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Abstract

The paper concerns the study of the Cauchy-Dirichlet problem for a class of hyperbolic
second-order operators with double characteristics in presence of transition in a domain
of R3. Firstly, we establish some a priori local and global estimates. Then, we obtain some
existence results.
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1 Introduction

Let Q =]0, +00[XQ,, where Q is an open set of R? with enough smooth boundary (for
example Q, is of class C™, with m > 2). Let us set § = [0, +00[X0€2,, where €, is the
boundary of €. Let us consider the following class of hyperbolic second-order operators
with double characteristics in presence of transition:

2
P =D} —D. - (x— a(x;,x,))’D; + Z 40D, +b(x), inQ, (1)
j=0

where x = (xg,X;,%,), Ima,(x) = (xy — a(x’))d,(x), with a,(x) real function, Dx/ = lax_,
l 7

j=0,1,2, the coefficients belong in C°°(£~2), Q= [0, +oo[><£~20, with ﬁo an open set coh-
taining strictly Q,, and « is a real function. Let X' = (x;,x,), & = (&, &1, &) = (&, &),
where we set & = (£,&,). Let

2
P16 = =8 + €+ Gy — a)PE + 1 Y g + b
=0
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be the symbol of P, let
L={p=(x.x.)€TQ: p(p)=0, Vp(p) =0}

be the characteristic set and let

_ 1 Py Plp) >
Fye)y= 2(—17;;(/)) -p0) )’ Ve

be the fundamental matrix of P at p. The spectrum of F,(p), denoted by Spec(F,(p)), has
an important rule to study the well-posedness of the Cauchy—Dirichlet problem associated
to the operator P. In particular, it results (see [10])

z € Spec(F,(p)) & —z,z € Spec(F,(p)).

The fundamental matrix of P at p has only pure imaginary eigenvalues with a possi-
ble exception of a pair of nonzero real eigenvalues +4 (see [9-11]). If F,(p) has a pair
of nonzero real eigenvalues, P is called effectively hyperbolic at p. If F,(p) has only pure
imaginary eigenvalues and if there are only Jordan blocks of dimension 2 in the Jordan
normal form of F p(p) corresponding to the eigenvalue 0, i.e., KerF p(p)z N ImF p(p)z = {0},
P is called non-effectively hyperbolic of type 1 at p. Instead, if F,(p) has only pure imagi-
nary eigenvalues and if there is only a Jordan block of dimension 4 and no block of
dimension 3 in the Jordan normal form of F,(p) corresponding to the eigenvalue 0, i.e.,
Keer(p)2 N ImF p(p)z is 2-dimensional, P is called non-effectively hyperbolic of type 2 at
p. Furthermore, let

X, ={p€eX: Pis effectively hyperbolic at p},
YX_={p € X : Pis non-effectively hyperbolic of type 1 at p},
2, ={p € £ : Pis non-effectively hyperbolic of type 2 at p},

(see [9]). It is easy to deduce
T=% UZUZ,.

We say that we have a transition exactly when at least two among the above sets are
nonempty.
The paper continues the study on the following Cauchy—Dirichlet problem

Pu=f, inQ =]0,4+o00[XxQ,
Ulgo =0, L] =0, ulg=0 @

started in [7]. In fact, in [7], several a priori estimates of local or global nature in Sobolev
spaces with general exponent s < 0 for the class of second-order hyperbolic operators (1)
are proved. Here, we establish some existence results for the Cauchy—Dirichlet problem
(2). To this aim, we need to obtain other a priori estimates in Sobolev spaces with exponent
s < 0. The proofs of such estimates make use of delicate variational techniques because of
the degeneration on the characteristic set and of the transition between X_, X, and . More
precisely, the function a in (1) depends on the variables x; and x,. As a consequence, the
coefficient x, — a(x") degenerates on the characteristic set with respect to all the variables.
Setting f = x, — a(x'), if 0, a(x)| <1, f=0and & = & =0, then F,(p) has two distinct
nonzero real eigenvalues. If |6xla(x’ I >1,p=0and & =¢& =0, F,(p) has two nonzero
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imaginary eigenvalues. In conclusion, let 3 be the set of points p = (xy, X', &) of  such that
p=0and & =& =0. Wehavethatp62+1fp62and|a a()| <1, peX_ 1fp€2
and |0, a(x ) >1 and pe ) if p€ X and |0, a(x ) =1 Hence even if we study the
special 'class of operators (1), the transition from effectively hyperbolic to non-effectively
hyperbolic occurs. A class more general of hyperbolic second-order operators with dou-
ble characteristics is analyzed in [6]. It is worth to underline that the coefficient x, — a(x")
does not contain the parameter A very helpful to prove global estimates near the boundary
of Q in [5]. Finally, we remark that the operator (1) contains the first-order terms and the
zero-order term, which have an important rule to study the well-posedness of the prob-
lem. Instead in [4], the subprincipal term is identically zero; consequently, the Horman-
der—Ivrii—Petkov condition is automatically verified.

Several scholars considered the Cauchy problem either for effectively or non-effectively
hyperbolic operators with double characteristics (see, for instance, [8, 10-16]). In [9],
another class of hyperbolic second-order operators with double characteristics is analyzed.
In particular, the C* well-posedness of the Cauchy problem and Carleman estimates for
non-effectively hyperbolic operators have been obtained. In [17], some energy estimates
for a different class of hyperbolic second-order operators are established. Moreover, the
C* well-posedness of the Cauchy problem for non-effectively hyperbolic operators is stud-
ied. We underline that in [9, 17] the Cauchy problem for a class of operators in a form
more general then (1) is analyzed, but a priori estimates only when £ = X_ LI X, are estab-
lished. Instead, thanks to variational and pseudodifferential techniques different from the
ones used in [9, 17], we are able to examine the mixed Cauchy—Dirichlet problem and we
prove a priori estimates when X =X_LIX UX, orZ=2X_UXjorZ=XjUX, orX=2X_
or X = X . Moreover, in the class of operators (1), studied also in [1-3], both the case in
which F,(p) has two distinct real eigenvalues and the case in which all the eigenvalues are
purely imaginary numbers can occur.

We set f(x) = x, — a(x'), g(x') = - ‘“” s h(x') =19, g(), inQ,

r ={x eQ: px) =0},
I'={xel: ai) >0},
Q =(¥ €Qy: alx)>0).
Moreover, let B = (b)), 10,1 be the quadratic matrix-function whose elements are given
by:
byo(®) = h(x') — 2a(X)ay(x), Vx € Q,
b()l(x) = blo(x) = —g(x/)ﬁo(X) - a(x/)a1(x)’ Vx € é,
by (x) = h(x') = 2g(X)d, (x), Vx € Q,
where d,, and @, are the imaginary parts of a, and a,, respectively.

We suppose

(i) g heC®(Q), h(x') € [h,h,], Vx' € Q), with0 < by < h, < 4;
(ii) the matrix-function B is positive definite in I, namely there exists k > 0 such that

B - n > kllnll% Vg = (ny.m,) # (0,0), Vx € T
(i) g Iny|g 2 0, for every x’ € Q N Q.

We remark that if @, =4a, = 0, on I, assumption (ii) is verified.
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The main goal of the paper is to prove the following results:

Theorem 1 Let (i), (ii) and (iii) be satisfied. If f € leoc(ﬁ), there exists w € leoc(ﬁ) such
that

W, 'Pu) = (f,u), Yue CX(Q): ulg=0,

where Q = [0, +oo[x§0.

Theorem 2 Let (i), (ii) and (iii) be satisfied. Let f € Hl’oc(ﬁ), with r > 2, the Cauchy—
Dirichlet problem

Pu=f, inQ =]0,4o00[xQ,
ulog =0, o =0, ulg=0

admits a solution u € leoc

(Q\ 0Q,).

