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Abstract. We consider a Dirichlet type problem for a nonlinear, nonlocal equation driven
by the degenerate fractional p-Laplacian, with a logistic type reaction depending on a positive
parameter. In the subdiffusive and equidiffusive cases, we prove existence and uniqueness of
the positive solution when the parameter lies in convenient intervals. In the superdiffusive
case, we establish a bifurcation result. A new strong comparison result, of independent
interest, plays a crucial role in the proof of such bifurcation result.
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1. Introduction

The present paper is devoted to the study of the following nonlinear elliptic equation of
fractional order with Dirichlet type condition:

(Pλ)


(−∆p)

s u = λuq−1 − ur−1 in Ω

u > 0 in Ω

u = 0 in Ωc.

Here Ω ⊂ RN (N > 2) is a bounded domain with C1,1 boundary ∂Ω, s ∈ (0, 1), p > 2 are
s.t. ps < N , and the leading operator is the degenerate fractional p-Laplacian, defined for all
u : RN → R smooth enough and x ∈ RN by

(−∆p)
s u(x) = 2 lim

ε→0+

∫
{|x−y|>ε}

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy

(which for p = 2 reduces to the linear fractional Laplacian, up to a dimensional constant
C(N, s) > 0). The reaction is of logistic type, with powers 1 < q < r < p∗s, where p∗s =
Np/(N − ps) denotes the critical exponent for fractional Sobolev spaces, and λ > 0 is a
parameter. Problem (Pλ) may is classified in three different types, according to the principal
exponent q > 1:

(a) subdiffusive, if q < p < r;
(b) equidiffusive, if p = q < r;
(c) superdiffusive, if p < q < r.

Logistic equations are widely studied mainly because of their important applications in math-
ematical biology. Indeed, the parabolic semilinear logistic equation describes the evolution
and spatial distribution of a biological population in the presence of constant rates of repro-
duction and mortality (Verhulst’s law), see [17]. This is the obvious reason why, in the study
of logistic type equations, authors are usually interested in positive solutions. More recently,
evolutive systems involving logistic terms have been studied as a model for the biological
phenomenon of chemotaxis [37], and existence of solutions in the presence of a parameter was
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studied in [1, 7]. Regarding the elliptic counterpart, it models an equilibrium distribution,
see [10]. Several existence results for the equidiffusive cases (b), combining variational an
topological methods, can be found in [2, 3, 36] (note that multiplicity often includes negative
and nodal solutions). Bifurcation results for the superdiffusive case (c) can be found in [23]
for the Dirichlet problem, and in [29] for the whole space.

Fractional order equations also have a close connection to mathematical biology, since frac-
tional elliptic operators model space diffusion via Lévy type random motion with jumps, and
hence they can be used to describe the movement of populations, see [4, 31]. Studies on lo-
gistic equations with several nonlocal operators of fractional order have appeared in recent
years, including the square root of the Dirichlet Laplacian [8], the spectral Neumann fractional
Laplacian [28], and the fractional Laplacian on the whole space [35].

The operator we consider here is both nonlinear and nonlocal. It represents the nonlinear
generalization of the fractional Laplacian, and it can be seen as the gradient of the functional
u 7→ [u]ps,p/p in the fractional Sobolev space W s,p(RN ) (see Section 2 below), as first pointed
out in [5]. The corresponding eigenvalue problem was studied in [26], which led to existence
results for general nonlinear reactions via Morse theory in [18]. Due to the nature of the
operator, regularity theory for weak solutions requires a considerable effort as most usual
techniques (including the Caffarelli-Silvestre extension method) do not apply here. For any
p > 1, Hölder continuity of weak solutions in the interior and up to the boundary was studied
in [14] and [20], respectively. In the degenerate case p > 2, optimal interior Hölder regularity
was proved in [6], while a weighted global Hölder regularity result was proved in [21] (the
singular case p ∈ (1, 2) is still open).

