∂x0vs∥
≥ ∥∂x0u∥H0,s − c∥(x0 − x0) t Pu∥H0,s − c∥(x0 − x0)∂x0u∥H0,s
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−c∥(x0 − x0)u∥H0,s . (49)

Then choosing k small enough and |x0 − x0| < k, it results

∥∂x0vs∥ ≥ ∥∂x0u∥H0,s − c∥ t Pu∥H0,s .

Proceeding with the same technique, we easily obtain that

∥∂x1vs∥ ≥ ∥∂x1u∥H0,s − c∥u∥H0,s

≥ ∥∂x1u∥H0,s − c∥(x0 − x0)∂x0u∥H0,s , (50)

where we applied Lemma 1. Adding (49) and (50), for |x0 − x0| < k with k small
enough, we deduce

∥∂x0vs∥ + ∥∂x1vs∥ ≥ ∥∂x0u∥H0,s + ∥∂x1u∥H0,s − c∥ t Pu∥H0,s . (51)

With analogous computations, we have

∥(x0 − α(x ′))∂x2vs∥ ≥ ∥As(x0 − α(x ′))ϕ(x ′)∂x2u∥ − ∥Ru∥ − ∥Bs−1∂x1u∥, (52)

where Bs−1 is a pseudodifferential operator of order s−1. As a consequence, Bs−1∂x2
is a pseudodifferential operator of order s. By using the continuity property of pseu-
dodifferential operators, it results

∥(x0 − α(x ′))∂x2vs∥ ≥ ∥(x0 − α(x ′))∂x2u∥H0,s − c∥(x0 − x0)∂x1u∥H0,s . (53)

Adding (51) and (53), for |x0 − x0| < k with k small enough, it follows

∥∂x0vs∥ + ∥∂x1vs∥ + ∥(x0 − α(x ′))∂x2vs∥
≥ ∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s − c∥ t Pu∥H0,s . (54)

Finally we have

∥ t Pvs∥ ≤ ∥As
t Pu∥ + ∥R′ t Pu∥ + ∥ϕ(x ′)[ t P, As]u∥ + ∥Ru∥

≤ ∥ t Pu∥H0,s + ∥(x0 − x0)∂x0u∥H0,s + ∥ϕ(x ′)[ t P, As]u∥, (55)

where R′ and R are regularizing operators. Moreover, it results

ϕ(x ′)[ t P, As]u = ϕ(x ′)[ t P2, As]u + ϕ(x ′)[ t P1, As]u + ϕ(x ′)[ t P0, As]u. (56)

Evidently, we have

[ t P2, As]u = Bs+1u + Bsu,
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where Bs+1 and Bs are pseudodifferential operators of order s+1 and s, respectively.
The principal symbol of Bs+1 is

b(x, ξ ′) = −1
i

(
2(x0 − α(x ′))(−∂x1α(x

′))ξ22
)

ϕ(x ′)∂ξ1(1+ |ξ ′|2) s
2

−1
i

(
2(x0 − α(x ′))(−∂x2α(x

′))ξ22
)

ϕ(x ′)∂ξ2(1+ |ξ ′|2) s
2

As a consequence, Bs+1u = (x0 − α(x ′))∂x2B
′′
s u + B ′

su, where B ′′
s and B ′

s are pseu-
dodifferential operators of order s.

Making use of (41), we obtain

∥Bs+1u∥ = ∥(x0 − α(x ′))∂x2B
′′
s u + B ′

su∥
≤ ε

(
∥ t P B ′′

s u∥ + ∥∂x0B ′′
s u∥ + ∥∂x1B ′′

s u∥ + ∥B ′
su∥

)
+ ∥B ′

su∥.

Then, it follows

∥ϕ(x ′)[t P2, As]u∥ ≤ ε
(
∥ t P B ′′

s u∥ + ∥∂x0B ′′
s u∥

+∥∂x1B ′′
s u∥ + ∥B ′′

s u∥
)
+ ∥Bsu∥ + ∥B ′

su∥
≤ ε

(
∥ t Pu∥H0,s + ∥ [t P, B ′′

s ]u∥ + ∥∂x0u∥H0,s + ∥[∂x0 , B ′′
s ]u∥ + ∥∂x1u∥H0,s

∥[∂x1, B ′′
s ]u∥ + ∥u∥H0,s

)
+ ∥Bs(x0 − x0)∂x0u∥ + ∥B ′

s(x0 − x0)∂x0u∥
≤ ε

(
∥ t Pu∥H0,s + ∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥u∥H0,s

)
, (57)

where we considered |x0 − x0| < k < ε.
On the other hand, it results

ϕ(x ′)[ t P1, As]u = Bs−1∂x0u + Bsu + Bs−1u.