Let us consider some operators which satisfy assumptions (i), (ii) and (iii) and for
which we have a transition.

Example 1 Let a(x') = x €2 be functions in an open set QO of R? contained (O 0). Let
P= D((z) D(z) (% — a(x ))ZD@) iagD, , where a; > 0. It results g(x') = —)c1 and
h(x )= 5 then assumption (i) is verified for every QO Assumption (ii) is satisfied for every
Qo C] — o, ;]x R. Moreover, assumption (iii) is fulfilled if n, on 6!20 n Q’ is positive
(for example 1f QO is a circle of center in (0, 0)). Then, we can choose Qo such that |0, a(x )|
admits values either less than or equal than or greater than 1. As a consequence, it follows
X=2X_UZyux,, withX_, X;and X, nonempty.

Example 2 Now, let us consider a(x') = (ax, + bx, + ¢)?, with a,b,c €R, a,b # 0, in an

open set Qo of R? contained (O, 0). Let

P= D(z) D(Z) = (xp — a(x’ ))2D<2) + aOD —ia;(x)(xg — a(x’ ))(D +D, ) where a, € R
, “ax, + bxz +c 1 . o

and a, € C*. It results g(x') = ————— and A(X') = 5 Hence, assumption (i) is

always verified. Moreover, we can choose KNZ(, such that assumption (iii) is fulfilled and both
|0xla(x’ )| <1 and |(3XI a(x’)| > 1 hold. Therefore, the existence of a solution is ensured in
presence of transition.

The paper is organized as follows. In Sect. 2, some preliminary notations are recalled.
In Sect. 3, a priori estimates obtained in [7] are referred. Section 4 is devoted to prove a
priori estimates under the assumption |d, a(x )| < 1. Instead, Sect. 5 concerns estimates
under the assumption |0, a(x’ ) =>1.In Sect 6, conclusive estimates in L? are proved. In
Sect. 7, estimates in Sobolev spaces with s < 0 are established making use of the pseu-
dodifferential operator theory. Section 8 concerns the study of some global estimates.
Finally, Sects. 9 and 10 deal with the proofs of Theorems 1 and 2, respectively.
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2 Notations and preliminaries

Let a = (ap, ), ay) € N?)' We indicate the derivative of order |a| by 0%, the derivative of
order h with respect to x; by 0)’:/ and the derivative of order h with respect to x; and x, by

h

" We indicate the I2-scalar product, the Z?-norm and the H'-norm by (-, -), || - ||and || - || -
(r € Ny), respectively. We indicate the external normal versor to the boundary 0Q by
n = (ng,ny,n,).

Let C;°(€2) be the space of restrictions of functions belonging to C °°(R3) on Q. For each

KCQ compact set, let C3°(K) be the set of functions ¢ € C;°(€2) haV1ng support contained
in K. Set Q, = [0, k[XQO, let us introduce

Cr@)={ueCT@ : suppuC0.KIXQ }.

Moreover, let C*°°(Q) be the space of functions u € C°°(Q) such  that
7/10 u(0, x ) = y,u(0, x) where y,,7, € R. Consequently, we can 1ntr0duce C’°°(Q)
and C*®(€y). It is worth to remark that if u € CP(€2), then u € C*°°(QO) Further-
more, if u(xy,x') = u; (X )u,(xp), with u; € CP(Qp), ”L)QO =0 and u, € C([0,k[) then
u € Cy=(y).

Let S(R’) be the space of rapidly decreasing functions. Let S(Q) be the space of restric-
tions of functions belonging to S(R*) on Q.

Let Q =]0, +00[XQ, and let s € R, the norm in H* is given by

1 e 11258 |15 INVEYY
llull 7, = (27)2/0 dxo/R2(1 + 1&'7) [uxg, ED17dE,
Yu e C(°)°(§) : supp u C [0, +00[X€2,

where the Fourier transform is done only with respect to the variable x’. Let
Ay 1 CP () — C™(Q) be the pseudodifferential operator defined by

Au= !
U Q2n)?
Vu e C2(Q) @ supp u C [0, +o0[xQ,.

/ U+ 1EP) g, €)'
R2

For every p(X') € C (L), the operator @A u extends as a linear continuous opera-
tor from HOV p. (Q) into HO "5(Q), where r,s €R. In particular, in Q, = [0, k[XQ,,
for k> 0, et HO $(€2) be the space of u € H*(Q,) such that supp u C Q,. Moreover, if
supp @ C Q \ supp u, then @A u is a regularizing operator with respect to the variable x’.
It results

@A ullyor < cllullyors Vr,r €R, ue C(Q) : supp u C [0, +00[XQ.

The norms ||u|| o5y and [|Aull ;2 () are equivalent for any s € R.
Lets € Rand p > 0. Let H>*(R?) be the space of all the distributions on R3 such that

1 Ak A
Iy = g 3 [ (1 1 P10 Pl < oo
|h|< .
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Let HP*(Q) be the space of restrictions of elements of H”*(R3) on Q endowed with
the norm

||u”Hﬁ,\(Q) = inf ||U||H/’-»“(R3)'
U € HP*(R?)
Ulg=u

In the same way, the space H”*(€,) can be introduced.
At last, we consider the transposed operator of the operator P:

'P=—0] +0; +(xg— a(x)’0; —4(xo — ax))(0,, ™0,

2 2
1 1
- = Z; 40, = = z; 9, 4,(x) = 20, @) + b(x).
J= J=

3 Some known preliminary results

First of all, we recall a priori estimate for the solution to the problem (2) (see
[2], Lemma 3.1).

Lemma 1 Letu € S(Q) and let p, ay, oy, o, € Ny. Then

p +2

L 2 [y
g 0 ull < 2 lley™ 0l (3)

Moreover, we have the following preliminary result (see [7], Lemma 3.2).
Lemma2 Letu € S(ﬁ), it results

[ 0.y Pay < ol ul.
Q

0
0
The next result holds (see [7], Lemma 3.3).
Lemma 3 Forevery e,5 > 0 there exists k > 0 such that, if
Lis= {x €Q: xy <k, |xy—al¥)] > 5},
it results

10y, ull + 110y, ull + (g — a0 ull + llull < ell "Pull,

L @)
Vu e Cy(Q) & suppuC [ 5, ulg=0.

We present a priori estimate (see [7], Theorem 3.4).

Theorem 3 Let (i) and (iii) be satisfied. Then, there exist k > 0 and ¢ > 0 such that
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0, ull + 110y ull + 11Cxo — a(x’))dx2u|| + lull < cll "Pull,
_ 5
Yu € Cy™() © ulg=0. .

Moreover, we recall the following result (see [7], Theorem 3.5).

Theorem 4 Let (i) and (iii) be satisfied. For every € > O there exist k > 0 and a neighbor-
hood I, in Qy N T such that

Nl ull + 110, ull + ll(xy — ax')o, ull + llull < &ll"Pull,
Yu € C3™ (&) : suppu C [0,k[XI,, ulg = 0.

Let xp > O and let k > 0, we denote by Q; | =Ix, X, + k[xﬁo. Let us show the follow-
ing preliminary result (see [7], Lemma 4.1).

Lemma4 Letu € S(Q) such that 0, ulq =0, let p,ay, @y, a, € Nand X, > 0. It results

p p+2
[l (g — Xo) 2 0% %] < |Gy — Xg) 7 Q%+,

2
+1
We consider another preliminary lemma (see [7], Lemma 4.2).
Lemma5 Foreverye, 6 > 0and X, > 0, there exists k > 0 such that, setting
Lis= {x €Q: x) €% Xy + kL, |x — a(x)| > 5},
it results

19y, ll + 10, ull + 11Geo — a0 ull + llull < ]l “Pull,

0

Vu e C2(Q) : suppu C I 4 ulg = 0.

