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Abstract
The paper concerns the study of the Cauchy–Dirichlet problem for a class of hyperbolic 
second-order operators with double characteristics in presence of transition in a domain 
of ℝ3 . Firstly, we establish some a priori local and global estimates. Then, we obtain some 
existence results.
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1 Introduction

Let Ω =]0,+∞[×Ω0 , where Ω0 is an open set of ℝ2 with enough smooth boundary (for 
example Ω0 is of class Cm , with m ≥ 2 ). Let us set S = [0,+∞[×�Ω0 , where �Ω0 is the 
boundary of Ω0 . Let us consider the following class of hyperbolic second-order operators 
with double characteristics in presence of transition:

where x = (x0, x1, x2) , Im a2(x) = (x0 − �(x�))ã2(x) , with ã2(x) real function, Dxj
=

1

i
�xj , 

j = 0, 1, 2 , the coefficients belong in C∞(Ω̃) , Ω̃ = [0,+∞[×Ω̃0 , with Ω̃0 an open set con-
taining strictly Ω0 , and � is a real function. Let x� = (x1, x2) , � = (�0, �1, �2) = (�0, �

�) , 
where we set �� = (�1, �2) . Let

(1)P = D2
x0
− D2

x1
− (x0 − �(x1, x2))

2D2
x2
+

2∑

j=0

aj(x)Dxj
+ b(x), in Ω,

p(x0, x
�, �) = −�2

0
+ �2

1
+ (x0 − �(x�))2�2

2
+

1

i

2∑

j=0

aj(x)�j + b(x)
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be the symbol of P, let

be the characteristic set and let

be the fundamental matrix of P at � . The spectrum of Fp(�) , denoted by Spec(Fp(�)) , has 
an important rule to study the well-posedness of the Cauchy–Dirichlet problem associated 
to the operator P. In particular, it results (see [10])

The fundamental matrix of P at � has only pure imaginary eigenvalues with a possi-
ble exception of a pair of nonzero real eigenvalues ±� (see [9–11]). If Fp(�) has a pair 
of nonzero real eigenvalues, P is called effectively hyperbolic at � . If Fp(�) has only pure 
imaginary eigenvalues and if there are only Jordan blocks of dimension 2 in the Jordan 
normal form of Fp(�) corresponding to the eigenvalue 0, i.e., KerFp(�)

2 ∩ ImFp(�)
2 = {0} , 

P is called non-effectively hyperbolic of type 1 at � . Instead, if Fp(�) has only pure imagi-
nary eigenvalues and if there is only a Jordan block of dimension 4 and no block of 
dimension 3 in the Jordan normal form of Fp(�) corresponding to the eigenvalue 0, i.e., 
KerFp(�)

2 ∩ ImFp(�)
2 is 2-dimensional, P is called non-effectively hyperbolic of type 2 at 

� . Furthermore, let

(see [9]). It is easy to deduce

We say that we have a transition exactly when at least two among the above sets are 
nonempty.

The paper continues the study on the following Cauchy–Dirichlet problem

started in [7]. In fact, in [7], several a priori estimates of local or global nature in Sobolev 
spaces with general exponent s ≤ 0 for the class of second-order hyperbolic operators (1) 
are proved. Here, we establish some existence results for the Cauchy–Dirichlet problem 
(2). To this aim, we need to obtain other a priori estimates in Sobolev spaces with exponent 
s ≤ 0 . The proofs of such estimates make use of delicate variational techniques because of 
the degeneration on the characteristic set and of the transition between Σ− , Σ0 and Σ+ . More 
precisely, the function � in (1) depends on the variables x1 and x2 . As a consequence, the 
coefficient x0 − �(x�) degenerates on the characteristic set with respect to all the variables. 
Setting � = x0 − �(x�) , if |𝜕x1𝛼(x

�)| < 1 , � = 0 and �0 = �1 = 0 , then Fp(�) has two distinct 
nonzero real eigenvalues. If |𝜕x1𝛼(x

�)| > 1 , � = 0 and �0 = �1 = 0 , Fp(�) has two nonzero 

Σ =
{
� = (x0, x

�, �) ∈ T∗Ω ∶ p(�) = 0, ∇p(�) = 0
}

Fp(�) =
1

2

(
p��
x�
(�) p��

��
(�)

−p��
xx
(�) − p��

�x
(�)

)
, ∀� ∈ Σ

z ∈ Spec(Fp(�)) ⇔ −z, z ∈ Spec(Fp(�)).

Σ+ ={� ∈ Σ ∶ P is effectively hyperbolic at �},

Σ− ={� ∈ Σ ∶ P is non-effectively hyperbolic of type 1 at �},

Σ0 ={� ∈ Σ ∶ P is non-effectively hyperbolic of type 2 at �},

Σ = Σ− ⊔ Σ0 ⊔ Σ+.

(2)
{

Pu = f , in Ω =]0,+∞[×Ω0

u|�Ω = 0,
du

dn
|Ω0

= 0, u|S = 0
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imaginary eigenvalues. In conclusion, let Σ be the set of points � = (x0, x
�, �) of Σ such that 

� = 0 and �0 = �1 = 0 . We have that � ∈ Σ+ if � ∈ Σ and |𝜕x1𝛼(x
�)| < 1 , � ∈ Σ− if � ∈ Σ 

and |𝜕x1𝛼(x
�)| > 1 , and � ∈ Σ0 if � ∈ Σ and |�x1�(x

�)| = 1 . Hence, even if we study the 
special class of operators (1), the transition from effectively hyperbolic to non-effectively 
hyperbolic occurs. A class more general of hyperbolic second-order operators with dou-
ble characteristics is analyzed in [6]. It is worth to underline that the coefficient x0 − �(x�) 
does not contain the parameter � very helpful to prove global estimates near the boundary 
of Ω in [5]. Finally, we remark that the operator (1) contains the first-order terms and the 
zero-order term, which have an important rule to study the well-posedness of the prob-
lem. Instead in [4], the subprincipal term is identically zero; consequently, the Hörman-
der–Ivrii–Petkov condition is automatically verified.

Several scholars considered the Cauchy problem either for effectively or non-effectively 
hyperbolic operators with double characteristics (see, for instance, [8, 10–16]). In [9], 
another class of hyperbolic second-order operators with double characteristics is analyzed. 
In particular, the C∞ well-posedness of the Cauchy problem and Carleman estimates for 
non-effectively hyperbolic operators have been obtained. In [17], some energy estimates 
for a different class of hyperbolic second-order operators are established. Moreover, the 
C∞ well-posedness of the Cauchy problem for non-effectively hyperbolic operators is stud-
ied. We underline that in [9, 17] the Cauchy problem for a class of operators in a form 
more general then (1) is analyzed, but a priori estimates only when Σ = Σ− ⊔ Σ0 are estab-
lished. Instead, thanks to variational and pseudodifferential techniques different from the 
ones used in [9, 17], we are able to examine the mixed Cauchy–Dirichlet problem and we 
prove a priori estimates when Σ = Σ− ⊔ Σ0 ⊔ Σ+ or Σ = Σ− ⊔ Σ0 or Σ = Σ0 ⊔ Σ+ or Σ = Σ− 
or Σ = Σ+ . Moreover, in the class of operators (1), studied also in [1–3], both the case in 
which Fp(�) has two distinct real eigenvalues and the case in which all the eigenvalues are 
purely imaginary numbers can occur.

We set �(x) = x0 − �(x�) , g(x�) = �(x�)

�x1�(x
�)
 , h(x�) = 1 − �x1g(x

�) , in Ω̃,

Moreover, let B = (bhk)h,k=0,1 be the quadratic matrix-function whose elements are given 
by:

where ã0 and ã1 are the imaginary parts of a0 and a1 , respectively.
We suppose 

 (i) g, h ∈ C∞(Ω�
0
) , h(x�) ∈ [h1, h2] , ∀x� ∈ Ω�

0
 , with 0 < h1 < h2 < 4;

 (ii) the matrix-function B is positive definite in Γ� , namely there exists k > 0 such that 
B(x�)� ⋅ � ≥ k‖�‖2 , ∀� = (�1, �2) ≠ (0, 0) , ∀x ∈ Γ�;

 (iii) g(x�)n1|S ≥ 0 , for every x� ∈ Ω�
0
∩ �Ω0.

We remark that if ã0 = ã1 = 0 , on Γ� , assumption (ii) is verified.

Γ ={x ∈ Ω̃ ∶ �(x) = 0},

Γ� ={x ∈ Γ ∶ �(x�) ≥ 0},

Ω�
0
={x� ∈ Ω̃0 ∶ �(x�) ≥ 0}.

b00(x) = h(x�) − 2�(x�)ã0(x), ∀x ∈ Ω̃,

b01(x) = b10(x) = −g(x�)ã0(x) − �(x�)ã1(x), ∀x ∈ Ω̃,

b11(x) = h(x�) − 2g(x�)ã1(x), ∀x ∈ Ω̃,
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The main goal of the paper is to prove the following results:

Theorem 1 Let (i), (ii) and (iii) be satisfied. If f ∈ L2
loc
(Ω) , there exists w ∈ L2

loc
(Ω) such 

that

where Ω = [0,+∞[×Ω0.

Theorem 2 Let (i), (ii) and (iii) be satisfied. Let f ∈ Hr
loc
(Ω) , with r ≥ 2 , the Cauchy–

Dirichlet problem

admits a solution u ∈ Hr
loc
(Ω ⧵ �Ω0).

Let us consider some operators which satisfy assumptions (i), (ii) and (iii) and for 
which we have a transition.