Taking into account Lemma 1, we have

∥ϕ(x ′)[ t P1, As]∥ ≤ ∥Bs−1∂x0u∥ + ∥Bsu∥ + ∥Bs−1u∥
≤ c∥(x0 − x0)Bs−1∂

2
x0u∥ + c∥u∥H0,s

≤ c∥(x0 − x0)Bs−1Pu∥ + c∥(x0 − x0)Bs∂x1u∥
+c∥(x0 − x0)B ′

s(x0 − α(x ′))∂x2u∥
+c∥(x0 − x0)B ′′

s u∥ + c∥(x0 − x0)∂x0u∥H0,s

≤ c∥(x0 − x0)Pu∥H0,s + c∥(x0 − x0)∂x1u∥H0,s

+c∥(x0 − x0)(x0 − α(x ′))∂x2u∥H0,s

+c∥(x0 − x0)u∥H0,s + c∥(x0 − x0)∂x0u∥H0,s

≤ ε(∥Pu∥H0,s + ∥∂x0u∥H0,s + ∥∂x1u∥H0,s

+∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s ), (58)

where Bs , B ′
s , B

′′
s are pseudodifferential operators of order s, Bs−1 is a pseudodiffer-

ential operator of order s − 1 and we supposed that 0 < |x0 − x0| < ε
c .
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It is easy to obtain

∥ϕ(x ′)[ t P0, As]u∥ ≤ c∥u∥H0,s

≤ c∥(x0 − x0)∂x0u∥H0,s

≤ ε∥∂x0u∥2H0,s . (59)

By using (57), (58), (59), it follows

∥ϕ(x ′)[ t P, As]u∥
≤ ε

(
∥ t Pu∥H0,s + ∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s

)
.

Making use of (46), (54) and the previous estimate, the claim is achieved. ⊓-
With analogous techniques used to proveTheorem12 butmaking use of Theorems 3

and 10 instead of Theorems 4 and 11, respectively, we can establish the following
relevant estimate.

Theorem 13 Let us suppose that assumptions (i), (ii) and (iii) hold. For every x0 ≥ 0
and for every s < 0 there exist k > 0 and c > 0 such that

∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s ≤ c∥ t Pu∥H0,s ,

∀u ∈ C∞
0 (Ω) : supp u ⊆ [x0, x0 + k[×Ω0 = Ωx0,k, L ′u · n′|S = 0.

6 Global estimates

Now, we obtain a global estimate very useful in order to prove the existence of a
solution to the Cauchy–Neumann problem (1).

Theorem 14 Let us suppose that assumptions (i), (ii) and (iii) hold. For every h > 0
and s ≤ 0 there exists c > 0 such that

∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s ≤ c∥ t Pu∥H0,−s ,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωh, D′u · n′|S = 0.

Proof Let h > 0, setting Ωh = [0, h[×Ω0, for the compactness of [0, h]× Ω0, there
exists a finite number of subsets {Ω1,Ω2, . . . ,Ωp} of Ωh , given by

Ω1 = [0, k1[×Ω0, Ω2 = [k′
1, k2[×Ω0, . . . , Ωp = [k′

p−1, kp[×Ω0,

with k0 = 0, kp = h, ki−1 < k′
i < ki , for every i = 1, . . . , p, and such that (45) holds

in every Ωi , for i = 1, . . . , p.
Let u ∈ C∞

0 (Ωh), with D′u · n′|S = 0, let ϕ ∈ C∞
0 ([0, k1[), with ϕ ≡ 1 on [0, k′

1[
and 0 ≤ ϕ ≤ 1 in [0, k1[. Rewriting (45) for ϕu, it results

∥∂x0ϕu∥H0,s + ∥∂x1ϕu∥H0,s + ∥(x0 − α(x ′))∂x2ϕu∥H0,s + ∥ϕu∥H0,s
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≤ c∥Pϕu∥H0,s