We recall the following preliminary result (see [7], Lemma 4.3).

Lemma 6 Let (i), (ii) and (iii) be satisfied. Let X, > 0, for every € > 0 there exists k,6 > 0
such that, setting

Iy = {x €0 x, €T X, + AL %y — a¥)] < 5},

it results

llGxg — ), ull < eIl "Pull + 110, ull + 110, ull + lull),
Vi€ C(Q) : suppu C Jis ulg=0.

At last, we present the following result (see [7], Theorem 4.4).

Theorem 5 Let (i), (ii) and (iii) be satisfied. Let X, > 0. There exist k > 0 and ¢ > 0 such
that
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9, ull + 19, ull + |Gy — @GN, ull + llull < cll"Pull,
Yu € C5 (s 4) = ulg=0.

4 Estimates under the assumption |9, ax| <1
Let X, > 0, let us denote by

Jisz, = {x €Q: Xy € [Xp, %o + k[, |xy — a(x)] < 6}.
The following result holds.

Theorem 6 Let (i), (ii) and (iii) be satisfied. Let us assume that there exist two positive
numbers k' and & such that |0, a(x')| < 1 on Qg NJy 5. Then, for every € > 0 there exists
0 < k < k' such that

19, ull + 19, ll + l1Cxo = @A, ull + llull < el Pul,

— — 6
Vu € C(Q) @ suppu C € = [0, k[X€, ulg = 0. ©

Proof Let us consider the following inner products

(’Pu,xodx()u) + (o0, u, "Pu).

By means of integrations by parts, for every u € C7° (Q) such that suppu C QN Jy 50 and
ulg =0, we have

N0y, ull® + 110, ull® + 1| (xo — a(x"))0, ull?
+ 2(x0(xp — a(x'))0x2u, 0, 1) — 4(xp(xg — a(x'))éxZM, 0,,1)
= ("Pu, x00, u) + (xg0y u, "Pu) = ("(P = P)u, xy0, ) — (X0, u, (P — Pp)u).

From which it follows
1
||deu||2 + ||a)(114||2 + §||(xo - a(x’))dxzullz
+ ((x0 - a(x’))(%xo - %a(x’))6x2u, 6x2u>
— 40y (xg — (X)), 0, ) )

= ("Pu, xq0, 1) + (xg0y u, "Pu) — ("(P = Py)u, x40, u)
= (%0, U, (P = Py)u).

We denote by
Q1= {x e : %a(x’) <xp < a(x’)}.
’s

Since (v — a(x’))(gxo - %a(x’)) > 0,in©Q, \ Q, 1. by (7) one has
’s
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1
10, + 11l + 3 1 = @G0l

< (630 = o330 = 50 o "”>g , ®)

il

+41(xg(xg — a(x))9, u, 9, w
+ 2lxo "Pullllo, ull + 2llxo ‘(P = Pyullllo, ull,

where we denoted by (-, ), , the inner product on €, 1. Furthermore, it results
k '3 ’5

10, ull® + 119, ull® + lI(xg — @), ull?

< =2(%(xg — a6, u, 0, u) )
ko,

|+ 4o — e )a 10, ul
+2llx, " Pulllldy, ull + 21y (P = Pyulll9,, ull
< 2(a()xp — a@))d, u, %“)gk,é +4lxo(xg — ax)d,, ull |0, ull
+ 2{lxo "Pull |9, ull + 2llx, (P - ﬁz)“” N9, ull-
InQ, 1, we consider the following inner products

(0, 1, "Pu) + ('Pu, 0, ).

If u is identically zero on I',, where I, is the surface x, = na(x’), with 0 < 5 < é inte-
grating by parts, we have

20| (@() = x)2 0, ull” = 4((xy — @l D), u,0,,
+ / [0, 1) +20, a(x')0, ud, u+ (0, u)?|do 9
r
= ('Pu, 0y, 1) + (0, U, "Pu) — ("(P — Py)u, 0y, ) — (O, U "(P — Py)u).

By (8) and (9), if |ax| a(x)] <1, on Q, NJy 50, and k' is small enough, the claim follows
assuming that u is identically zero on T',.

Letu € C°(€2) such that suppu C Qs and u|g = 0. Let y be a function of class C* such
that y(r) = 1,fort > 5, and y(1) =0,for0 <t < g Rewriting (9) for u)(( all
(8), there exists 0 < k < k’ such that

) and adding

a(x’)

llo

X0

ull + 110, ull + Nl Cxg — a0, ull + [lull < &l "Pul,
Vi€ C2(Q) @ suppu € Q, NJy s, uls = 0.

Making use of the previous inequality and Lemma 3 with k small enough, the claim is
achieved. O

We set
Q x = [Xg, Xo + k[X€,

with X, > 0 and k > 0, and we prove the following result.
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Theorem 7 Let (i), (ii) and (iii) be satisfied. Let us assume that there exist two positive
numbers k' an 6 such that |0, a(x')| < 1, on Qz N Jy 55 , where Qs is the part of the plane
Xg =X in Qs ;. Then, for every € > 0 there exists 0 < k < k" such that

N9y, ll + 110, ull + [1Geg — a0, ull + llull < ]l "Pull,

) (10)
Vu € Cy(Q) @ suppu C Qio,k’ ulg = 0.

Proof Letu € C (Q) such that suppu C €z 1 N Jy 55 and ulg = 0, integrating by parts in
the following inner products

("Pu, (xy — Xp)0, u) + ((xg — X)0, u, 'Pu),
we obtain
10, ull® + 119, ull® + 11xy — @ )a,, ull®
+ 2((xg — Xg)(xg — a(x’))ax u, xQu) + 4(xy(xy — a(x'))a, a(x )0, u, v u)
= ("Pu, (xy — X0)0y, 1) + ((xg — Xo)0y U, "Pu) — ("(P — Pyu, (xy — X0)Oy, 1)
— (g — Xy 1, "(P = Pyu),  Yu € CX(Q) 1 suppu € Q; 4. ulg = 0.

Takmg into account that —||(x0 —a(x'))d, u||2 + 2((xg — Xp)(xp — a(x’))6x2u, 0x2u) <0, if
Xy < a(x )+ xo or x; > a(x ), it results

10,1l + 10, + 3 15 = /), ull

5 / 1,0 4
< —§<(x0 — a(x’ ))<x0 - gtx(x )— §x0>0 u, 0)(2u>gkm (11
+ ("Pu, (xy — X0y, 1) + ((xg — X0)Oy, U, "Puy — ("(P = Pyu, (xy — X0)y, 1)
- ((xo - xo)axnu, I(P - Pz)”),
where Q; 4, = {x € Q; o na() + (1 - mE < x) < alx)}, with0 <7 < =
In Q; 4, we consider the following inner products

('Pu, 0, u) + (0, u, 'Pu).
Proceeding as done above, we obtain
2((xg — a9, u, 9, u) — 4((xy — a(x'))d, u, 0, u)
2 2
- /F [0, ) + 20, a(x')0, u0, u+ (9, w)?|do
(12)
+ / [0, ) + 20, a(x')9, u0, u+ (9, w?|do
r,

n.(1=mx

+ ('Pu, 9,,u) + (0, u, "Pu) — ("(P — Py)u, 0, 1) — (0, u, (P = Pyu),

where Fm(l—r/)?co is the surface x, = na(x’) + (1 — n)x,, with 0 < n < % Making use of (11)
and (12), we deduce the claim assuming that the gradient of u with respect to x; and x; is

zeroonI', (_,x.
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Let u be a function belonging to C(‘;°(§) such that suppu € Q; and ulg = 0. Let y be a
function of class C* such that y(¢r) = 1, if |[t| > 5, and x(¢) = 0, if |7| < g Rewriting (12)
X0

a(x’)

foru )(< > and adding (11), there exists 0 < k < k' such that
19, ull + N0, ull + 1(xg — @GN, ull + llull < el "Pull,
Yu € C8°(§) Dosuppu € Q5 Ny . ulg =0.