Example 1 Let �(x�) = x3
1
ekx2 be functions in an open set Ω̃0 of ℝ2 contained (0,  0). Let 

P = D(2)
x0

− D(2)
x1

− (x0 − �(x�))2D(2)
x2

− ia0Dx0
 , where a0 > 0 . It results g(x�) = 1

3
x1 and 

h(x�) =
2

3
 , then assumption (i) is verified for every Ω̃0 . Assumption (ii) is satisfied for every 

�Ω0 ⊆] − ∞,
2

a0
] ×ℝ . Moreover, assumption (iii) is fulfilled if n1 on �Ω0 ∩ Ω�

0
 is positive 

(for example if Ω̃0 is a circle of center in (0, 0)). Then, we can choose Ω̃0 such that |�x1�(x
�)| 

admits values either less than or equal than or greater than 1. As a consequence, it follows 
Σ = Σ− ⊔ Σ0 ⊔ Σ+ , with Σ− , Σ0 and Σ+ nonempty.

Example 2 Now, let us consider �(x�) = (ax1 + bx2 + c)2 , with a, b, c ∈ ℝ , a, b ≠ 0 , in an 
open set Ω̃0 of ℝ

2 contained (0,  0). Let 
P = D(2)

x0
− D(2)

x1
− (x0 − �(x�))2D(2)

x2
+ a0Dx0

− ia1(x)(x0 − �(x�))(Dx1
+ Dx2

) , where a0 ∈ ℝ 

and a1 ∈ C∞ . It results g(x�) =
ax1 + bx2 + c

2a
 and h(x�) = 1

2
 . Hence, assumption (i) is 

always verified. Moreover, we can choose Ω̃0 such that assumption (iii) is fulfilled and both 
|�x1�(x

�)| ≤ 1 and |�x1�(x
�)| ≥ 1 hold. Therefore, the existence of a solution is ensured in 

presence of transition.

The paper is organized as follows. In Sect. 2, some preliminary notations are recalled. 
In Sect. 3, a priori estimates obtained in [7] are referred. Section 4 is devoted to prove a 
priori estimates under the assumption |�x1�(x

�)| ≤ 1 . Instead, Sect. 5 concerns estimates 
under the assumption |�x1�(x

�)| ≥ 1 . In Sect. 6, conclusive estimates in L2 are proved. In 
Sect. 7, estimates in Sobolev spaces with s < 0 are established making use of the pseu-
dodifferential operator theory. Section 8 concerns the study of some global estimates. 
Finally, Sects. 9 and 10 deal with the proofs of Theorems 1 and 2, respectively.

(w, tPu) = (f , u), ∀u ∈ C∞
0
(Ω) ∶ u|S = 0,

{
Pu = f , in Ω =]0,+∞[×Ω0

u|�Ω = 0,
du

dn
|Ω0

= 0, u|S = 0
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2  Notations and preliminaries

Let � = (�0, �1, �2) ∈ ℕ
3
0
 . We indicate the derivative of order |�| by �� , the derivative of 

order h with respect to xj by �h
xj
 and the derivative of order h with respect to xj and xp by 

�h
xj ,xp

.
We indicate the L2-scalar product, the L2-norm and the Hr-norm by (⋅, ⋅) , ‖ ⋅ ‖ and ‖ ⋅ ‖Hr 

( r ∈ ℕ0 ), respectively. We indicate the external normal versor to the boundary �Ω by 
n = (n0, n1, n2).

Let C∞
0
(Ω) be the space of restrictions of functions belonging to C∞

0
(ℝ3) on Ω . For each 

K ⊆ Ω compact set, let C∞
0
(K) be the set of functions � ∈ C∞

0
(Ω) having support contained 

in K. Set Ωk = [0, k[×Ω0 , let us introduce

Moreover, let C∗∞
0

(Ω) be the space of functions u ∈ C∞
0
(Ω) such that 

�1�x0u(0, x
�) = �2u(0, x

�) , where �1, �2 ∈ ℝ . Consequently, we can introduce C∗∞(Ω̃) 
and C∗∞(Ωk) . It is worth to remark that if u ∈ C∞

0
(Ω) , then u ∈ C∗∞

0
(Ω0) . Further-

more, if u(x0, x�) = u1(x
�)u2(x0) , with u1 ∈ C∞

0
(Ω0) , u|�Ω0

= 0 and u2 ∈ C∞
0
([0, k[) then 

u ∈ C∗∞
0

(Ωk).
Let S(ℝ3) be the space of rapidly decreasing functions. Let S(Ω) be the space of restric-

tions of functions belonging to S(ℝ3) on  Ω.
Let Ω =]0,+∞[×Ω0 and let s ∈ ℝ , the norm in H0,s is given by

where the Fourier transform is done only with respect to the variable x′ . Let 
As ∶ C∞

0
(Ω) → C∞(Ω) be the pseudodifferential operator defined by

For every �(x�) ∈ C∞
0
(Ω0) , the operator �Asu extends as a linear continuous opera-

tor from H0,r
comp.

(Ω) into H0,r−s

loc
(Ω) , where r, s ∈ ℝ . In particular, in Ωk = [0, k[×Ω0 , 

for k > 0 , let H0,s(Ωk) be the space of u ∈ H0,s(Ωk) such that supp u ⊆ Ωk . Moreover, if 
supp 𝜑 ⊆ Ω0 ⧵ supp u , then �Asu is a regularizing operator with respect to the variable x′ . 
It results

The norms ‖u‖H0,s(Ω) and ‖Asu‖L2(Ω) are equivalent for any s ∈ ℝ.
Let s ∈ ℝ and p ≥ 0 . Let Hp,s(ℝ3) be the space of all the distributions on ℝ3 such that

C∞
0
(Ωk) =

{
u ∈ C∞

0
(Ω) ∶ supp u ⊆ [0, k[×Ω0

}
.

‖u‖2
H0,s =

1

(2𝜋)2 ∫
+∞

0

dx0 ∫
ℝ2

(1 + �𝜉��2)s��u(x0, 𝜉�)�2d𝜉�,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ [0,+∞[×Ω0,

Asu =
1

(2𝜋)2 ∫ℝ2

eix
�
⋅𝜉� (1 + |𝜉�|2)

s

2�u(x0, 𝜉
�)d𝜉�,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ [0,+∞[×Ω0.

‖𝜑Asu‖H0,r ≤ c‖u‖H0,r� , ∀r, r� ∈ ℝ, u ∈ C∞(Ω) ∶ supp u ⊆ [0,+∞[×Ω0.

‖u‖2
Hp,s(ℝ3)

=
1

(2𝜋)2

�

�h�≤p�ℝ3

(1 + �𝜉��2)s�𝜕h
x0
�u(x0, 𝜉

�)�2dx0d𝜉� < +∞.
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Let Hp,s(Ω) be the space of restrictions of elements of Hp,s(ℝ3) on Ω endowed with 
the norm

In the same way, the space Hp,s(Ωk) can be introduced.
At last, we consider the transposed operator of the operator P:

3  Some known preliminary results

First of all, we recall a priori estimate for the solution to the problem (2) (see 
[2], Lemma 3.1).

Lemma 1 Let u ∈ S(Ω) and let p, �0, �1, �2 ∈ ℕ0 . Then

Moreover, we have the following preliminary result (see [7], Lemma 3.2).

Lemma 2 Let u ∈ S(Ω) , it results

The next result holds (see [7], Lemma 3.3).

Lemma 3 For every 𝜀, 𝛿 > 0 there exists k > 0 such that, if

it results

We present a priori estimate (see [7], Theorem 3.4).

Theorem 3 Let (i) and (iii) be satisfied. Then, there exist k > 0 and c > 0 such that

‖u‖Hp,s(Ω) = inf
U ∈ Hp,s(ℝ3)

U�Ω = u

‖U‖Hp,s(ℝ3).

tP = − �2
x0
+ �2

x1
+ (x0 − �(x�))2�2

x2
− 4(x0 − �(x�))(�x2�)�x2

−
1

i

2∑

j=0

aj(x)�xj −
1

i

2∑

j=0

�xjaj(x) − 2(�x2�)
2 + b(x).

(3)‖x
p

2

0
��0,�1,�2u‖ ≤ 2

p + 1
‖x

p+2

2

0
��0+1,�1,�2u‖.

�
Ω0

�u(0, x�)�2dx� ≤ 4‖x0�x0u‖‖�x0u‖.

Ik,𝛿 =
{
x ∈ Ω ∶ x0 < k, |x0 − 𝛼(x�)| > 𝛿

}
,

(4)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ik,𝛿 , u�S = 0.
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Moreover, we recall the following result (see [7], Theorem 3.5).

Theorem 4 Let (i) and (iii) be satisfied. For every 𝜀 > 0 there exist k > 0 and a neighbor-
hood Ix′ in Ω0 ∩ Γ such that

Let x0 > 0 and let k > 0 , we denote by Ωx0,k
=]x0, x0 + k[×Ω0 . Let us show the follow-

ing preliminary result (see [7], Lemma 4.1).

Lemma 4 Let u ∈ S(Ω) such that �x0u|Ω0
= 0 , let p, �0, �1, �2 ∈ ℕ and x0 > 0 . It results

We consider another preliminary lemma (see [7], Lemma 4.2).

Lemma 5 For every 𝜀, 𝛿 > 0 and x0 > 0 , there exists k > 0 such that, setting

it results

We recall the following preliminary result (see [7], Lemma 4.3).

Lemma 6 Let (i), (ii) and (iii) be satisfied. Let x0 > 0 , for every 𝜀 > 0 there exists k, 𝛿 > 0 
such that, setting

it results

At last, we present the following result (see [7], Theorem 4.4).