≤ c∥Pu∥H0,s + c∥[P,ϕ]u∥H0,s

≤ c∥Pu∥H0,s + c∥∂x0ϕ∂x0u∥H0,s + c∥(∂2x0ϕ)u∥H0,s

≤ c∥Pu∥H0,s + c∥∂x0u∥H0,s ([k′
1,k1[×Ω0)

+ c∥u∥H0,s ([k′
1,k1[×Ω0)

≤ c∥Pu∥H0,s + c∥∂x0u∥H0,s ([k′
1,k

′
2[×Ω0)

+ c∥u∥H0,s ([k′
1,k

′
2[×Ω0)

≤ c∥Pu∥H0,s + c∥∂x0ϕ1u∥H0,s ([k′
1,k2[×Ω0)

+ c∥ϕ1u∥H0,s ([k′
1,k2[×Ω0)

,

where ϕ1 ∈ C∞
0 (Ω0) such that suppϕ1 ⊆ [k′

1, k2[, ϕ1 ≡ 1 in [k′
1, k

′
2] × Ω0.

We can deduce that

∥∂x0ϕi−1u∥H0,s + ∥∂x1ϕi−1u∥H0,s + ∥(x0 − α(x ′))∂x2ϕi−1u∥H0,s + ∥ϕi−1u∥H0,s

≤ c∥Pu∥H0,s + c∥∂x0ϕi u∥H0,s ([k′
i ,ki+1[×Ω0)

+ c∥ϕi u∥H0,s ([k′
i ,ki+1[×Ω0)

,

where ϕ0 = ϕ and ϕi ∈ C∞
0 ([0, h[) such that suppϕi ⊆ [k′

i , ki+1[, for every i =
1, . . . , p.

On the other hand, we have

∥∂x0ϕp−1u∥H0,s + ∥∂x1ϕp−1u∥H0,s + ∥(x0 − α(x ′))∂x2ϕp−1u∥H0,s + ∥ϕp−1u∥H0,s

≤ c∥Pu∥H0,s + c∥∂x0ϕpu∥H0,s (Ωp) + c∥ϕpu∥H0,s (Ωp)

≤ c∥Pu∥H0,s + c
(
∥∂x0u∥H0,s (Ωp)

+ ∥u∥H0,s (Ωp)

)

≤ c∥Pu∥H0,s . (60)

By using (47), (60) and proceeding by recurrence on i , we easily obtain

∥∂x0ϕi u∥H0,s + ∥∂x1ϕi u∥H0,s + ∥(x0 − α(x ′))∂x2ϕi u∥H0,s

+∥ϕi u∥H0,s ≤ c∥Pu∥H0,s ,

for i = 1, . . . , p. Taking into account the previous inequality, we have

∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s ≤ c∥Pu∥H0,s ,

∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωh, D′u · n′|S = 0. (61)

For the arbitrariness of h, (61) holds for every u ∈ C∞
0 (Ω) such that D′u ·n′|S = 0.

The proof is thereby completed. ⊓-

Proceeding analogously as in the proof of Theorem 14 but by using Theorems 3
and 10 instead of Theorems 2 and 7, respectively, we obtain a global estimate for the
Cauchy–Robin problem (2).

Theorem 15 Let us suppose that assumptions (i), (ii) and (iii) hold. For every h > 0
and s ≤ 0 there exists c > 0 such that

∥∂x0u∥H0,s + ∥∂x1u∥H0,s + ∥(x0 − α(x ′))∂x2u∥H0,s + ∥u∥H0,s ≤ c∥ t Pu∥H0,−s ,
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∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωh, L ′u · n′|S = 0.

7 Existence and regularity results

This section is devoted to establish existence and regularity results for the Cauchy–
Neumann problem (1) and the Cauchy–Robin problem (2).

Theorem 16 Let f ∈ Hr
loc(Ω), with r ≥ 2. Then, for every h > 0 there exists

v ∈ H0,s(Ωh), with 0 ≤ s ≤ r such that

(v, t Pu) = ( f , u), ∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωh, D′u · n′|S = 0.

Proof Let B ′ be the subspace of distributions of H0,−s(Ωh) defined on test functions
ϕ ∈ C∞

0 ([0, h[×Ω0) such that D′ϕ ·u′|S = 0. Let B be contained in B ′. Let us define
a linear continuous functional in B, as follows

F(ψ) = F( t Pu) = ( f , u), ∀ψ ∈ B.