Finally, the claim follows from the previous inequality and by using Lemma 5 for k
small enough. O

5 Estimates under the assumption |0y, ax| >1
For every X, > 0, we set

I ={xel: a(x') =Xx,}.
The next result holds.

Theorem 8 Let (i), (ii) and (iii) be satisfied. Let us assume that Idx]a(x')| >1 onTy.
Then, there exist k > 0 and ¢ > 0 such that

10y, ull + 110, ull + 1o — a0 ull + llull < cll "Pull,

_ 13
Vu € Cy(Q) @ suppu C Q;ka = [Xg, X + k[XQq, ulg =0, (13)
Moreover, for every € > 0 there exists k > 0 such that
ll(xg — @' )a, ull < &(I"Pull + 10, ull + 110, ull + llull),
(14)

Vu e CR(Q) 1 suppu € Q; 4. ulg = 0.
Proof Let d > 0 and let us set
Ay = (xg + d)o, +g,(X' )0, ,

/
d
where g,(x') = u, and consider the sum of the inner products
0xl a(x’)

("Pu,Au) + (A u, 'Pu) =('Pyu, A u) + (Ayu, 'Pyu) + ("Pyu, Au) + (A u, 'Pu)
+ ("Pou, A yu) + (Ayu, 'Pyu).
For every u € C(°)°(§) such that u|¢ = 0, it results:
("Pyu, A gu) + (A u, 'Pyu)
= ("Pyu, (xy + d)o, u) + ((xo + d)o, u, "Pyu) (15)
+ ("Pyu, g4(X')0, u) + (g4(X')0, u, 'Pyu).

Let us integrate by parts in the first inner products of the principal part in (15)
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2("Pyu, (xo + d)o, 1)
= (0,1, 0, 1) + (0, 1,0, w) + ((xp — a(x))* 0, u, 9, u)
+2((xg — a)(xg + d)a, u, 0, u)

(16)
+4((xy — a0, a(x)0, u, (xy + d)o, u)

+ [ G+ D[0,u) + (0, 1) + (xg — a(¥))* (0, u)*|d'.
'Q(J

Moreover, integrating by parts in the second inner products in (15), we have
2('Pyu, ga,()c’)dx1 u)
= —(0,,u, 9, 8,(x")0, u)
+4((xg — a(¥'))9,, a(x')g,(x')0,, u, 0, u)
—2((xo — a(x')?9,, 2,(x')0, u, 0, u)
+ (g — a(¥))*0,, 8,(x' )9, u, 0, u)

> Yx,y

—2((xy — a())o, a(x")g (x')0, u, 0, u)

> Y,

+ [0 wtds + [ 1,00, 0o an
s s

+2 /Snz(xo - ar()c'))zgd(x')dxl)u@xl udo

- /S”I(xo - a(x'))’g,( )0, u)’do

+/ 2g,(x')0, ud, udx’'.
Q

Since u|g = 0, it results

/"1gd(x')(5xou)2d0' =0. (18)

N

Making use of the assumption (iii), it follows
‘/n]ggz(x,)(a)Cl u)*de > 0. (19)
s

Denoting the tangential derivative of u along the section of S of the equal height by g_u
T
we obtain

2 /Snz(xo - ot(x’))zgd(x')axzu@xl udo — Knl(xo - a(x'))zgd(x’)(0x2u)2d6
) /S @ — a(x’))(?—j)gd(x’)ax2ud0' + /S (5 — () g, ()0, 1 ds (20)
= / n (g — a(x))*g,(¢')(0, u)*do > 0,
s
where we took into account that 0_: =0, sinceu =0on S.
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Adding (16) and (17) and making use of (18), (19) and (20), we have

2('Pyu, A u)
> (|03 ()0, ull? + 172 ()0, ull + 114 = h( )3 (xo — ae)) o ull?

+4((x — a0, a(x)(xy + d)a, u, 0, u)

+4((xg — ax))o, ax)g,(x)a, u, 0, u)

- 2((xp — a@))’0, g,(x")0, u, 0, u)
+ / {Go + D0, 1) + (0, W) + (xg — a(x'))* (0, u)’] +28,(x'), ud, u}d’
Q -

= 103 ()0, ull? + 172 ()0, ull + 114 = h( )3 (xo — ae)) o ull?
+4(( — a0, a(x)o, u, 0, u)
+4((x — e )0, a(x')0, u, 0, u)
+4((xg — alx))o, a(x)g,(x)0, u, 0, u)

- 2((xp — ax))’0, g,(x)0, u, 0, u)
+ / {(xo +d)[(0,,u) + (0, 1) + (xg — a(¥))* (9, w)*] +2¢,(")0,, uaxlu}dx’.
Q -

2D
By assumption (i), there exist two positive numbers k and 6 such that, for d > hl| g,
1
where X' € Q) N Jy 5z, it results (¥, + d)* = (g4('))* 2 0 and, hence,

/ (& + )0, w0 + 28,(X' )0, ud, u+ (X + d)(0, u)’|dx’ > 0.
'Q(l

By using (21), we deduce
("Pyu, Ayu) + (Agu, 'Pyu)

= 2('Pyu, Au)

> 172 ()0, ull® + 1177 ()9, ull® + 1114 — A3 (x — a@ ), ull
+4((xy — a())o,, a(x)o, u, g,(x')0, u) 22)
- 2((xg — a(¥))*0,,8,(x')9,, u, 0, u)
+4((xg — a(¥))*0, a(x)o, u, 0, u)
+4((xy — a()a(x')9, a(x')d, u, 0, u).

Now, we consider the first-order terms. Integrating by parts, it results
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(Pyu,Aqu) + (Aqu, "Piu)
= —8((xp — ax))0, a(x)a, u, (xy + d)o, u + g,(x')0, u)
— 2(Tp(x0)9, 1 + @y ()9, u + (xg — a(X))d5(X)9, u, (xXy + d), u + g,(x")0, u)
= —8((xp — a(¥))*0,, a(x')9, u, 0, u)
- 8((xp — a())a(x')0, a(x')0, u, 0, u)
- 8((xg — a(x))9, a(x")o, u, g,(x")0, u)
= 2(@y(x)(xg — a (X))o, u, (o + d)o,, 1)
= 2(@xax")o, u, (xo + d)o, u)
—2(@,(0)(xg — a(¥))0,, u, (xg + d)o, u)
= 2(a@ (a0, u, (xo + d)o, u)
- 2(@,(0)(x) — a(¥))*0, u, 0, u)
= 2(@(0)(xg — a()a(x")0, u, 0, u)
= 2(@y(x)0,, u, g4(x" )0, u)
—2(d, (09, u, g,(' )0, u)
= 2(@ (0 — a(¥))9,, 1, g,(x")0, u)
(23)
Adding (22) and (23), we have
("Pu,Au) + (A u, 'Pu)
> |0, ull® + hyllo, ull® + (4 = hy)ll(xo — a(¥))0, ull?
— 4((xg — a(x))0, a(x")o, u, g,(x")0, u)
—4((xp — a(¥))*0,, a(x')d, u, 0, u)
— 4((xp — a))a(x' )9, @(x')0, u, 0, u)
- 2| (0 — ax))?0, 840, u, 9, u)|
= cll(xg + d)o, ullll oy, ull
— 2(@y(0)(xg — ()0, u, %00, 1)
— 2(@y()a(x')d,, u, x40, u) (24)
= 2(@,(0)(xg — a(¥))0, u, (xp + d)o, u)
-2
-2
-2
-2
-2
-2