Theorem 5 Let (i), (ii) and (iii) be satisfied. Let x0 > 0 . There exist k > 0 and c > 0 such 
that

(5)
‖�x0u‖ + ‖�x1u‖ + ‖(x0 − �(x�))�x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∗∞
0

(Ωk) ∶ u�S = 0.

‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,
∀u ∈ C∗∞

0
(Ωk) ∶ supp u ⊆ [0, k[×Ix� , u�S = 0.

‖(x0 − x0)
p

2 ��0,�1,�2u‖ ≤ 2

p + 1
‖(x0 − x0)

p+2

2 ��0+1,�1,�2u‖.

Ik,𝛿 =
{
x ∈ Ω ∶ x0 ∈]x0, x0 + k[, |x0 − 𝛼(x�)| > 𝛿

}
,

‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ik,𝛿 , u�S = 0.

Jk,𝛿 =
{
x ∈ Ω ∶ x0 ∈]x0, x0 + k[, |x0 − 𝛼(x�)| < 𝛿

}
,

‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀
�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Jk,𝛿 , u�S = 0.
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4  Estimates under the assumption |@
x1
˛(x �)| ≤ 1

Let x0 ≥ 0 , let us denote by

The following result holds.

Theorem 6 Let (i), (ii) and (iii) be satisfied. Let us assume that there exist two positive 
numbers k′ and � such that |�x1�(x

�)| ≤ 1 on Ω0 ∩ Jk� ,�,0 . Then, for every 𝜀 > 0 there exists 
0 < k ≤ k′ such that

Proof Let us consider the following inner products

By means of integrations by parts, for every u ∈ C∞
0
(Ω) such that supp u ⊆ Ωk� ∩ Jk� ,𝛿,0 and 

u|S = 0 , we have

From which it follows

We denote by

Since (x0 − 𝛼(x�))
(

5

2
x0 −

1

2
𝛼(x�)

)
> 0 , in Ωk� ⧵Ωk�,

1

5

 , by (7) one has

‖�x0u‖ + ‖�x1u‖ + ‖(x0 − �(x�))�x2u‖ + ‖u‖ ≤ c‖ tPu‖,
∀u ∈ C∞

0
(Ωx0,k

) ∶ u�S = 0.

Jk,𝛿,x0 =
{
x ∈ Ω ∶ x0 ∈ [x0, x0 + k[, |x0 − 𝛼(x�)| < 𝛿

}
.

(6)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωk = [0, k[×Ω0, u�S = 0.

( tPu, x0�x0u) + (x0�x0u,
tPu).

‖�x0u‖
2 + ‖�x1u‖

2 + ‖(x0 − �(x�))�x2u‖
2

+ 2(x0(x0 − �(x�))�x2u, �x2u) − 4(x0(x0 − �(x�))�x2u, �x0u)

= ( tPu, x0�x0u) + (x0�x0u,
tPu) − ( t(P − P2)u, x0�x0u) − (x0�x0u,

t(P − P2)u).

(7)

‖�x0u‖
2 + ‖�x1u‖

2 +
1

2
‖(x0 − �(x�))�x2u‖

2

+

�
(x0 − �(x�))

�
5

2
x0 −

1

2
�(x�)

�
�x2u, �x2u

�

− 4(x0(x0 − �(x�))�x2u, �x0u)

= ( tPu, x0�x0u) + (x0�x0u,
tPu) − ( t(P − P2)u, x0�x0u)

− (x0�x0u,
t(P − P2)u).

Ω
k�,

1

5

=

{
x ∈ Ωk� ∶

1

5
�(x�) ≤ x0 ≤ �(x�)

}
.
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where we denoted by (⋅, ⋅)Ω
k
�
,
1
5

 the inner product on Ω
k
�
,
1

5

 . Furthermore, it results

In Ω
k�,

1

5

 , we consider the following inner products

If u is identically zero on Γ� , where Γ� is the surface x0 = ��(x�) , with 0 < 𝜂 ≤ 1

5
 , inte-

grating by parts, we have

By (8) and (9), if |�x1�(x
�)| ≤ 1 , on Ω0 ∩ Jk� ,�,0 , and k′ is small enough, the claim follows 

assuming that u is identically zero on Γ�.
Let u ∈ C∞

0
(Ω) such that supp u ⊆ Ωk� and u|S = 0 . Let � be a function of class C∞ such 

that �(t) = 1 , for t ≥ � , and �(t) = 0 , for 0 ≤ t ≤ �

2
 . Rewriting (9) for u�

(
x0

�(x�)

)
 and adding 

(8), there exists 0 < k ≤ k′ such that

Making use of the previous inequality and Lemma 3 with k small enough, the claim is 
achieved.   ◻

We set

with x0 > 0 and k > 0 , and we prove the following result.

(8)

‖�x0u‖
2 + ‖�x1u‖

2 +
1

2
‖(x0 − �(x�))�x2u‖

2

≤ −

�
(x0 − �(x�))

�
5

2
x0 −

1

2
�(x�)

�
�x2u, �x2u

�

Ω
k
�
,
1
5

+ 4�(x0(x0 − �(x�))�x2u, �x0u)�
+ 2‖x0 tPu‖‖�x0u‖ + 2‖x0 t(P − P2)u‖‖�x0u‖,

‖�x0u‖
2 + ‖�x1u‖

2 + ‖(x0 − �(x�))�x2u‖
2

≤ −2
�
x0(x0 − �(x�))�x2u, �x2u

�
Ω

k
�
,
1
5

+ 4‖x0(x0 − �(x�))�x2u‖‖�x0u‖

+ 2‖x0 tPu‖‖�x0u‖ + 2‖x0 t(P − P2)u‖‖�x0u‖
≤ 2

�
�(x�)(x0 − �(x�))�x2u, �x2u

�
Ω

k
�
,
1
5

+ 4‖x0(x0 − �(x�))�x2u‖‖�x0u‖

+ 2‖x0 tPu‖‖�x0u‖ + 2‖x0 t(P − P2)u‖‖�x0u‖.

(�x0u,
tPu) + ( tPu, �x0u).

(9)

2‖(�(x�) − x0)
1

2 �x2u‖
2 − 4((x0 − �(x�))�(x�)�x2u, �x0u)

+ ∫
Γ

�
(�x0u)

2 + 2�x1�(x
�)�x0u �x1u + (�x1u)

2
�
d�

= ( tPu, �x0u) + (�x0u,
tPu) − ( t(P − P2)u, �x0u) − (�x0u,

t(P − P2)u).

‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωk ∩ Jk,𝛿,0, u�S = 0.

Ωx0,k
= [x0, x0 + k[×Ω0,
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Theorem 7 Let (i), (ii) and (iii) be satisfied. Let us assume that there exist two positive 
numbers k′ an � such that |�x1�(x

�)| ≤ 1 , on Ωx0
∩ Jk�,�,x0 , where Ωx0

 is the part of the plane 
x0 = x0 in Ωx0,k

 . Then, for every 𝜀 > 0 there exists 0 < k ≤ k′ such that

Proof Let u ∈ C∞
0
(Ω) such that supp u ⊆ Ωx0,k

� ∩ Jk�,𝛿,x0 and u|S = 0 , integrating by parts in 
the following inner products

we obtain

Taking into account that 1

2
‖(x0 − 𝛼(x�))𝜕x2u‖

2 + 2((x0 − x0)(x0 − 𝛼(x�))𝜕x2u, 𝜕x2u) < 0 , if 
x0 ≤ 1

5
�(x�) + 4

5
x0 or x0 ≥ �(x�) , it results

where Ωx0,k
� ,� =

{
x ∈ Ωx0,k

� ∶ ��(x�) + (1 − �)x0 ≤ x0 ≤ �(x�)
}
 , with 0 < 𝜂 ≤ 1

5
.

In Ωx0,k
� ,� , we consider the following inner products

Proceeding as done above, we obtain

where Γ�,(1−�)x0
 is the surface x0 = ��(x�) + (1 − �)x0 , with 0 < 𝜂 ≤ 1

5
 . Making use of (11) 

and (12), we deduce the claim assuming that the gradient of u with respect to x0 and x1 is 
zero on Γ�,(1−�)x0

.

(10)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

, u�S = 0.

( tPu, (x0 − x0)�x0u) + ((x0 − x0)�x0u,
tPu),

‖𝜕x0u‖
2 + ‖𝜕x1u‖

2 + ‖(x0 − 𝛼(x�))𝜕x2u‖
2

+ 2((x0 − x0)(x0 − 𝛼(x�))𝜕x2u, 𝜕x2u) + 4(x0(x0 − 𝛼(x�))𝜕x2𝛼(x
�)𝜕x2u, 𝜕x0u)

= ( tPu, (x0 − x0)𝜕x0u) + ((x0 − x0)𝜕x0u,
tPu) − ( t(P − P2)u, (x0 − x0)𝜕x0u)

− ((x0 − x0)𝜕x0u,
t(P − P2)u), ∀u ∈ C∞

0
(Ω) ∶ supp u ⊆ Ωx0,k

, u�S = 0.

(11)

‖�x0u‖
2 + ‖�x1u‖

2 +
1

2
‖(x0 − �(x�))�x2u‖

2

≤ −
5

2

�
(x0 − �(x�))

�
x0 −

1

5
�(x�) −

4

5
x0

�
�x2u, �x2u

�

Ωk,h,�

+ ( tPu, (x0 − x0)�x0u) + ((x0 − x0)�x0u,
tPu) − ( t(P − P2)u, (x0 − x0)�x0u)

− ((x0 − x0)�x0u,
t(P − P2)u),

( tPu, �x0u) + (�x0u,
tPu).