The result of [21] is the fractional counterpart of Lieberman’s C1,α-regularity result for the
classical p-Laplacian [25] and yields many applications, such as the equivalence of Sobolev and
Hölder local minimizers of the energy functional [22], the existence of extremal constant sign
solutions [16], and more recently a Brezis-Oswald type weak comparison principle [19]. We
also recall other interesting related results, such as the study of critical growth and singularity
performed in [9] and the bifurcation results of [12, 32]. For further information we refer the
reader to the surveys [27,30].

As far as we know, the present literature includes no specific study on the logistic equation
for the fractional p-Laplacian. This paper aims at filling the gap, by presenting the following
general result for existence of solutions to problem (Pλ) (in which λ̂1 > 0 denotes the principal
eigenvalue of (−∆p)

s in Ω with Dirichlet conditions):

Theorem 1.1. Let Ω ⊂ RN be a bounded domain with C1,1-boundary, p > 2, s ∈ (0, 1) s.t.
ps < N , and 1 < q < r < p∗s. Then, the following hold:

(a) if q < p, then for all λ > 0 problem (Pλ) has a unique solution uλ > 0, with uλ > uµ
in Ω for all λ > µ > 0 and uλ → 0 as λ→ 0+;

(b) if q = p, then for all λ ∈ (0, λ̂1] problem (Pλ) has no solution, while for all λ > λ̂1

(Pλ) has a unique solution uλ > 0, with uλ > uµ in Ω for all λ > µ > λ̂1 and uλ → 0

as λ→ λ̂+
1 ;

(c) if q > p, then there exists λ∗ > 0 s.t. for all λ ∈ (0, λ∗) problem (Pλ) has no solution,
while (Pλ∗) has at least one solution u∗ > 0, and for all λ > λ∗ (Pλ) has at least
two solutions uλ > vλ > 0, with uλ > uµ in Ω for all λ > µ > λ∗ and uλ → u∗ as
λ→ λ+

∗ .
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More precise statements of the results above can be found in the subsequent Theorems 3.1,
4.1, and 5.5. Our approach is variational, based on critical point theory and comparison-
truncation arguments. For the sub- and equidiffusive cases we apply direct minimization and
the weak comparison result of [19] for uniqueness. In the superdiffusive case, we prove a
bifurcation result and detect via the mountain pass theorem a second solution for all λ > λ∗.

We remark that our result is new even in the semiliear case p = 2 (fractional Laplacian) and
in the local case s = 1 (classical p-Laplacian). Bifurcation theorems are proved in [8] for the
superdiffusive logistic equation driven by the square root of the Laplacian, and in [23] for the
classical p-Laplacian, but with no information about monotonicity, order between solutions,
and convergence. Also, existence and uniqueness for the equidiffusive case with the fractional
Laplacian are proved in [35].

A crucial role in our arguments is played by new strong maximum and comparison principles
for weak sub- and supersolutions, including a Hopf type property (see Theorems 2.6, 2.7).
Previous results of this type were proved in [13] and in [24], respectively, but our versions
involve very general reactions and milder restrictions on the constants p, s and can be of
general interest, since they care applicable to a wide class of problems driven by the fractional
p-Laplacian.

Structure of the paper: In Section 2 we recall some preliminary results and prove new
maximum and comparison principles (Subsection 2.1); in Section 3 we deal with the subdif-
fusive case; in Section 4 we deal with the equidiffusive case; and in Section 5 we deal with the
superdiffusive case.

Notation: For any a ∈ R, ν > 0 we set aν = |a|ν−1a. For any A ⊂ RN we shall set
Ac = RN \A and denote by |A| the Lebesgue measure of A. For any two measurable functions
u, v : Ω→ R, u 6 v will mean that u(x) 6 v(x) for a.e. x ∈ Ω (and similar expressions). The
positive (resp., negative) part of u is denoted u+ (resp., u−). Every function u defined in Ω
will be identified with its 0-extension to RN . If X is an ordered function space, then X+ will
denote its non-negative order cone. For all ν ∈ [1,∞], ‖ · ‖ν denotes the standard norm of
Lν(Ω) (or Lν(RN ), which will be clear from the context). Moreover, C will denote a positive
constant whose value may change case by case.