@, (0)a(x'), u, x40, 1)

@ (0)(xy — a(x))*0,, u, 9, u)

@ (x¥)(xp — a(x)a(x)d, u, 0, u)

Ay(x)0,, u, g4(x)0, u)

@,(x)0,, u, g4(x)0, u)

@) (0)(xp — a(x))0, u, g,(x)0, u)

— |("Pou, Agu)| = |(Aqu, "Pow)|,  Vu € Ci= ().

e~~~ o~ o~ o~ —~ —~
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Since a(x'), g,(x") and B(x") vanish on Q, N T, for every 6 > 0 there exist a neighbor-
hood I, in Q, N T and k > 0 such that

Ia(x,)l < 6, |gd(x,)| < 67 Vxl c IX/7
lxg — a(x)] < 8, Vx € [0,k[XL,.
Letp € Cg°(§) such that ¢ = 1, on [0, K'[xI,, with I!, C I,,and k" < k, 0 < ¢(x) < 1and

supp @ C [0, k[xI,. Without lost generality, we can consider [0,k’[xI/, such that
|xg — a(x)| > %, for every x € Q; \ ([0,k[xI),). Using (22) and the previous remarks, it

follows
Ry 110, ull® + hy N0, ull* + (4 = hy)||(xg — o)), ul|?
< o6+ B(ll@? @0, ull® + 93 @, ull® + 197 (W)xy — (NI, ull)
+ el = ()2, ull® + I1(1 = ()29, ull® + (1 = () (xo — a()a, ull®)
+ 211 "PoullllAgull + || " Pulll|A D).
Taking into account Lemma 1, we get
hyll9, ull + Ry 10, ull* + (4 = hy)ll (g — a(x'), ull®
< (3 + 110, ull> + 119y, ull® + 10xy — aGNa, ul®) + c(ll(1 = p(x))? 0, ul?
+ 111 = @) 0, > + (1 = () (xg — @@ N, ul®) + (|l Pull + || "Poull)
= (8 + RNl ull® + 119, ull® + ll(xg — ax')o, ull)
+c(llo,, (1 — 92 u + [(1 - ). 9, Jull> + 110, (1 — o) >u + [(1 — )3, 9, Iul?
+ 11xp — a()a, (1 = ()7 + (¥ — a& DI = )7, 9, Tull®) + el ‘Pull + | Poull)
< ¢ + K10, ull? + 119, ull® + 10y — G, ul®) + (1|0, (1 — o) ul?

+ 110, (1 = @) 2 ull* + [[(cg = a9, (1 = o) 2ull?) + e(ll "Pull + || Poull).
Making use of Lemmas 1 and 3, for 6 and & small enough, we obtain

10y, ull + 110, ull + (g — a(")oy, ull + llull < cll "Pull,

25
Vu € CPUs, 15) + uls = 0. -

Let y € C(R) such that y(1) = 1, if |7] < % and y(1) = 0, if |¢| > 1. We rewrite (25) for
uy (%) and apply Lemma 5 tou|1 — y Xo_g(X)

6 small enough and k suitable and small, we reach (13).
Instead, in order to get (14), let y > 0 and let us consider the operator

]. Adding the obtained estimates, for

A}(M/ =(x = a('x,))a)m + gfmr(x’)d)r] ’
where

a(xX) =Xy +7y

N\ —
g;[),y(x ) - aXI a(x/)
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Integrating by parts in the inner products ('Pu, Az u) + (Ag ,u, 'Pu), using the same argu-
ments as done and since 8%,y (x") has the same sign of g(x) on S N I, 5» we deduce

4 —o)ll(xg — aX' N, ull* + / [r(0,w) + 28 ,(X')0, uo, u+y(d, uw?|dx
) Q()
< ce(l|o ull® + 119, ull® + Nl Gg — a@Na, ull> + llul® + || Pull?), (26)
Yu € C8°(§) tosuppu C Qg Ny, ulg=0.

For 6 small enough and since |ax| a(x’)] > 1,onT" %y it results
/Q [r(0, ) +2g; ,(x')0, uo, u+y(d, w?|d' > 0.
0

As a consequence, for € small enough and & suitable and small, we have
ll(xg — @' )a, ull < &(Il"Pull + 19, ull + 110, ull + |lull),
Vu e CP(Q) 1 suppu CQ Nl . ulg=0
> X0
Rewriting the previous inequality for u ;((’%(x’)) and applying Lemma 6 to

u[l - ;((J%(x,) )], as done above, (14) follows for x, > 0.

On the other hand, if X, = 0, considering the inner products
(A5, , 4, "Pu) + (’Pu,A;O’yu)

and proceeding as before, we obtain (13) and, then, (14) for y small enough. O

6 Conclusive a priori estimates

Let us assume that [0, a(x)| = 1in some points of the plane x, = X,, with X, > 0. Let Q¢
be the intersection between the plane xy =xjand Q. LetI's =T'n Qs . Let F’ be the set of

the points of I'; where d, a(x,) = 1 and, finally, let /5 be a nelghborhood of X xO in F _on Q.
such that 0, ]a(xl) 1 outs1de I; . The following result holds.

Theorem 9 Let (i), (ii) and (iii) be satisfied. If on the plane x, = X, > O there exist points
in which |6x] a(x')| = 1, then there exist k > 0 and ¢ > 0 such that

19y, ull + 110, ull + G — aG o, ull + llull < cll "Pul,

— 27)
Yu e CP(Q) @ suppu € Qs 4, ulg =0
Moreover, for every € > 0 there exists k > 0 such that
ll(xg = a0/ N, ull < eIl "Pull + 110, ull + 110, ull + llull),
(28)

Vue CP(Q) @ suppu C Q4. ulg =0.

Proof LetQ; NT,letX € Qsuch that|o, a(x')| = 1. We set
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&) = vV, — Va@®@), if 0, a(¥) = 1,
A Y N e S 9, a@) = —1.

Evidently, it results |0, a(x)| < 1on the curve x, — X, = y(x') and x € J; ;5 , with suita-
ble k and 6. Therefore, there exists # such that |9, a(x")] < 1if |x) —Xo| < #ny(x') and
X € tho Whereas |0, a(x ) > 1on Q if [xg —Xy| > ny(x). Let y € C*(R) such that
y®O=0ifr <1 and )((t) =1iftr>n. For every u € C;°() such that suppu C Jk&’ and
uls = 0, we rewrite (13) and (14) for x(“’ x")u and (10) for (1 - (";(‘f;))u Adding
such inequalities, for k small enough, we have

19y, ull + 110, ull + 11Geo — a0, ull + llull < cll "Pul,

Vu € CP(Qz) @ suppu C Jisz, ulg =0, 29
and
10 — @GN, ull < e (Il Pull + 10, ull + 10, ull + llull ) 0
Vu e CP(z) @ suppu € Jys5, ulsg=0.
From (29), (30) and Lemma 5, it follows
1, ull + 119y, ull + 10 = & )o, ull + llull < ell“Pull,
Vu e CP(Q) : suppu C Q; ; = [X). %y + k[XQp, ulg =0
and
ll(xg = a0, ull < &(IlPull + 110, ull + 110, ull + llull),
Vu € Cg"(ﬁ) > suppu C ﬁ;o’k =[xy, Xp + k[xﬁo, ulg =0.
a

With the same techniques used in Theorem 6 if X, = 0 and Theorems 8 and 9 if
X, > 0, we obtain the next result.