(12)

2((x0 − 𝛼(x�))𝜕x2u, 𝜕x2u) − 4((x0 − 𝛼(x�))𝜕x2u, 𝜕x0u)

= −∫
Γ

[
(𝜕x0u)

2 + 2𝜕x1𝛼(x
�)𝜕x0u 𝜕x1u + (𝜕x1u)

2
]
d𝜎

+ ∫
Γ𝜂,(1−𝜂)x̄0

[
(𝜕x0u)

2 + 2𝜕x1𝛼(x
�)𝜕x0u 𝜕x1u + (𝜕x1u)

2
]
d𝜎

+ ( tPu, 𝜕x0u) + (𝜕x0u,
tPu) − ( t(P − P2)u, 𝜕x0u) − (𝜕x0u,

t(P − P2)u),
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Let u be a function belonging to C∞
0
(Ω) such that supp u ⊆ Ωx0

 and u|S = 0 . Let � be a 
function of class C∞ such that �(t) = 1 , if |t| ≥ � , and �(t) = 0 , if |t| < 𝜂

2
 . Rewriting (12) 

for u�
(

x0

�(x�)

)
 and adding (11), there exists 0 < k ≤ k′ such that

Finally, the claim follows from the previous inequality and by using Lemma 5 for k 
small enough.   ◻

5  Estimates under the assumption |@
x1
˛(x �)| ≥ 1

For every x0 ≥ 0 , we set

The next result holds.

Theorem  8 Let (i), (ii) and (iii) be satisfied. Let us assume that |�x1�(x
�)| ≥ 1 , on Γx0

 . 
Then, there exist k > 0 and c > 0 such that

Moreover, for every 𝜀 > 0 there exists k > 0 such that

Proof Let d > 0 and let us set

where gd(x�) =
�(x�) + d

�x1�(x
�)

 , and consider the sum of the inner products

For every u ∈ C∞
0
(Ω) such that u|S = 0 , it results:

Let us integrate by parts in the first inner products of the principal part in (15)

‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ 𝜀‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

∩ Jk,𝛿,x0 , u�S = 0.

Γx0
= {x ∈ Γ ∶ �(x�) = x0}.

(13)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

= [x0, x0 + k[×Ω0, u�S = 0,

(14)
‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀

�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

, u�S = 0.

Ad = (x0 + d)�x0 + gd(x
�)�x1 ,

( tPu,Adu) + (Adu,
tPu) =( tP2u,Adu) + (Adu,

tP2u) + ( tP1u,Adu) + (Adu,
tP1u)

+ ( tP0u,Adu) + (Adu,
tP0u).

(15)

( tP2u,Adu) + (Adu,
tP2u)

= ( tP2u, (x0 + d)�x0u) + ((x0 + d)�x0u,
tP2u)

+ ( tP2u, gd(x
�)�x1u) + (gd(x

�)�x1u,
tP2u).
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Moreover, integrating by parts in the second inner products in (15), we have

Since u|S = 0 , it results

Making use of the assumption (iii), it follows

Denoting the tangential derivative of u along the section of S of the equal height by �u
��

 , 
we obtain

where we took into account that �u
��

= 0 , since u = 0 on S.

(16)

2( tP2u, (x0 + d)�x0u)

= (�x0u, �x0u) + (�x1u, �x1u) +
(
(x0 − �(x�))2�x2u, �x2u

)

+ 2
(
(x0 − �(x�))(x0 + d)�x2u, �x2u

)

+ 4
(
(x0 − �(x�))�x2�(x

�)�x2u, (x0 + d)�x0u
)

+ ∫
Ω0

(x0 + d)
[
(�x0u)

2 + (�x1u)
2 + (x0 − �(x�))2(�x2u)

2
]
dx�.

(17)

2( tP2u, gd(x
�)�x1u)

= −(�x0u, �x1gd(x
�)�x0u)

+ 4((x0 − �(x�))�x2�(x
�)gd(x

�)�x2u, �x1u)

− 2
(
(x0 − �(x�)2�x2gd(x

�)�x2u, �x1u
)

+
(
(x0 − �(x�))2�x1gd(x

�)�x2u, �x2u
)

− 2
(
(x0 − �(x�))�x1�(x

�)gd(x
�)�x2u, �x2u

)

+ ∫S

n1gd(x
�)(�x0u)

2d� + ∫S

n1gd(x
�)(�x1u)

2d�

+ 2∫S

n2(x0 − �(x�))2gd(x
�)�x0u�x1ud�

− ∫S

n1(x0 − �(x�))2gd(x
�)(�x2u)

2d�

+ ∫
Ω0

2gd(x
�)�x0u�x1udx

�.

(18)∫S

n1gd(x
�)(�x0u)

2d� = 0.

(19)�S

n1gd(x
�)(�x1u)

2d� ≥ 0.

(20)

2�S

n2(x0 − �(x�))2gd(x
�)�x2u�x1ud� − �S

n1(x0 − �(x�))2gd(x
�)(�x2u)

2d�

= −2�S

(x0 − �(x�))
(
�u

��

)
gd(x

�)�x2ud� + �S

n1(x0 − �(x�))2gd(x
�)(�x2u)

2d�

= �S

n1(x0 − �(x�))2gd(x
�)(�x2u)

2d� ≥ 0,
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Adding (16) and (17) and making use of (18), (19) and (20), we have

By assumption (i), there exist two positive numbers k and � such that, for d > 1

h1
|g(x�)| , 

where x� ∈ Ω0 ∩ Jk,�,x0 , it results (x0 + d)2 − (gd(x
�))2 ≥ 0 and, hence,

By using (21), we deduce

Now, we consider the first-order terms. Integrating by parts, it results

(21)

2( tP2u,Adu)

≥ ‖h
1

2 (x�)�x0u‖
2 + ‖h

1

2 (x�)�x1u‖
2 + ‖(4 − h(x�))

1

2

�
x0 − �(x�)

�
�x2u‖

2

+ 4
�
(x0 − �(x�))�x2�(x

�)(x0 + d)�x2u, �x0u
�

+ 4
�
(x0 − �(x�))�x2�(x

�)gd(x
�)�x2u, �x1u

�

− 2
�
(x0 − �(x�))2�x2gd(x

�)�x2u, �x1u
�

+ �
Ω0

�
(x0 + d)

�
(�x0u)

2 + (�x1u)
2 + (x0 − �(x�))2(�x2u)

2
�
+ 2gd(x

�)�x0u�x1u
�
dx�

= ‖h
1

2 (x�)�x0u‖
2 + ‖h

1

2 (x�)�x1u‖
2 + ‖(4 − h(x�))

1

2

�
x0 − �(x�)

�
�x2u‖

2

+ 4
�
(x0 − �(x�))2�x2�(x

�)�x2u, �x0u
�

+ 4
�
(x0 − �(x�))�(x�)�x2�(x

�)�x2u, �x0u
�

+ 4
�
(x0 − �(x�))�x2�(x

�)gd(x
�)�x2u, �x1u

�

− 2
�
(x0 − �(x�))2�x2gd(x

�)�x2u, �x1u
�

+ �
Ω0

�
(x0 + d)

�
(�x0u)

2 + (�x1u)
2 + (x0 − �(x�))2(�x2u)

2
�
+ 2gd(x

�)�x0u�x1u
�
dx�.

�
Ω0

[
(x0 + d)(�x0u)

2 + 2gd(x
�)�x0u�x1u + (x0 + d)(�x1u)

2
]
dx� ≥ 0.

(22)

( tP2u,Adu) + (Adu,
tP2u)

= 2( tP2u,Adu)

≥ ‖h
1

2 (x�)�x0u‖
2 + ‖h

1

2 (x�)�x1u‖
2 + ‖[4 − h(x�)]

1

2 (x0 − �(x�))�x2u‖
2

+ 4
�
(x0 − �(x�))�x2�(x

�)�x2u, gd(x
�)�x1u

�

− 2
�
(x0 − �(x�))2�x2gd(x

�)�x2u, �x1u
�

+ 4
�
(x0 − �(x�))2�x2�(x

�)�x2u, �x0u
�

+ 4
�
(x0 − �(x�))�(x�)�x2�(x

�)�x2u, �x0u
�
.



2248 A. Barbagallo, V. Esposito 

1 3

Adding (22) and (23), we have
(23)

(tP1u,Adu) + (Adu,
tP1u)

= −8
(
(x0 − �(x�))�x2�(x

�)�x2u, (x0 + d)�x0u + gd(x
�)�x1u

)

− 2
(
ã0(x)�x0u + ã1(x)�x1u + (x0 − �(x�))ã2(x)�x2u, (x0 + d)�x0u + gd(x

�)�x1u
)

= −8
(
(x0 − �(x�))2�x2�(x

�)�x2u, �x0u
)

− 8
(
(x0 − �(x�))�(x�)�x2�(x

�)�x2u, �x0u
)

− 8
(
(x0 − �(x�))�x2�(x

�)�x2u, gd(x
�)�x1u

)

− 2
(
ã0(x)(x0 − �(x�))�x0u, (x0 + d)�x0u

)

− 2
(
ã0(x)�(x

�)�x0u, (x0 + d)�x0u
)

− 2
(
ã1(x)(x0 − �(x�))�x1u, (x0 + d)�x0u

)

− 2
(
ã1(x)�(x

�)�x0u, (x0 + d)�x0u
)

− 2
(
ã2(x)(x0 − �(x�))2�x2u, �x0u

)

− 2
(
ã2(x)(x0 − �(x�))�(x�)�x2u, �x0u

)

− 2
(
ã0(x)�x0u, gd(x

�)�x1u
)

− 2
(
ã1(x)�x1u, gd(x

�)�x1u
)

− 2
(
ã2(x)(x0 − �(x�))�x2u, gd(x

�)�x1u
)

(24)

( tPu,Adu) + (Adu,
tPu)