2. Preliminaries

Problem (Pλ) falls into the following class of Dirichlet problems for the fractional p-Laplacian:

(2.1)

{
(−∆p)

s u = f(x, u) in Ω

u = 0 in Ωc,

where Ω, p, s are as in Section 1 and the general reaction f satisfies the following hypothesis:

H f : Ω× R→ R is a Carathéodory function s.t. for a.e. x ∈ Ω and all t ∈ R

|f(x, t)| 6 c0(1 + |t|r−1) (c0 > 0, r ∈ (p, p∗s)).

A variational theory for problem (2.1) was established in the recent literature (see for instance
[16, 18, 22]). For the reader’s convenience, we recall here some of its main features. First, for
all measurable u : Ω→ R we introduce the Gagliardo seminorm

[u]s,p,Ω =
[ ∫∫

Ω×Ω

|u(x)− u(y)|p

|x− y|N+ps
dx dy

] 1
p
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setting [u]s,p,RN = [u]s,p. Then, we define the fractional Sobolev spaces

W s,p(Ω) =
{
u ∈ Lp(Ω) : [u]s,p,Ω <∞

}
,

W s,p
0 (Ω) =

{
u ∈W s,p(RN ) : u = 0 in Ωc

}
,

the latter being a uniformly convex, separable Banach space with norm ‖u‖ = [u]s,p, whose

dual space is denoted by W−s,p
′
(Ω) (see [15]). The embedding W s,p

0 (Ω) ↪→ Lν(Ω) is continuous
for all ν ∈ [1, p∗s] and compact for all q ∈ [1, p∗s). We also recall from [20, Definition 2.1] the
following special space:

W̃ s,p(Ω) =
{
u ∈ Lploc(R

N ) : ∃U c Ω s.t. u ∈W s,p(U),

∫
RN

|u(x)|p−1

(1 + |x|)N+ps
dx <∞

}
.

By [20, Lemma 2.3], we can define the fractional p-Laplacian as a nonlinear operator (−∆p)
s :

W̃ s,p(Ω)→W−s,p
′
(Ω) by setting for all u, v ∈W s,p

0 (Ω)

〈(−∆p)
s u, v〉 =

∫∫
RN×RN

(u(x)− u(y))p−1(v(x)− v(y))

|x− y|N+ps
dx dy

(with the convention ap−1 = |a|p−2a established above). Such definition is equivalent to the
one given in Section 1 as soon as u is smooth enough (for instance, if u ∈ S(RN )).

Clearly W s,p
0 (Ω) ⊂ W̃ s,p(Ω). The restricted operator (−∆p)

s : W s,p
0 (Ω) → W−s,p

′
(Ω) is

continuous, maximal monotone, and enjoys the (S)+-property, namely, whenever (un) is a
sequence in W s,p

0 (Ω) s.t. un ⇀ u in W s,p
0 (Ω) and

lim sup
n
〈(−∆p)

s un, un − u〉 6 0,

then un → u in W s,p
0 (Ω) (see [16, Lemma 2.1]). From [19, Lemma 2.1], for all u ∈ W s,p

0 (Ω)
we have

(2.2) ‖u±‖p 6 〈(−∆p)
s u,±u±〉.

Another useful property, referred to as strict T -monotonicity, of (−∆p)
s is the following

(see [16, proof of Lemma 3.2]):

Proposition 2.1. Let u, v ∈ W̃ s,p(Ω) s.t. (u− v)+ ∈W s,p
0 (Ω) satisfy

〈(−∆p)
s u− (−∆p)

s v, (u− v)+〉 6 0.

Then, u 6 v in Ω.