Theorem 10 Let (i), (ii) and (iii) be satisfied. If on the plane x, =X, > 0 there exist
points in which |(3X1 a(x')| = 1, then there exist k > 0 and ¢ > 0 such that

N0y, ull + 119y, ull + 1o — @)Dy, ull + llull < cll*Pull,

o ~ ~ 31)
Vu € CF(Q) : suppu C Qs , = [Xg, Xy + k[X€.
Moreover, for every € > O there exists k > 0 such that
G = a0, ull < e(Il*Pull + 110, ull + 119, ull + llull), “
(32)

Vu e C(Q) : suppu C Oy = [%. X + k[XE,.
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7 Estimates in Sobolev spaces withs < 0

Let Q’ be the intersection between Q' and the plane x, = X,. Let F’ be the set of points
X0
belonglng intoI'; =I'n (L such that[d, a(x")| = 1. Moreover, let J; be the intersection
between a nelghborhood of 1“; and Q; We are able to prove the followmg estimate in
0 0

Sobolev spaces with s < 0.

Theorem 11 Let (i), (ii) and (iii) be satisfied. Then, for every X, > 0 and for every s < 0
there exist k > 0 and ¢ > 0 such that

||0x0u||H<>,.‘ + ||0xlu||H<L.‘ + ||(X0 - a(x’))deMIIHo,S + ”M”Ho,s < C”PMHH(),s,
e _ (33)
Vu € CP () @ suppu € Qs ;o =[x, X + k[X€.

Proof Firstly, let x, > 0. Let ¢ € C(R?) such that suppp C Qf, ¢ =1 on Q,, with
Q) C Q. For every u€ CyP(€) such that suppu C Q; , = [Xy, Xy +k[xXQ,, we set
v, = @(x')Au. Making use of Theorem 10, it follows

10, vl + 110, vyll + [1(xo — a(x'))6x2vs|| + vl < |l Pyl (34)
We have

19y, vl =l10, @A, ull

=l A0, ul
1A, 000, 1+ [0, 4,10, ul 39
>[|A,9,,ull - IR0, ull
where R = [@, A ]u is a regularizing pseudodifferential operator.
By using (35) and Lemma 4, we obtain
10, vll 2I1A9,, ull = clIR(xy = X0)03 ull
=140, ull = cllR(xy = Xo)(="Pu+ "Pu + 6?014)”
211A0, ull = cllR(xy = Xo)"Pull = cl|R(xg —Xo)("Pu + 07 w)| (36)
2|10, ull gos = €ll (g = Xo) "Ptll o = ll (g = X)Oy, ll o
= |l = Xp)ull o
Furthermore, it results
194l =119, o)Al
=[1(0,, e NAu + p(x" A0, ull
=119, @ NAu+ A0, u+ [@, A0, ull
(37

>[1A,0,, ull — IRy A,ull — [ A,10, ul
>110, ullgo. = cllul o, = 1Ry, ull

210, ull o — cllull oss
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where R, and R, are regularizing pseudodifferential operators.
Finally, we get

ll(xg — ax’)a,, vill =[1Cxg — a(x')dy, (@AW
=11(9,, () (xy — a(NAu + (xg — a(x)p(x A9, ull
=109, (") — a(NAu + (xg — a()NA; (), u
+ (g — a(x)[e, A,10,, ull
=[[Ryu + A (xg — a(¥)Np(x"), u + [xg — a(x'), AJp(X' )0, u

+ R0, ull
> A, (xg — a(N@( )0 ull = IRsull = 1R, ull = ||B;_;9,,ull
> [|(xg = a0y, ull gos = cllullos = I1Bjull

> (|G — @), ull gos = cllull o
(38)
where R; and R, are regularizing pseudodifferential operators, B,_; and B! are pseudodiffer-
ential operators of order s — 1 and s, respectively. Adding (36), (37), (38) and using Lemma
4, it follows

19, vl + 119, vyl + [l — @(x))a,, vl
2 10, ull gos — cll g = Xo)Pull o — cll(xg — X)0, ull — cll (g = Xo)ull yo.
+ 110y, ull gos + |G — @)y, ull gos — ellull gos (39)
2 (10, ullgos + 110y, ull gos + NG — @), ull o — €l (g — Xo) " Pl gos
—clitxo = }o)ax()“HHO-x = cll(xg — Xp)ull o
Moreover, it results
1Pyl =l "P(p(xHA )|
=[lo() "PAu + [p(x'), "PIAu|l
=[lo(A, "Pu+ @) 'P, A lu + Rsull (40)
=||A, "Pu+ [@'),A,]'Pu+ @) 'P,A,lu + Rsul|
=||A,"Pu+ Rg'Pu+ @) 'P,A,Ju + Rsull,

where Rs and Ry are regularizing operators.
The commutator ['P, A ]is given by

PP AJu = @) 'Py Aglu + () 'Py, AJu + @) 'Po, A, u. (41)
We consider the principal part:
[Py, AJu =B, u+Bu,

where B, and B, are pseudodifferential operators of order s+ I and s, respectively. The
symbol of B, is given by
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2
b(x,&") =— % 9, (&2 + (xg — a)*E)p( )y, (1 + 1&'17)2
h=1

2(xy — @) (=0, a(NE ) 90, (1 + |€'|2)z

o
H

2(xy — a(X)(=0,, a(NE) (), (1 + €' D)

~

Then, By, u = (xg — a(x"))@(x')d, Bju, where B} is a pseudodifferential operator of order s.
Moreover, taking into account Theorem 10, we deduce

1B, ull =[1(xg — a(x"))p(x")d, Blull

X778
<e(Il"PBjull + 119, Biull + 110, Bjull + || Bjull)

<e (1B, Pull + IL'P, B.Jull + 119, ull o + 10, ull o + Ntll o)
<e (11 "Puellgos + 10, ull ros + 110, 1l os + g = @60, ull o + N1l o )

being [P, B!] a pseudodifferential operator of order s — 1 and its principal symbol &’ (x, &)
of the same type of b(x, £). Hence, making use of Lemma 4, it results

oGPy, Alull <ec(Il"Pullos + 110, tell o + (kg — (¥, ul o

- (42)
+ lullgn. ) + 11 = %)d, ll .
We consider the first-order part of the commutator
e()'P,AJu=B,_0, u+Bu+B_u (43)
where B,_, and B, are pseudodifferential operators of order s — 1 and s, respectively.
By using Lemma 4, we have
1B, 0y, ull <cll(xg = Xo)0y By 0y ull
=c||(xg — )?O)Bs_ldfoun
<e (1o = Xo)By— Pull + ||y — Xo)B.0,, ull
+ [|(xo — )_Co)B;/(xo - a(xl))ax] ul|
+ [|(xo — )_Co)B;N(xo - a(x/))axzu”
+1(xp — ’_Co)BgV)“”)’
where Bgi) are pseudodifferential operators of order s. Hence, it results
||BS_1010M” SC(”(XO - )_CO)PI,{”Hm + ||(X0 — EO)dXOMIIHo,\ + ”(XO - )_CO)()X]M”Ho,x (44)

+ [1(xg = %) (g — &X' )0, ull o + [1Gig = Xo)uell o )
Taking into account (43) and (44), it follows

||qo(x’)['P1,AS]|| SC(”(X() = Xo)Pul| gos + 11(xo —J_C())ax(,””HO»‘

+ [1Grg = Xo)(xg — (X' )0, ull o (45)

+ ”(XO - )_Co)u”HOA,\' + “(x() - xo)axl)l/i”HO,;).
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We estimate the zero-order part:

G Py, Alull <cllullgo.