≥ h1‖�x0u‖
2 + h1‖�x1u‖

2 + (4 − h2)‖(x0 − �(x�))�x2u‖
2

− 4
�
(x0 − �(x�))�x2�(x

�)�x2u, gd(x
�)�x1u

�

− 4
�
(x0 − �(x�))2�x2�(x

�)�x2u, �x0u
�

− 4
�
(x0 − �(x�))�(x�)�x2�(x

�)�x2u, �x0u
�

− 2
���
�
(x0 − �(x�))2�x2gd(x

�)�x2u, �x1u
����

− c‖(x0 + d)�x0u‖‖�x0u‖
− 2

�
ã0(x)(x0 − �(x�))�x0u, x0�x0u

�

− 2
�
ã0(x)�(x

�)�x0u, x0�x0u
�

− 2
�
ã1(x)(x0 − �(x�))�x1u, (x0 + d)�x0u

�

− 2
�
ã1(x)�(x

�)�x0u, x0�x0u
�

− 2
�
ã2(x)(x0 − �(x�))2�x2u, �x0u

�

− 2
�
ã2(x)(x0 − �(x�))�(x�)�x2u, �x0u

�

− 2
�
ã0(x)�x0u, gd(x

�)�x1u
�

− 2
�
ã1(x)�x1u, gd(x

�)�x1u
�

− 2
�
ã2(x)(x0 − �(x�))�x2u, gd(x

�)�x1u
�

− ��( tP0u,Adu)
�� − ��(Adu,

tP0u)
��, ∀u ∈ C∗∞

0
(Ωk).
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Since �(x�) , gd(x�) and �(x�) vanish on Ω0 ∩ Γ , for every 𝛿 > 0 there exist a neighbor-
hood Ix′ in Ω0 ∩ Γ and k > 0 such that

Let � ∈ C∞
0
(Ω) such that � ≡ 1 , on [0, k�[×I�

x�
 , with I′

x′
⊆ Ix′ and k′ < k , 0 ≤ �(x) ≤ 1 and 

supp𝜑 ⊆ [0, k[×Ix� . Without lost generality, we can consider [0, k�[×I�
x�
 such that 

|x0 − �(x�)| ≥ �

2
 , for every x ∈ Ωk ⧵ ([0, k

�[×I�
x�
) . Using (22) and the previous remarks, it 

follows

Taking into account Lemma 1, we get

Making use of Lemmas 1 and 3, for � and k small enough, we obtain

Let � ∈ C∞
0
(ℝ) such that �(t) = 1 , if |t| ≤ 1

2
 , and �(t) = 0 , if |t| > 1 . We rewrite (25) for 

u�
(

x0−�(x
�)

�

)
 and apply Lemma 5 to u

[
1 − �

(
x0−�(x

�)

�

)]
 . Adding the obtained estimates, for 

� small enough and k suitable and small, we reach (13).
Instead, in order to get (14), let γ > 0 and let us consider the operator

where

|𝛼(x�)| < 𝛿, |gd(x�)| < 𝛿, ∀x� ∈ Ix� ,

|x0 − 𝛼(x�)| < 𝛿, ∀x ∈ [0, k[×Ix� .

h1‖�x0u‖
2 + h1‖�x1u‖

2 + (4 − h2)‖(x0 − �(x�)�x2u‖
2

≤ c(� + k)(‖�
1

2 (x)�x0u‖
2 + ‖�

1

2 (x)�x1u‖
2 + ‖�

1

2 (x)(x0 − �(x�))�x2u‖
2)

+ c(‖(1 − �(x))
1

2 �x0u‖
2 + ‖(1 − �(x))

1

2 �x1u‖
2 + ‖(1 − �(x))

1

2 (x0 − �(x�))�x2u‖
2)

+ 2(‖ tP0u‖‖Adu‖ + ‖ tPu‖‖Adu‖).

h1‖�x0u‖
2 + h1‖�x1u‖

2 + (4 − h2)‖(x0 − �(x�)�x2u‖
2

≤ c(� + k)(‖�x0u‖
2 + ‖�x1u‖

2 + ‖(x0 − �(x�))�x2u‖
2) + c(‖(1 − �(x))

1

2 �x0u‖
2

+ ‖(1 − �(x))
1

2 �x1u‖
2 + ‖(1 − �(x))

1

2 (x0 − �(x�))�x2u‖
2) + c(‖ tPu‖ + ‖ tP0u‖)

= c(� + k)(‖�x0u‖
2 + ‖�x1u‖

2 + ‖(x0 − �(x�))�x2u‖
2)

+ c(‖�x0 (1 − �(x))
1

2 u + [(1 − �)
1

2 , �x0 ]u‖
2 + ‖�x1 (1 − �(x))

1

2 u + [(1 − �)
1

2 , �x1 ]u‖
2

+ ‖(x0 − �(x�))�x2 (1 − �(x))
1

2 u + (x0 − �(x�))[(1 − �)
1

2 , �x2 ]u‖
2) + c(‖ tPu‖ + ‖ tP0u‖)

≤ c(� + k)(‖�x0u‖
2 + ‖�x1u‖

2 + ‖(x0 − �(x�))�x2u‖
2) + c(‖�x0 (1 − �(x))

1

2 u‖2

+ ‖�x1 (1 − �(x))
1

2 u‖2 + ‖(x0 − �(x�))�x2 (1 − �(x))
1

2 u‖2) + c(‖ tPu‖ + ‖ tP0u‖).

(25)
‖�x0u‖ + ‖�x1u‖ + ‖(x0 − �(x�)�x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(Ix0,k,�) ∶ u�S = 0.

Ax0,�
= (x0 − �(x�))�x0 + gx0,� (x

�)�x1 ,

gx0,� (x
�) =

�(x�) − x0 + �

�x1�(x
�)

.
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Integrating by parts in the inner products ( tPu,Ax0,�
u) + (Ax0,�

u, tPu) , using the same argu-
ments as done and since gx0,� (x

�) has the same sign of g(x�) on S ∩ Ik,� , we deduce

For � small enough and since |𝜕x1𝛼(x
�)| > 1 , on Γx0

 , it results

As a consequence, for � small enough and k suitable and small, we have

Rewriting the previous inequality for u�
(

x0−�(x
�)

�

)
 and applying Lemma 6 to 

u
[
1 − �

(
x0−�(x

�)

�

)]
 , as done above, (14) follows for x0 > 0.

On the other hand, if x0 = 0 , considering the inner products

and proceeding as before, we obtain (13) and, then, (14) for � small enough.   ◻

6  Conclusive a priori estimates

Let us assume that |�x1�(x
�)| = 1 in some points of the plane x0 = x0 , with x0 > 0 . Let Ωx0

 
be the intersection between the plane x0 = x0 and Ω . Let Γx0

= Γ ∩ Ωx0
 . Let Γ�

x0
 be the set of 

the points of Γx0
 where �x1�(x1) = 1 and, finally, let Ix0 be a neighborhood of x0 in Γ�

x0
 on Ωx0

 
such that 𝜕x1𝛼(x1) ≶ 1 outside Ix0 . The following result holds.

Theorem 9 Let (i), (ii) and (iii) be satisfied. If on the plane x0 = x0 > 0 there exist points 
in which |�x1�(x

�)| = 1 , then there exist k > 0 and c > 0 such that

Moreover, for every 𝜀 > 0 there exists k > 0 such that

Proof Let Ωx0
∩ Γ , let x� ∈ Ω0 such that |�x1�(x

�
)| = 1 . We set

(26)

(4 − 𝜀)‖(x0 − 𝛼(x�))𝜕x2u‖
2 + �

Ω0

�
𝛾(𝜕x0u)

2 + 2gx0,𝛾 (x
�)𝜕x0u 𝜕x1u + 𝛾(𝜕x1u)

2
�
dx�

≤ c𝜀(‖𝜕x0u‖
2 + ‖𝜕x1u‖

2 + ‖(x0 − 𝛼(x�))𝜕x2u‖
2 + ‖u‖2 + ‖ tPu‖2),

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

∩ Ik,𝛿 , u�S = 0.

∫
Ω0

[
𝛾(𝜕x0u)

2 + 2gx0,𝛾 (x
�)𝜕x0u 𝜕x1u + 𝛾(𝜕x1u)

2
]
dx� > 0.

‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀
�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

∩ IΓx0

, u�S = 0.

(Ax0,�
u, tPu) + ( tPu,Ax0,�

u)

(27)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

, u�S = 0.

(28)
‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀

�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

, u�S = 0.
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Evidently, it results |�x1�(x
�)| ≤ 1 on the curve x0 − x0 = �(x�) and x ∈ Jk,�,x0 , with suita-

ble k and � . Therefore, there exists � such that |�x1�(x
�)| ≤ 1 if |x0 − x0| ≤ ��(x�) and 

x ∈ Jk,�,x0 . Whereas |�x1�(x
�)| ≥ 1 on Ωx0

 if |x0 − x0| ≥ ��(x�) . Let � ∈ C∞(ℝ) such that 
�(t) = 0 if t ≤ �

2
 and �(t) = 1 if t ≥ � . For every u ∈ C∞

0
(Ω) such that supp u ⊆ Jk,𝛿,x0 and 

u|S = 0 , we rewrite (13) and (14) for �
(

x0−x0

�(x�)

)
u and (10) for 

(
1 − �

(
x0−x0

�(x�)

))
u . Adding 

such inequalities, for k small enough, we have

and

From (29), (30) and Lemma 5, it follows

and

  ◻

With the same techniques used in Theorem  6 if x0 = 0 and Theorems 8 and 9 if 
x0 > 0 , we obtain the next result.