We say that u ∈ W̃ s,p(Ω) is a (weak) supersolution of (2.1) if u > 0 in Ωc and for all
v ∈W s,p

0 (Ω)+

〈(−∆p)
s u, v〉 >

∫
Ω
f(x, u)v dx,

and similarly we define a (weak) subsolution. Finally, u ∈ W s,p
0 (Ω) is a (weak) solution of

(2.1) if it is both a super- and a subsolution, i.e., if for all v ∈W s,p
0 (Ω)

〈(−∆p)
s u, v〉 =

∫
Ω
f(x, u)v dx.

In such cases we write that weakly in Ω

(−∆p)
s u = (>, 6) f(x, u).

From [9, Theorem 3.3] we have the following a priori bound on the solutions:
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Proposition 2.2. Let H hold, u ∈ W s,p
0 (Ω) be a solution of (2.1). Then, u ∈ L∞(Ω) with

‖u‖∞ 6 C(‖u‖).
Classical nonlinear regularity theory does not apply to fractional order equations, whose
solutions fail to be C1 in general. Nevertheless, weighted Hölder continuity can replace higher
smoothness in most cases. We set dΩ(x) = dist(x,Ωc) for all x ∈ RN and define the following
space:

C0
s (Ω) =

{
u ∈ C0(Ω) :

u

dsΩ
has a continuous extension to Ω

}
,

a Banach space under the norm ‖u‖0,s = ‖u/dsΩ‖∞. By [18, Lemma 5.1], the positive order

cone C0
s (Ω)+ has a nonempty interior

int(C0
s (Ω)+) =

{
u ∈ C0

s (Ω) : inf
Ω

u

dsΩ
> 0
}
.

Similarly, for any α ∈ (0, 1) we set

Cαs (Ω) =
{
u ∈ C0(Ω) :

u

dsΩ
has a α-Hölder continuous extension to Ω

}
,

a Banach space under the norm

‖u‖α,s = ‖u‖0,s + sup
x 6=y

|u(x)/dsΩ(x)− u(y)/dsΩ(y)|
|x− y|α

.

By the Ascoli-Arzelà theorem, Cαs (Ω) ↪→ C0
s (Ω) with compact embedding for all α ∈ (0, 1).

From Proposition 2.2 and [21, Theorem 1.1] we have the following weighted Hölder regularity
result:

Proposition 2.3. Let H hold, u ∈W s,p
0 (Ω) be a solution of (2.1). Then there exists α ∈ (0, s],

independent of u, s.t. u ∈ Cαs (Ω) and ‖u‖α,s 6 C(‖u‖).
From [19, Proposition 2.8] we have the following weak comparison principle under a special
monotonicity assumption of Brezis-Oswald type:

Proposition 2.4. Let H hold and assume that

t 7→ f(x, t)

tp−1

is decreasing in (0,∞) for a.e. x ∈ Ω. Let u, v ∈ int(C0
s (Ω)+)∩W s,p

0 (Ω) be a subsolution and
a supersolution, respectively, of (2.1). Then, u 6 v in Ω.

The energy functional for problem (2.1) is defined by setting for all u ∈W s,p
0 (Ω)

Φ(u) =
‖u‖p

p
−
∫

Ω
F (x, u) dx,

where we have set for all (x, t) ∈ Ω× R

F (x, t) =

∫ t

0
f(x, τ) dx.

By classical results, we have Φ ∈ C1(W s,p
0 (Ω)), and u ∈ W s,p

0 (Ω) is a solution of (2.1)

iff Φ′(u) = 0 in W−s,p
′
(Ω). Besides, by [18, Proposition 2.1] Φ satisfies a bounded (PS)-

condition, namely, whenever (un) is a bounded sequence in W s,p
0 (Ω) s.t. (Φ(un)) is bounded

in R and Φ′(un)→ 0 inW−s,p
′
(Ω), then (un) has a convergent subsequence. In this connection,

we recall from [22, Theorem 1.1] the following equivalence principle for Sobolev and Hölder
local minimizers of Φ:
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Proposition 2.5. Let H hold, u ∈W s,p
0 (Ω). Then, the following are equivalent:

(i) there exists ρ > 0 s.t. Φ(u+ v) > Φ(u) for all v ∈W s,p
0 (Ω) ∩ C0

s (Ω), ‖v‖0,s 6 ρ;
(ii) there exists σ > 0 s.t. Φ(u+ v) > Φ(u) for all v ∈W s,p

0 (Ω), ‖v‖ 6 σ.