- 46
<ell(xp — xO)axou”HOv“ (46)

Making use of (42), (45), (46) and for |x, — x| < k < &, we obtain
”(P(x’)[’P,AJ]uH SCS(” tPu”H(u + ”axol’t”H‘“ + ”axlu”H‘“ @

+ 110G = @), ll o + lull o ) -

Taking into account (40), (47) and Lemma 4, denoted the generic regularizing operator
by R, it follows

I "Pyll <IA; "Pull + IR Pul| + [P, A Jull + || Rul|
<c|| ’Pulle + SC(”axOu”Ho,s + ||6x]u||Ho,5 + ”(XO - a(x’))axlullHu.,‘)

+ cllull o
‘ / (48)
<cll"Pull o, + ec(110,, ull os + 110, 1tll o + 1| xg — a())0 ull o, )
+ cll(xg — x)0,, ull
<cll "Pullos + ¢ (110, llgos + 110, well gos + 11(xg = @(x))0, wl o ).
By using (34), (39), (48) and Lemma 4, it results
110y, ll gos + 110y, ull o + 1Gg — @)Dy, wll o < cll “Pull o + cellull o
For € small enough and making use of Lemma 4, we have
110y, tllos + 119, ull o + 11(xg — @(X')0y, wll o
< (|l "Pull gos + llull 0.
<c(|| tPu”H(m + ”(XO —)_co)deullHn_x).
For |x, — X,| small enough and using Lemma 4, we deduce
10y, tell o + 110y, ull o + 11 (xg — @)y, ull o + ull o < cll "Putll .,
49)

Vu e C2(Q) : suppu Clxy, Xy + k(X

Since the function ¢ is the same for every functions u, then ¢ does not depend on u but
depends on the distance between 096_and 0Q and k is small enough.

Now, if x, = 0, for every u € C(Q) such that supp u C [0, k[x€Q,, we set v, = @(x")A u.
Making use of Theorem 10, it results

19, vill + 119, vill + G = @G No, vl + vl < ell “Py,I. (50)
Proceeding as done above, we obtain the analogous inequality of (39):
19, v, ll + 110, vell + lIGxy — (o, v,

2 119, ull gos + 110y wllyos + Nl Cg = @), ull o = cllxg " Pull o (51

- c||x00X0u||Hm - C||x0u||H<L,‘,
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where we used Lemma 1 instead of Lemma 4. Considering || ' Pv,|| and proceeding again as
done before and taking into account Theorem 10 and Lemma 1, we have

I| tPVS” < C(” tPl/t”Hm + ||ax0’4||1-104* + ”axlu”H“” + ||()C0 - (X(Xl)aXZM”H(),s). (52)
Moreover, using (50), (51) and (52), we obtain
19, tll o + 119y, 1l o + 11Cxy — &G NA, ull o + Nutll s < €llPtll s
_ 53
Vu e CP(Q) : suppu C [0, k[X€,. (53)

|

8 Global estimates

In this section, we obtain fundamental global estimates in order to prove the existence
of a solution to the Cauchy-Dirichlet problem (2).

Theorem 12 Let (i), (ii) and (iii) be satisfied. Then, for every k > 0 and s < O there exists
¢ > 0 such that

”aXOMHH(),s + ”ax]u”H‘)v‘ + ”(XO - a(-x/))axzu”Hl).x + ||u”Hl>.x < C” tPu”Ho.x,

Vu e C2(Q) : suppu C Q; = [0, k[xQ,. 9
Moreover, for s = 0 and for every k > 0 there exists ¢ > 0 such that
9, ull + 110, ull + 11(xg — a9, ull + llull < cll"Pull,
Yu e CS"(ﬁ) : suppu C ﬁk = [0, k[xﬁo, ulg =0. (55)
Finally, for every k > 0 and s < O there exists ¢ > 0 such that
10, el g0« + 110, ul o + 11Gtg — @A ll o + Nl o < el PLall o 6

Vu € C2(Q) @ suppu C Q; = [0,k[xQy, uls =0,
_f ou, inQ =[0,k[xQ,
where [u] = { 0, inQ = [0,k[x(R?\ Q)
Proof Letk > 0, let us set Q, = [0, k[XL,. For the compactness of [0, k] X ﬁo, there exists
a finite number of subsets {Q;, €2, ..., €, } of €, given by

Q, = (0.7, [xQ), Q, = [}, h[XQ. ... Q, = [ _.h,[xQ,

with iy = 0, h, = h, h,_; < h} < h;, foreveryi = 1, ..., p, and such that (33) holds in every
Q. fori=1,...,p.

Let u € C(‘;"(Qk), let p € C(‘;"([O,hl[), with ¢ =1 on [0, h’][ and 0 <@ <1in [0, h].
Rewriting (33) for gu, it results
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10, @llos + 110, Pull o + 11ty = €N, @ull s + ol
< c||Ppu| o
< C”Pu”H(J,x + C”[P (p]bt”H(n
2
< cllPull gos + cll0y @0, ull o + cll(0; (p)uIIHoj
< C”Pu”Ho\ + C” x()u”HO"‘([hll,hl[XQ()) + c||u||Ho,.\-([hr],h][XQ“)
< C”Pu”H(L‘ + C”axou”H(),\([h/l’h;[xgo) + C”“”H“»‘([h;,h’z[xﬂo)
< C”PM”HO.x + C”axo(plu”H(’“([h’],hz[XQO) + C”(plu”HU'S([h/l,hz[X-Qo)’
where ¢, € C(Q) such that supp @, C [/, h,[, @, = Lin[A], h)] X Q.
We can deduce that
”axo(pi_lu”HO,s + ”axl(pi—lu”HOvS + (o — a(x’))@xqui_luHHo,x + @iz ull gos
< cllPullgos + cll Oy @ittll oy i, 1x) + @it gos iy n, x>

where ¢, = @ and @; € C°([0, k[) such that supp ¢, C

C [H), by [, foreveryi=1,...,p.
On the other hand, we have

19,, @p—1ttll gos + 110, @,y ttll o + 11(xg = a(x’))dXZ(pp_lulle + 1@, 11l o
< c”Pu”HOA.\ + C”axo(ﬂp””H”«"(Qp) + C”quu”HO«‘(Qp)

(57)
< cllPullyos + c(||ax0u||,,0_,‘(gp) + ||u||H0,.\(gp))
< C”Pu”Hl)J-
Using (33), (57) and proceeding by recurrence on i, we easily obtain
“ax(,‘/’i“”HO»\' + “axl @iull gos + 1l (xg — a(xl))aX2(P,-M||Ho,»- + llgiullgos < cllPull o,
fori =1,...,p. Taking into account the previous inequality, we have
110, ull o + 119, ull o + g — @Iy, ull gos + Nutll o < cllPutll s, .

Vu e CP(Q) : suppu C Q.

For the arbitrariness of k, (58) holds for every u € C° (ﬁ). The proof of (54) is thereby
completed.

Furthermore, taking into account (31), we obtain (55).