Theorem  10 Let (i), (ii) and (iii) be satisfied. If on the plane x0 = x0 > 0 there exist 
points in which |�x1�(x

�)| = 1 , then there exist k > 0 and c > 0 such that

Moreover, for every 𝜀 > 0 there exists k > 0 such that

�(x
�
) =

� √
x0 −

√
�(x

�
), if �x1�(x

�
) = 1,

−(
√
x0 −

√
�(x

�
)), if �x1�(x

�
) = −1.

(29)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(Ωk,x0

) ∶ supp u ⊆ Jk,𝛿,x0 , u�S = 0,

(30)
‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀

�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ωk,x0

) ∶ supp u ⊆ Jk,𝛿,x0 , u�S = 0.

‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

= [x0, x0 + k[×Ω0, u�S = 0,

‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀
�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωx0,k

= [x0, x0 + k[×Ω0, u�S = 0.

(31)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(�Ω) ∶ supp u ⊆ �Ωx0,k

= [x0, x0 + k[×�Ω0.

(32)
‖(x0 − 𝛼(x�))𝜕x2u‖ ≤ 𝜀

�
‖ tPu‖ + ‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖u‖

�
,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ �Ωx0,k

= [x0, x0 + k[×�Ω0.
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7  Estimates in Sobolev spaces with s < 0

Let Ω�

x0
 be the intersection between Ω� and the plane x0 = x0 . Let Γ�

x0
 be the set of points 

belonging into Γx0
= Γ ∩ Ω�

x0
 such that |�x1�(x

�)| = 1 . Moreover, let Jx0 be the intersection 
between a neighborhood of Γ�

x0
 and Ω�

x0
 . We are able to prove the following estimate in 

Sobolev spaces with s < 0.

Theorem 11 Let (i), (ii) and (iii) be satisfied. Then, for every x0 ≥ 0 and for every s < 0 
there exist k > 0 and c > 0 such that

Proof Firstly, let x0 > 0 . Let � ∈ C∞
0
(ℝ2) such that supp𝜑 ⊆ Ω�

0
 , � ≡ 1 on Ω0 , with 

Ω0 ⊂ Ω�
0
 . For every u ∈ C∞

0
(Ωk) such that supp u ⊆ Ωx0,k

= [x0, x0 + k[×Ω0 , we set 
vs = �(x�)Asu . Making use of Theorem 10, it follows

We have

where R = [�,As]u is a regularizing pseudodifferential operator.
By using (35) and Lemma 4, we obtain

Furthermore, it results

(33)
‖𝜕x0u‖H0,s + ‖𝜕x1u‖H0,s + ‖(x0 − 𝛼(x�))𝜕x2u‖H0,s + ‖u‖H0,s ≤ c‖Pu‖H0,s ,

∀u ∈ C∞
0
(Ωk) ∶ supp u ⊆ Ωx0,k

= [x0, x0 + k[×Ω0.

(34)‖�x0vs‖ + ‖�x1vs‖ + ‖(x0 − �(x�))�x2vs‖ + ‖vs‖ ≤ c‖ tPvs‖.

(35)

‖�x0vs‖ =‖�x0�(x
�)Asu‖

=‖�(x�)As�x0u‖
=‖As�(x

�)�x0u + [�,As]�x0u‖
≥‖As�x0u‖ − ‖R�x0u‖,

(36)

‖�x0vs‖ ≥‖As�x0u‖ − c‖R(x0 − x0)�
2
x0
u‖

=‖As�x0u‖ − c‖R(x0 − x0)(−
tPu + tPu + �2

x0
u)‖

≥‖As�x0u‖ − c‖R(x0 − x0)
tPu‖ − c‖R(x0 − x0)(

tPu + �2
x0
u)‖

≥‖�x0u‖H0,s − c‖(x0 − x0)
tPu‖H0,s − c‖(x0 − x0)�x0u‖H0,s

− c‖(x0 − x0)u‖H0,s .

(37)

‖�x1vs‖ =‖�x1�(x
�)Asu‖

=‖(�x1�(x
�))Asu + �(x�)As�x1u‖

=‖(�x1�(x
�))Asu + As�x1u + [�,As]�x1u‖

≥‖As�x1u‖ − ‖R1Asu‖ − ‖[�,As]�x1u‖
≥‖�x1u‖H0,s − c‖u‖H0,s − ‖R2�x1u‖
≥‖�x1u‖H0,s − c‖u‖H0,s ,
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where R1 and R2 are regularizing pseudodifferential operators.
Finally, we get

where R3 and R4 are regularizing pseudodifferential operators, Bs−1 and B′
s
 are pseudodiffer-

ential operators of order s − 1 and s, respectively. Adding (36), (37), (38) and using Lemma 
4, it follows

Moreover, it results

where R5 and R6 are regularizing operators.
The commutator [ tP,As] is given by

We consider the principal part:

where Bs+1 and Bs are pseudodifferential operators of order s + 1 and s, respectively. The 
symbol of Bs+1 is given by

(38)

‖(x0 − �(x�))�x2vs‖ =‖(x0 − �(x�))�x2 (�(x
�)Asu)‖

=‖(�x2�(x
�))(x0 − �(x�))Asu + (x0 − �(x�))�(x�)As�x2u‖

=‖(�x2�(x
�))(x0 − �(x�))Asu + (x0 − �(x�))As�(x

�)�x2u

+ (x0 − �(x�))[�,As]�x2u‖
=‖R3u + As(x0 − �(x�))�(x�)�x2u + [x0 − �(x�),As]�(x

�)�x2u

+ R4�x2u‖
≥ ‖As(x0 − �(x�))�(x�)�x2u‖ − ‖R3u‖ − ‖R4�x2u‖ − ‖Bs−1�x2u‖
≥ ‖(x0 − �(x�))�x2u‖H0,s − c‖u‖H0,s − ‖B�

s
u‖

≥ ‖(x0 − �(x�))�x2u‖H0,s − c‖u‖H0,s ,

(39)

‖�x0vs‖ + ‖�x1vs‖ + ‖(x0 − �(x�))�x2vs‖
≥ ‖�x0u‖H0,s − c‖(x0 − x0)Pu‖H0,s − c‖(x0 − x0)�x0u‖ − c‖(x0 − x0)u‖H0,s

+ ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s − c‖u‖H0,s

≥ ‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s − c‖(x0 − x0)
tPu‖H0,s

− c‖(x0 − x0)�x0u‖H0,s − c‖(x0 − x0)u‖H0,s .

(40)

‖ tPvs‖ =‖ tP(�(x�)Asu)‖
=‖�(x�) tPAsu + [�(x�), tP]Asu‖
=‖�(x�)As

tPu + �(x�)[ tP,As]u + R5u‖
=‖As

tPu + [�(x�),As]
tPu + �(x�)[ tP,As]u + R5u‖

=‖As
tPu + R6

tPu + �(x�)[ tP,As]u + R5u‖,

(41)�(x�)[ tP,As]u = �(x�)[ tP2,As]u + �(x�)[ tP1,As]u + �(x�)[ tP0,As]u.

[ tP2,As]u = Bs+1u + Bsu,
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Then, Bs+1u = (x0 − �(x�))�(x�)�x2B
�
s
u , where B′

s
 is a pseudodifferential operator of order s. 

Moreover, taking into account Theorem 10, we deduce

being [ tP,B�
s
] a pseudodifferential operator of order s − 1 and its principal symbol b�(x, �) 

of the same type of b(x, �) . Hence, making use of Lemma 4, it results

We consider the first-order part of the commutator

where Bs−1 and Bs are pseudodifferential operators of order s − 1 and s, respectively.
By using Lemma 4, we have

where B(i)
s

 are pseudodifferential operators of order s. Hence, it results

Taking into account (43) and (44), it follows

b(x, ��) = −
1

i

2∑

h=1

�xh (�
2
1
+ (x0 − �(x�))2�2

2
)�(x�)��h (1 + |��|2)

s

2

= −
1

i

(
2(x0 − �(x�))(−�x1�(x

�))�2
2

)
�(x�)��1 (1 + |��|2)

s

2

−
1

i

(
2(x0 − �(x�))(−�x2�(x

�))�2
2

)
�(x�)��2 (1 + |��|2)

s

2

‖Bs+1u‖ =‖(x0 − �(x�))�(x�)�x2B
�
s
u‖

≤��‖ tPB�
s
u‖ + ‖�x0B

�
s
u‖ + ‖�x1B

�
s
u‖ + ‖B�

s
u‖

�

≤��‖B�
s
tPu‖ + ‖[ tP,B�

s
]u‖ + ‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖u‖H0,s

�

≤��‖ tPu‖H0,s + ‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s + ‖u‖H0,s

�
,

(42)
‖�(x�)[tP2,As]u‖ ≤�c�‖ tPu‖H0,s + ‖�x0u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s

+ ‖u‖H0,s

�
+ ‖(x0 − x0)�x0u‖H0,s .

(43)�(x�)[ tP1,As]u = Bs−1�x0u + Bsu + Bs−1u,

‖Bs−1�x0u‖ ≤c‖(x0 − x0)�x0Bs−1�x0u‖
=c‖(x0 − x0)Bs−1�

2
x0
u‖

≤c�‖(x0 − x0)Bs−1Pu‖ + ‖(x0 − x0)B
�
s
�x0u‖

+ ‖(x0 − x0)B
��
s
(x0 − �(x�))�x1u‖

+ ‖(x0 − x0)B
���
s
(x0 − �(x�))�x2u‖

+ ‖(x0 − x0)B
(iv)
s

u‖
�
,

(44)
‖Bs−1�x0u‖ ≤c�‖(x0 − x0)Pu‖H0,s + ‖(x0 − x0)�x0u‖H0,s + ‖(x0 − x0)�x1u‖H0,s

+ ‖(x0 − x0)(x0 − �(x�))�x2u‖H0,s + ‖(x0 − x0)u‖H0,s

�
.