Regarding the spectral properties of the fractional p-Laplacian, we refer the reader to [26].
We just recall that the eigenvalue problem is stated as

(2.3)

{
(−∆p)

s u = λup−1 in Ω

u = 0 in Ω.

The principal eigenvalue of (2.3) is defined as

(2.4) λ̂1 = inf
u∈W s,p

0 (Ω)\{0}

‖u‖p

‖u‖pp
,

and it is simple and isolated with a unique positive eigenfunction û1 ∈ int(C0
s (Ω)+) s.t.

‖u‖p = 1.

2.1. Strong maximum and comparison principles. As mentioned in Section 1, a strong
maximum principle and a Hopf type lemma for the fractional p-Laplacian were proved in [13,
Theorems 1.2, 1.5], while a strong comparison principle was obtained in [24, Theorem 1.1].
Nevertheless, the strong comparison principle of [24] does not fit with our purposes for two
reasons: first, in the degenerate case p > 2 it requires some special relations between the
parameters p and s which, combined with the optimal Hölder continuity proved in [6], lead
to the quite restrictive condition s 6 1/p′; second, the result only ensures that the difference
between the super- and the subsolution is positive in Ω, while we need to prove that such
difference lies in int(C0

s (Ω)+).

Motivated by such difficulties, we present here a new pair of results, following an alternative
approach based on the nonlocal superposition principle introduced in [21]. We begin with a
strong maximum principle (including a Hopf type boundary property):

Theorem 2.6. Let g ∈ C0(R) ∩BVloc(R), u ∈W s,p
0 (Ω) ∩ C0(Ω), u 6≡ 0 s.t.{

(−∆p)
s u+ g(u) > g(0) weakly in Ω

u > 0 in Ω.

Then,

inf
Ω

u

dsΩ
> 0.

In particular, if u ∈ C0
s (Ω), then u ∈ int(C0

s (Ω)+).

Proof. By Jordan’s decomposition, we can find g1, g2 ∈ C0(R) nondecreasing s.t. g(t) =
g1(t)− g2(t) for all t ∈ R, and g1(0) = 0. So we have weakly in Ω

(−∆p)
s u+ g1(u) = (−∆p)

s u+ g(u) + g2(u)

> g(0) + g2(0) = 0.

Thus, without loss of generality we may assume that g is nondecreasing and g(0) = 0. In
order to prove our assertion, we need a lower barrier for u. Let us consider the following
torsion problem:

(2.5)

{
(−∆p)

s v = 1 in Ω

v = 0 in Ωc.
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By convexity, (2.5) has a unique solution v ∈ W s,p
0 (Ω), which by [21, Lemma 2.3] satisfies

v > cdsΩ in Ω, for some c > 0. By Proposition 2.3 we have v ∈ Cαs (Ω), in particular v is

continuous. So, since u 6≡ 0, we can find x0 ∈ Ω, ρ, ε > 0, and η0 ∈ (0, 1) s.t. Bρ(x0) ⊂ Ω and

(2.6) sup
Bρ(x0)

η0v < inf
Bρ(x0)

u− ε.

Set for all x ∈ RN , η ∈ (0, η0]

wη(x) =

{
ηv(x) if x ∈ Bc

ρ/2(x0)

u(x) if x ∈ Bρ/2(x0).