Taking into account Theorem 12, it results

|F(ψ)| = |( f , u)| ≤ ∥ f ∥H0,s∥u∥H0,−s ≤ c∥ f ∥H0,s∥ t Pu∥H0,−s ≤ c′∥ψ∥H0,−s .

As a consequence, we can extend F in H0,−s(Ωh)∩B ′.Making use of a representation
theorem, there exists v ∈ H0,s(Ωh) ∩ B ′∗ such that

F(w) = (v,w), ∀w ∈ H0,−s(Ωh).

Then, it results

F(ψ)=(v,ψ) = (v, t Pu)=( f , u), ∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωh, D′u · n′|S = 0.

⊓-

We proved that for every h > 0 there exists v ∈ H0,s(Ωh), with 0 ≤ s ≤ r , such that

Pv = f , in the sense of distributions.

Hence, v verifies the following equality:

∂2x0v + a0(x)∂x0v + b(x)v = f +
(
P − ∂2x0 − a0(x)∂x0 − b(x)

)
v.

Since f +
(
P − ∂2x0 − a0(x)∂x0 − b(x)

)
v ∈ H0,r−2(Ωh), we have v ∈ H2,r−2(Ωh).

Therefore, proceeding by induction, we deduce

v ∈ Hs,r−s(Ωh), ∀s ≤ r .
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As a consequence, it follows

v ∈ Hr (Ωh).

Then, there exists v ∈ Hr (Ωh), with r ≥ 2, such that

(v, t Pu) = ( f , u), ∀u ∈ C∞
0 (Ωh) : D′u · n′|S = 0. (62)

Taking into account (62) and integrating by parts, we obtain

(Pv, u) = ( f , u), ∀u ∈ C∞
0 (intΩh). (63)

Hence, it results

Pv = f , a.e. in Ωh .

Integrating again by parts in (62), for every u ∈ C∞
0 (Ωh) such that u|Ω0 = 0,

∂x0u|Ω0 = 0, D′u · n′|S = 0, we have

(Pv, u) −
∫

S

(
∂x1v · n1 + (x0 − α(x ′))2∂x2v · n2 − a1(x)n1v − a2(x)n2v

)
udσ

= ( f , u), (64)

which implies

∫

S
(L ′v · n′)udσ = 0.

Then, it follows

L ′v · n′|S = 0.

Finally, integrating again by parts in (62), for every u ∈ C∞
0 (Ωh) such that u|S = 0,

∂xi u|S = 0, with i = 1, 2, and supposing that either ∂x0u|Ω0 = 0 or u|Ω0 = 0, we get

(Pv, u) −
∫

Ω0

v∂x0udx1dx2 = ( f , u). (65)

As a consequence, it results

v|Ω0 = 0.

Moreover, we have

(Pv, u) −
∫

Ω0

∂x0v · udx1dx2 = ( f , u). (66)
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Hence, we obtain

∂x0v|Ω0 = 0.

Making use of (63), (64), (65) and (66), it follows that there exists v ∈ Hr (Ωh) such
that

{
Pv = f , in Ωh,

v|Ω0 = 0, dv
dn |Ω0 = 0, L ′v · n′|S = 0.

Instead if B is the space of functions ψ = t Pu, with u ∈ C∞
0 (Ω) such that supp u ⊆

Ωh and L ′u · n′|S = 0, proceeding as done before, we obtain the claim.
Moreover, with analogous proof of Theorem 16 but applying Theorem 13 instead of

Theorem 12 and considering as B ′ the subspace of distributions of H0,−s(Ωh) defined
on test functions ϕ ∈ C∞([0, h[×Ω0) such that L ′ϕ · n′|S = 0, the following results
holds.

Theorem 17 Let f ∈ Hr
loc(Ω), with r ≥ 2. Then, for every h > 0 there exists

v ∈ H0,s(Ωh), with 0 ≤ s ≤ r such that

(v, t Pu) = ( f , u), ∀u ∈ C∞
0 (Ω) : supp u ⊆ Ωh, L ′u · n′|S = 0. (67)

Integrating by parts (67), as done before, it follows that there exists v ∈ Hr (Ωh)

such that

{
Pv = f , in Ωh,

v|Ω0 = 0, dv
dn |Ω0 = 0, D′v · n′|S = 0.

with f ∈ Hr
loc(Ω).