(45)

‖�(x�)[ tP1,As]‖ ≤c�‖(x0 − x0)Pu‖H0,s + ‖(x0 − x0)�x0u‖H0,s

+ ‖(x0 − x0)(x0 − �(x�))�x2u‖H0,s

+ ‖(x0 − x0)u‖H0,s + ‖(x0 − x0)�x0u‖H0,s

�
.
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We estimate the zero-order part:

Making use of (42), (45), (46) and for |x0 − x0| ≤ k < 𝜀 , we obtain

Taking into account (40), (47) and Lemma 4, denoted the generic regularizing operator 
by R, it follows

By using (34), (39), (48) and Lemma 4, it results

For � small enough and making use of Lemma 4, we have

For |x0 − x0| small enough and using Lemma 4, we deduce

Since the function � is the same for every functions u, then c does not depend on u but 
depends on the distance between �Ω̃�

0
 and �Ω̃0 and k is small enough.

Now, if x0 = 0 , for every u ∈ C∞
0
(Ω) such that supp u ⊆ [0, k[×Ω0 , we set vs = �(x�)Asu . 

Making use of Theorem 10, it results

Proceeding as done above, we obtain the analogous inequality of (39):

(46)
‖�(x�)[ tP0,As]u‖ ≤c‖u‖H0,s

≤c‖(x0 − x0)�x0u‖H0,s .

(47)
‖�(x�)[ tP,As]u‖ ≤c��‖ tPu‖H0,s + ‖�x0u‖H0,s + ‖�x1u‖H0,s

+ ‖(x0 − �(x�))�x2u‖H0,s + ‖u‖H0,s

�
.

(48)

‖ tPvs‖ ≤‖As
tPu‖ + ‖R tPu‖ + ‖�(x�)[P,As]u‖ + ‖Ru‖

≤c‖ tPu‖H0,s + �c
�
‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x1u‖H0,s

�

+ c‖u‖H0,s

≤c‖ tPu‖H0,s + �c
�
‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s

�

+ c‖(x0 − x0)�x0u‖
≤c‖ tPu‖H0,s + �c

�
‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s

�
.

‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s ≤ c‖ tPu‖H0,s + c�‖u‖H0,s .

‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s

≤ c(‖ tPu‖H0,s + ‖u‖H0,s )

≤ c(‖ tPu‖H0,s + ‖(x0 − x0)�x0u‖H0,s ).

(49)
‖𝜕x0u‖H0,s + ‖𝜕x1u‖H0,s + ‖(x0 − 𝛼(x�))𝜕x2u‖H0,s + ‖u‖H0,s ≤ c‖ tPu‖H0,s ,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆]x0, x0 + k[×Ω0.

(50)‖�x0vs‖ + ‖�x1vs‖ + ‖(x0 − �(x�))�x2vs‖ + ‖vs‖ ≤ �‖ tPvs‖.

(51)

‖�x0vs‖ + ‖�x1vs‖ + ‖(x0 − �(x�))�x2vs‖
≥ ‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�))�x2u‖H0,s − c‖x0 tPu‖H0,s

− c‖x0�x0u‖H0,s − c‖x0u‖H0,s ,



2256 A. Barbagallo, V. Esposito 

1 3

where we used Lemma 1 instead of Lemma 4. Considering ‖ tPvs‖ and proceeding again as 
done before and taking into account Theorem 10 and Lemma 1, we have

Moreover, using (50), (51) and (52), we obtain

  ◻

8  Global estimates

In this section, we obtain fundamental global estimates in order to prove the existence 
of a solution to the Cauchy–Dirichlet problem (2).

Theorem 12 Let (i), (ii) and (iii) be satisfied. Then, for every k > 0 and s < 0 there exists 
c > 0 such that

Moreover, for s = 0 and for every k > 0 there exists c > 0 such that

Finally, for every k > 0 and s < 0 there exists c > 0 such that

where [u] =
{

u, in Ωk = [0, k[×Ω0

0, in Ωk = [0, k[×(ℝ2 ⧵Ω0)
.

Proof Let k > 0 , let us set Ωk = [0, k[×Ω0 . For the compactness of [0, k] × Ω0 , there exists 
a finite number of subsets {Ω1,Ω2,… ,Ωp} of Ωk , given by

with h0 = 0 , hp = h , hi−1 < h�
i
< hi , for every i = 1,… , p , and such that (33) holds in every 

Ωi , for i = 1,… , p.
Let u ∈ C∞

0
(Ωk) , let � ∈ C∞

0
([0, h1[) , with � ≡ 1 on [0, h�

1
[ and 0 ≤ � ≤ 1 in [0, h1[ . 

Rewriting (33) for �u , it results

(52)‖ tPvs‖ ≤ c
�
‖ tPu‖H0,s + ‖�x0u‖H0,s + ‖�x1u‖H0,s + ‖(x0 − �(x�)�x2u‖H0,s

�
.

(53)
‖𝜕x0u‖H0,s + ‖𝜕x1u‖H0,s + ‖(x0 − 𝛼(x�))𝜕x2u‖H0,s + ‖u‖H0,s ≤ c‖Pu‖H0,s ,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ [0, k[×Ω0.

(54)
‖𝜕x0u‖H0,s + ‖𝜕x1u‖H0,s + ‖(x0 − 𝛼(x�))𝜕x2u‖H0,s + ‖u‖H0,s ≤ c‖ tPu‖H0,s ,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωk = [0, k[×Ω0.

(55)
‖𝜕x0u‖ + ‖𝜕x1u‖ + ‖(x0 − 𝛼(x�))𝜕x2u‖ + ‖u‖ ≤ c‖ tPu‖,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωk = [0, k[×Ω0, u�S = 0.

(56)
‖𝜕x0u‖H0,s + ‖𝜕x1u‖H0,s + ‖(x0 − 𝛼(x�))𝜕x2u‖H0,s + ‖u‖H0,s ≤ c‖ tP[u]‖H0,s ,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωk = [0, k[×Ω0, u�S = 0,

Ω1 = [0, h1[×Ω0, Ω2 = [h�
1
, h2[×Ω0,… , Ωp = [h�

p−1
, hp[×Ω0,



2257Existence results for the mixed Cauchy–Dirichlet problem for…

1 3

where �1 ∈ C∞
0
(Ω0) such that supp𝜑1 ⊆ [h�

1
, h2[ , �1 ≡ 1 in [h�

1
, h�

2
] × Ω0.

We can deduce that

where �0 = � and �i ∈ C∞
0
([0, k[) such that supp𝜑i ⊆ [h�

i
, hi+1[ , for every i = 1,… , p.

On the other hand, we have

Using (33), (57) and proceeding by recurrence on i, we easily obtain

for i = 1,… , p . Taking into account the previous inequality, we have

For the arbitrariness of k, (58) holds for every u ∈ C∞
0
(Ω) . The proof of (54) is thereby 

completed.
Furthermore, taking into account (31), we obtain (55).
Finally, we prove (56). Let u ∈ C∞

0
(Ω) such that supp u ⊆ [0, k[×Ω0 and u|S = 0 . Let 

{un} be a sequence in C∞
0
(Ω) such that supp un ⊆ [0, k[×Ω0 and un → u in H2,1 . We have 

that un → u and Pun → P[u] in H0,s , for every s < 0 . Hence, rewriting (54) for un , for every 
n ∈ ℕ , and passing to the limit as n → +∞ , we obtain (56).   ◻

9  Proof of Theorem 1

Let V be the subspace of L2(Ωk) , where Ωk =]0, k[×Ω0 , made up of functions � = tPu , 
with u ∈ C∞

0
(Ω) such that supp u ⊆ [0, k[×Ω0 and u|S = 0 . Let us consider the functional

‖�x0�u‖H0,s + ‖�x1�u‖H0,s + ‖(x0 − �(x�))�x2�u‖H0,s + ‖�u‖H0,s

≤ c‖P�u‖H0,s

≤ c‖Pu‖H0,s + c‖[P,�]u‖H0,s

≤ c‖Pu‖H0,s + c‖�x0��x0u‖H0,s + c‖(�2
x0
�)u‖H0,s

≤ c‖Pu‖H0,s + c‖�x0u‖H0,s([h�
1
,h1[×Ω0)

+ c‖u‖H0,s([h�
1
,h1[×Ω0)

≤ c‖Pu‖H0,s + c‖�x0u‖H0,s([h�
1
,h�

2
[×Ω0)

+ c‖u‖H0,s([h�
1
,h�

2
[×Ω0)

≤ c‖Pu‖H0,s + c‖�x0�1u‖H0,s([h�
1
,h2[×Ω0)

+ c‖�1u‖H0,s([h�
1
,h2[×Ω0)

,

‖�x0�i−1u‖H0,s + ‖�x1�i−1u‖H0,s + ‖(x0 − �(x�))�x2�i−1u‖H0,s + ‖�i−1u‖H0,s

≤ c‖Pu‖H0,s + c‖�x0�iu‖H0,s([h�
i
,hi+1[×Ω0)

+ c‖�iu‖H0,s([h�
i
,hi+1[×Ω0)

,

(57)

‖�x0�p−1u‖H0,s + ‖�x1�p−1u‖H0,s + ‖(x0 − �(x�))�x2�p−1u‖H0,s + ‖�p−1u‖H0,s

≤ c‖Pu‖H0,s + c‖�x0�pu‖H0,s(Ωp)
+ c‖�pu‖H0,s(Ωp)

≤ c‖Pu‖H0,s + c
�
‖�x0u‖H0,s(Ωp)

+ ‖u‖H0,s(Ωp)

�

≤ c‖Pu‖H0,s .