Finally, we prove (56). Let u € C;°(Q) such that suppu C [0, k[xQ0 and ul|g = 0. Let
{u,} be a sequence in C (Q) such that suppu, C [0, k[X, and u, — u in H>'. We have
that u, — u and Pu, — P[u] in H%, for every s < 0. Hence, rewriting (54) for u,, for every
n € N, and passing to the limit as n — +o0, we obtain (56). O

9 Proof of Theorem 1

Let V be the subspace of Lz(Qk) where Q, =]0, k[X€2,, made up of functions y = "Pu,
withu € C°°(Q) such that suppu C [0, k[><Q0 and u|g = 0. Let us consider the functional
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T(w) =T('"Pu) = (f,w).
It results

IT(w)l =IT("Pu)l
=|(f,wl

S 2@ el 2, -
Making use of (55), we have
1T <cllf ll 2l "Pull2q,)

=C|V||L2(QA) ”W”LZ(QA)

=C,||W||L2(gzk)7

where ¢’ = c||f]| Q)" Therefore, it is possible to extend T as a linear continuous functional
into L?(Q,). Making use of a representation theorem, there exists w € L*(Q,) such that

Tv) = w,v), Vv e LX Q).
In particular, we have
T(y)=T('Pu) = (w, 'Pu) = (f,u), Vue Cg"(ﬁk) Dulg=0.
Hence, w is a solution in the sense of distributions to the equation
Pu=f, inQ.

For the arbitrariness of k and since f € leac(ﬁ), Theorem 1 is proved.

10 Proof of Theorem 2

Let us denote by W the subspace of D' ([0, k[xL,) containing extensions of linear continuous
functionals to functions ¢ € C°(£2;) such that @|s = 0, where Q; = [0, k[X€Q,. It results that
Plu] € W, where u € C8°(Qk) such that u|¢ = O and u = 0in [0, k[x(R2\ Q). Moreover, we
have

(@, 'Plul) = (@, 'Plu)) = (9, 'Pu), Vo € CTQ) : ¢lg=0.

Therefore, the distributions 'P[u] and ‘Pu are equal in W. Let T be the functional defined
into the subspace of W containing the distributions y = ‘P[u], for every u € C®([0, k[X€,)
such that u|; = 0, given by

T(y) = T("Plul) = (f, ).

Making use of (56), it follows
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1Tl =IT("Plu)]
=, wl
<IUF M gzos el pro-s

<cl|"Plulll o, Yu€ CX(Q) : ulg=0.

with s < r. Then, T can be extended in the subspace W’ of W containing the distributions
of W with finite H0~“"(Qk)—n0rm. As a consequence, there exists w € W'*, where W’* is the
topological dual of W’, such that

T(y) = T('Plu]) = (w, "Plul) = (f, w). (59)
On the other hand, it results w € HO*S(Q,() and since
((pa IP[M]) = (§0, tPu)’ V% ue C(‘;o([ov k[XQO) : (pls = 0’ Mls = Oa

it follows for every {¢,} C C7°([0, +oo[x§0) such that ¢,|g =0, Vn €N, and ¢, = w in
W/*’
(Pw,u) =(w, "P[u])
= lim (@,, 'Plu])

n—+oo
60
= 1im (¢, "Pu) (60)
n—+co
=(w, 'Pu),
we deduce that w|g = 0 (see also below).
Taking into account (61) and (60), we get
W, 'Pu) = (Pw,u) = (f,u), Vu € C(Q) : suppu C [0, k[x€. 61)
From (61), we have
Pw=f, in the sense of distributions.
and
w e H' (€ \ 0Q).
Indeed, set Lw = Pw + 02 w — <ay(x)d, w — b(x)w, it results
1
—0; w+ ~ag()d, W+ bxw =f — Lw, (62)

with w € D'(Q,) N H*(Q,) and f — Lw € L*(Q,). From (62), it follows that w is a solu-
tion to a second-order differential equation with zero-order term belonging to L?(,).
Hence, we have w € H>0(Q,) n H%"(€,). On the other hand, (62) implies
0,0, 2 1 0,
o0 (=02 w o~y w o+ bow ) = O (f = L),
i

with a; + @, < s — r + 2. Therefore, we obtain
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_ aioao,al,azw + l.ao(x)axoao,al,azw + b(x)a(lﬂtl,azw

’ ! (63)

= P (f — L) + [0 = 02 4 =ag(9)0,, + b | w.
1

Proceeding by induction in the previous equality, assuming u € H>~!, with1 <p <r -2
and taking into account (63), it results

w € HP(Q \ 0Qy).
Subsequently, by the equality
or—ran <—0§0w + %ao(x)ax(]w + b(x)w) = P2 (f — Lw),
with0 <p -2+ a; + a, < r— 2, and proceeding by induction on p, it follows
w e H' (€ \ 0Q).

From (61), we deduce

(Pw,u) =(Pw, u)
=(w, 'Pu)
=(f,u), Yue€ Cy () : suppu CJ0, k[X€,.

Then, we obtain
Pw=f, ae. inint€;.
Now, making use of (61), we show that the boundary conditions on €, are satis-
fied. Let u(xy,x") = ug(xy)u,(x") such that u, € CrU0, kD, up(0) =1, 6X0u0(0) =0 and
u; € C(Qy). Integrating by parts in (61), we have
(Pw,u) — / w(0,x u; (x')dx" = (w, 'Pu).
Q()
It follows
/ w(0,x)u; (xXdx" =0,  Vu; € CP ().
Q
It implies
w(0,x) =0, ae. inQ,.

Instead, if wu(xy,x") = uy(xy)u,(x'), with u, € Ce (0, kD, uy(0) =0, axouo(O) =1 and
u; € Cy(£), integrating by parts, we obtain

/ dew(O,x')ul(x')dx' =0, Vu € Cy(€).
Q

Hence, it results
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a, w0, x¥)=0, ae. inQ,.

Then, we have proved that the Cauchy problem

{ Pw=f, inQ,
dw
ngo =0, Elﬂo =0,

admits a solution w € H’(ﬁk \ 0Q), for every k > 0, under assumptions (i), (ii) and (iii)
and if f € H"(Q,). Finally, we justify that w|g = 0, as written above. In fact, integrating by
parts in (61), we get

(Pw,u) + /wnldx] udo + /wnz(xo - (x(x’))z()xauda = (w, 'Pu).
s s :
It follows

/w(nldxlu + 1, (xy — a(x'))20x2u)da =0.
s

Fixed an arbitrary test function ¢ on S, it is possible to determine u such that
n0, u+ ny(xg — a(x’))26x2u|s = ¢(xy,x"). Then, we obtain

/W¢d6 =0, V¢e ), (64)
s

which implies
w=0, ae. inS.

In the following, a brief proof of the previous claim is given. Parameterizing the surface S
in the following way:

Xo =Xp, X1 =@i(5), X = @y(9),

with x;, € [0, k[ and s € [0, L(0€2)], being s the arc length of €2, we have

</w(nl(3x1 u+ny(xy — 0(()6'))20)Cz u)do
s

= / w(xg, @1 (5), (Pz(s))(ﬂ/z(s)axl u(xg, @1(s), @, (s))dxods
[0.K1X[0,L(0%)]

- / W(xg, @1(), P2() @] (5)(xy — (@ (), P1(s)))*
[0.k1X[0,L(0€)]
. axz M(xo, (P1(5)7 (Pz(s))dxods
d
= / w(Xg, s)d—“(xo, (@5(5)* + (Xg — a(9))* (@) (5))*)dxyds,
[0.K1X[0.L(02,)] n
where n is the external normal vector to the surface S. Hence, in order to obtain (64), we

need that Z—uls = ¢(xy,s), where ¢ is an arbitrary function belonging to
n

C ([0, k[X]0, L(0€2)[)- As a consequence, we have proved the existence of a solution
w e H" (&, \ 0Q) to the following Cauchy—Dirichlet problem
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d
ngo =0, ﬁ'go =0, W|s =0,

{ Pw=f, in&,
where f € H ’(ﬁk). Since f € H lroc(ﬁ) and for the arbitrariness of k, Theorem 2 is obtained.
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