8 Uniqueness of the solution

In order to establish the uniqueness of a solution to the problem (1), we prove, as a
first step, the existence of a solution to the following problems

{
t Pw = f , in Ωh =]0, h[×Ω0

w(h, x ′) = 0, ∂x0w(h, x ′) = 0, D′w · n′|S = 0
(68)

and

{
t Pw = f , in Ωh =]0, h[×Ω0

w(h, x ′) = 0, ∂x0w(h, x ′) = 0, L ′w · n′|S = 0
(69)
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with f ∈ Hr (Ωh). To this aim, we can proceed in analogous way as done in the proofs
of the theorems in Sects. 4, 5, 6, 7 considering, for every x0 ∈]0, h[,

Ωx0,k =
{
x ∈ Ω : x0 ∈]x0 − k, x0[×Ω0

}
,

Ωx0,k,η =
{
x ∈ Ωx0,k :

(
1
5
+ η

)
α(x ′)+

(
4
5

− η

)
x0 ≤ x0 ≤ ηx0 + (1 − η)α(x ′)

}
,

Ω ′
x0,k,η =

{
x ∈ Ωx0,k,η :

∣∣∂x1α(x
′)
∣∣ ≥ 1

}
,

Ω ′
x0,k,η,η′ =

{
x ∈ Ωx0,k,η :

∣∣∂x1α(x
′)
∣∣ ≥ 1 − η′} ,

where 4
5 < η < 1 and 0 < k < h, and the operator t P instead of the operator P . With

these modifications and under assumptions (i), (ii) and (iii), we obtain that there exist
solutions to problems (68) and (69), with f ∈ Hr

loc(Ω0). As a consequence, there
exists a solution w ∈ C∞(Ωh) to the problem

{
t Pw = 0, in Ωh,

w(h, x ′) = 0, ∂x0w(h, x ′) = ϕ(x ′), D′w · n′|S = 0,
(70)

and exists a solution w ∈ C∞(Ωh) to the problem

{
t Pw = 0, in Ωh,

w(h, x ′) = 0, ∂x0w(h, x ′) = ϕ(x ′), L ′w · n′|S = 0
(71)

with ϕ ∈ C∞
0 (Ω0).

Now, if v ∈ Hr
loc(Ωh′), with r ≥ 2, is a solution to the problem

{
Pv = 0, in Ωh′ =]0, h′[×Ω0, with h′ ≥ h,
v(0, x ′) = 0, ∂x0v(0, x

′) = 0, L ′v · n′|S = 0,

and w is a solution to (70), it results

0 = (v, t Pw) = (Pv,w)+
∫

Ω0

v(h, x ′)ϕ(x ′)dx ′ =
∫

Ω0

v(h, x ′)ϕ(x ′)dx ′.

For the arbitrary of ϕ, it follows that v(h, x ′) = 0. Hence, we get that v = 0 in
Ωh′ =]0, h′[×Ω0. Moreover, for the arbitrary of h′, it results that, under assumptions
(i) and (ii), the problem

{
Pv = f , in Ω =]0,+∞[×Ω0,

v|Ω0 = 0, ∂x0v|Ω0 = 0, L ′v · n′|S = 0,
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with f ∈ H2
loc(Ω), admits a unique solution v ∈ Hr

loc(Ω), with r ≥ 2. Instead, let
v ∈ Hr

loc(Ω) be a solution to the problem

{
Pv = 0, in Ω =]0, h′[×Ω0, with h′ ≥ h
v(0, x ′) = 0, ∂x0v(0, x

′) = 0, D′v · n′|S = 0,

and w is a solution to (71), it follows

0 = (v, t Pw) = (Pv,w)+
∫

Ω0

v(h, x ′)ϕ(x ′)dx ′ =
∫

Ω0

v(h, x ′)ϕ(x ′)dx ′.

Therefore, under assumptions (i), (ii) and (iii), also the problem

{
Pv = f , in Ω =]0,+∞[×Ω0,

v|Ω0 = 0, ∂x0v|Ω0 = 0, D′v · n′|S = 0,

with f ∈ Hr
loc(Ω), admits a unique solution.
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