‖�x0�iu‖H0,s + ‖�x1�iu‖H0,s + ‖(x0 − �(x�))�x2�iu‖H0,s + ‖�iu‖H0,s ≤ c‖Pu‖H0,s ,

(58)
‖𝜕x0u‖H0,s + ‖𝜕x1u‖H0,s + ‖(x0 − 𝛼(x�))𝜕x2u‖H0,s + ‖u‖H0,s ≤ c‖Pu‖H0,s ,

∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ Ωk.
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It results

Making use of (55), we have

where c� = c‖f‖L2(Ωk)
 . Therefore, it is possible to extend T as a linear continuous functional 

into L2(Ωk) . Making use of a representation theorem, there exists w ∈ L2(Ωk) such that

In particular, we have

Hence, w is a solution in the sense of distributions to the equation

For the arbitrariness of k and since f ∈ L2
loc
(Ω) , Theorem 1 is proved.

10  Proof of Theorem 2

Let us denote by W the subspace of D�([0, k[×Ω0) containing extensions of linear continuous 
functionals to functions � ∈ C∞

0
(Ωk) such that �|S = 0 , where Ωk = [0, k[×Ω0 . It results that 

P[u] ∈ W , where u ∈ C∞
0
(Ωk) such that u|S = 0 and u = 0 in [0, k[×(ℝ2 ⧵Ω0) . Moreover, we 

have

Therefore, the distributions tP[u] and tPu are equal in W. Let T be the functional defined 
into the subspace of W containing the distributions � = tP[u] , for every u ∈ C∞([0, k[×Ω0) 
such that u|S = 0 , given by

Making use of (56), it follows

T(�) = T( tPu) = (f , u).

�T(�)� =�T( tPu)�
=�(f , u)�
≤‖f‖L2(Ωk)

‖u‖L2(Ωk)
.

�T(�)� ≤c‖f‖L2(Ωk)
‖ tPu‖L2(Ωk)

=c‖f‖L2(Ωk)
‖�‖L2(Ωk)

=c�‖�‖L2(Ωk)
,

T(v) = (w, v), ∀v ∈ L2(Ωk).

T(�) = T( tPu) = (w, tPu) = (f , u), ∀u ∈ C∞
0
(Ωk) ∶ u|S = 0.

Pu = f , in Ωk.

⟨�, tP[u]⟩ = (�, tP[u]) = (�, tPu), ∀� ∈ C∞
0
(Ωk) ∶ ��S = 0.

T(�) = T( tP[u]) = (f , u).
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with s ≤ r . Then, T can be extended in the subspace W ′ of W containing the distributions 
of W with finite H0,−s(Ωk)-norm. As a consequence, there exists w ∈ W �∗ , where W �∗ is the 
topological dual of W ′ , such that

On the other hand, it results w ∈ H0,s(Ωk) and since

it follows for every {𝜑n} ⊆ C∞
0
([0,+∞[×Ω0) such that �n|S = 0 , ∀n ∈ ℕ , and �n ⇀ w in 

W �∗,

we deduce that w|S = 0 (see also below).
Taking into account (61) and (60), we get

From (61), we have

and

Indeed, set Lw = Pw + �2
x0
w −

1

i
a0(x)�x0w − b(x)w , it results

with w ∈ D
�(Ωk) ∩ H0,r(Ωk) and f − Lw ∈ L2(Ωk) . From (62), it follows that w is a  solu-

tion to a second-order differential equation with zero-order term belonging to L2(Ωk) . 
Hence, we have w ∈ H2,0(Ωk) ∩ H0,r(Ωk) . On the other hand, (62) implies

with �1 + �2 ≤ s − r + 2 . Therefore, we obtain

‖T(�)‖ =�T( tP[u])�
=�(f , u)�
≤‖f‖H0,s‖u‖H0,−s

≤c‖ tP[u]‖H0,−s , ∀u ∈ C∞
0
(Ωk) ∶ u�S = 0.

(59)T(�) = T( tP[u]) = (w, tP[u]) = (f , u).

(�, tP[u]) = (�, tPu), ∀�, u ∈ C∞
0
([0, k[×Ω0) ∶ �|S = 0, u|S = 0,

(60)

(Pw, u) =(w, tP[u])

= lim
n→+∞

(�n,
tP[u])

= lim
n→+∞

(�n,
tPu)

=(w, tPu),

(61)(w, tPu) = (Pw, u) = (f , u), ∀u ∈ C∞
0
(Ω) ∶ supp u ⊆ [0, k[×Ω0.

Pw = f , in the sense of distributions.

w ∈ Hr(Ωk ⧵ �Ω0).

(62)−�2
x0
w +

1

i
a0(x)�x0w + b(x)w = f − Lw,

�0,�1,�2
(
−�2

x0
w +

1

i
a0(x)�x0w + b(x)w

)
= �0,�1,�2 (f − Lw),
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Proceeding by induction in the previous equality, assuming u ∈ H2,p−1 , with 1 ≤ p ≤ r − 2 
and taking into account (63), it results

Subsequently, by the equality

with 0 ≤ p − 2 + �1 + �2 ≤ r − 2 , and proceeding by induction on p, it follows

From (61), we deduce

Then, we obtain

Now, making use of (61), we show that the boundary conditions on Ω0 are satis-
fied. Let u(x0, x�) = u0(x0)u1(x

�) such that u0 ∈ C∞
0
([0, k1[) , u0(0) = 1 , �x0u0(0) = 0 and 

u1 ∈ C∞
0
(Ω0) . Integrating by parts in (61), we have

It follows

It implies

Instead, if u(x0, x�) = u0(x0)u1(x
�) , with u0 ∈ C∞

0
([0, k1[) , u0(0) = 0 , �x0u0(0) = 1 and 

u1 ∈ C∞
0
(Ω0) , integrating by parts, we obtain

Hence, it results

(63)
− �2

x0
�0,�1,�2w +

1

i
a0(x)�x0�

0,�1,�2w + b(x)�0,�1,�2w

= �0,�1,�2 (f − Lw) +
[
�0,�1,�2 − �2

x0
+

1

i
a0(x)�x0 + b(x)

]
w.

w ∈ H2,p(Ωk ⧵ �Ω0).

�p−2,�1,�2
(
−�2

x0
w +

1

i
a0(x)�x0w + b(x)w

)
= �p−2,�1,�2 (f − Lw),

w ∈ Hr(Ωk ⧵ �Ω0).

⟨Pw, u⟩ =(Pw, u)
=(w, tPu)

=(f , u), ∀u ∈ C∞
0
(Ωk) ∶ supp u ⊆]0, k[×Ω0.

Pw = f , a.e. in intΩk.

(Pw, u) − ∫
Ω0

w(0, x�)u1(x
�)dx� = (w, tPu).

∫
Ω0

w(0, x�)u1(x
�)dx� = 0, ∀u1 ∈ C∞

0
(Ω0).

w(0, x�) = 0, a.e. in Ω0.

∫
Ω0

�x0w(0, x
�)u1(x

�)dx� = 0, ∀u1 ∈ C∞
0
(Ω0).
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Then, we have proved that the Cauchy problem

admits a solution w ∈ Hr(Ωk ⧵ �Ω0) , for every k > 0 , under assumptions (i), (ii) and (iii) 
and if f ∈ Hr(Ωk) . Finally, we justify that w|S = 0 , as written above. In fact, integrating by 
parts in (61), we get

It follows

Fixed an arbitrary test function � on S, it is possible to determine u such that 
n1�x1u + n2(x0 − �(x�))2�x2u|S = �(x0, x

�) . Then, we obtain

which implies

In the following, a brief proof of the previous claim is given. Parameterizing the surface S 
in the following way:

with x0 ∈ [0, k[ and s ∈ [0, L(�Ω0)] , being s the arc length of �Ω0 , we have

where n is the external normal vector to the surface S. Hence, in order to obtain (64), we 
need that du

dn
|S = �(x0, s) , where � is an arbitrary function belonging to 

C∞
0
([0, k[×]0,L(�Ω0)[) . As a consequence, we have proved the existence of a solution 

w ∈ Hr(Ωk ⧵ �Ω0) to the following Cauchy–Dirichlet problem

�x0w(0, x
�) = 0, a.e. in Ω0.

{
Pw = f , in Ωk,

w|Ω0
= 0,

dw

dn
|Ω0

= 0,

(Pw, u) + ∫S

wn1�x1ud� + ∫S

wn2(x0 − �(x�))2�x2ud� = (w, tPu).

∫S

w(n1�x1u + n2(x0 − �(x�))2�x2u)d� = 0.

(64)∫S

w�d� = 0, ∀� ∈ C∞
0
(S),

w = 0, a.e. in S.

x0 = x0, x1 = �1(s), x2 = �2(s),

∫S

w(n1�x1u + n2(x0 − �(x�))2�x2u)d�

= ∫
[0,k]×[0,L(�Ω0)]

w(x0,�1(s),�2(s))�
�
2
(s)�x1u(x0,�1(s),�2(s))dx0ds

− ∫
[0,k]×[0,L(�Ω0)]

w(x0,�1(s),�2(s))�
�
1
(s)(x0 − �(�1(s),�2(s)))

2

⋅ �x2u(x0,�1(s),�2(s))dx0ds

= ∫
[0,k]×[0,L(�Ω0)]

w(x0, s)
du

dn
(x0, s)((�

�
2
(s))2 + (x0 − �(s))2(��

1
(s))2)dx0ds,
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where f ∈ Hr(Ωk) . Since f ∈ Hr
loc
(Ω) and for the arbitrariness of k, Theorem 2 is obtained.
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