First, by (2.6) we have wη 6 u in Bρ(x0). Besides, wη ∈ W̃ s,p(Ω\Bρ(x0)) and by the nonlocal

superposition principle [21, Proposition 2.6] we have weakly in Ω \Bρ(x0)

(−∆p)
swη(x) = (−∆p)

s (ηv)(x) + 2

∫
Bρ/2(x0)

(ηv(x)− u(y))p−1 − (ηv(x)− ηv(y))p−1

|x− y|N+ps
dy

6 ηp−1(−∆p)
s v(x) + C

∫
Bρ/2(x0)

(ηv(y)− u(y))p−1

|x− y|N+ps
dy

6 ηp−1 + C

∫
Bρ/2(x0)

−εp−1

(ρ/2)N+ps
dy

6 ηp−1 − Cρεp−1

for some Cρ > 0 independent of ε, where we have used (2.5), (2.6), and the following elemen-
tary inequality:

(a− b)p−1 − (a− c)p−1 6 22−p(c− b)p−1,

holding for all a, b, c ∈ R, b > c (see [20, eq. (2.7)]). So, for all η ∈ (0, η0] small enough we
have weakly in Ω \Bρ(x0)

(−∆p)
swη < −Cεp−1.

Since g(wη) → 0 uniformly in Ω \ Bρ(x0) as η → 0+, for an even smaller η ∈ (0, η0] we have
(in a weak sense){

(−∆p)
swη + g(wη) 6 0 6 (−∆p)

s u+ g(u) in Ω \Bρ(x0)

wη 6 u in (Ω \Bρ(x0))c.

Since wη 6 u in Bρ(x0), we have (wη − u)+ ∈ W s,p
0 (Ω \ Bρ(x0)). So we can employ such

function to test the inequality above and get

〈(−∆p)
swη − (−∆p)

s u, (wη − u)+〉 6
∫

Ω\Bρ(x0)
(g(u)− g(wη))(wη − u)+ dx,

and the latter is negative by monotonicity of g. By Proposition 2.1 we have wη 6 u in

Ω \Bρ(x0). Combining with (2.6) we get in Ω

u > ηv > ηcdsΩ,

hence the conclusion. In particular, if u ∈ C0
s (Ω), then clearly we have u ∈ int(C0

s (Ω)+). �

With a similar technique we prove a strong comparison principle for general autonomous
reactions:
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Theorem 2.7. Let g ∈ C0(R) ∩BVloc(R), u, v ∈W s,p
0 (Ω) ∩ C0(Ω) s.t. u 6≡ v, K > 0 satisfy{

(−∆p)
s v + g(v) 6 (−∆p)

s u+ g(u) 6 K weakly in Ω

0 < v 6 u in Ω.

Then, u > v in Ω. In particular, if u, v ∈ int(C0
s (Ω)+), then u− v ∈ int(C0

s (Ω)+).

Proof. As in Theorem 2.6, we may assume g nondecreasing. By continuity, we can find x0 ∈ Ω,
ρ, ε > 0 s.t. Bρ(x0) ⊂ Ω and

sup
Bρ(x0)

v < inf
Bρ(x0)

u− ε.

Hence, for all η > 1 close enough to 1 we have

(2.7) sup
Bρ(x0)

ηv < inf
Bρ(x0)

u− ε

2
.

Define wη ∈ W̃ s,p(Ω \ Bρ(x0)) as in Theorem 2.6, so by (2.7) we have wη 6 u in Bρ(x0).

Applying nonlocal superposition as in the previous proof we have weakly in Ω \Bρ(x0)

(−∆p)
swη 6 η

p−1(−∆p)
s v − Cρεp−1,

for some Cρ > 0 and all η > 1 close enough to 1. Further, we have weakly in Ω \Bρ(x0)

(−∆p)
swη + g(wη) 6 η

p−1(−∆p)
s v + g(wη)− Cρεp−1

6 ηp−1
(
(−∆p)

s v + g(v)
)

+
(
g(wη)− ηp−1g(v)

)
− Cρεp−1

6 ηp−1
(
(−∆p)

s u+ g(u)
)

+
(
g(wη)− ηp−1g(v)

)
− Cρεp−1

6 (−∆p)
s u+ g(u) +K(ηp−1 − 1) +

(
g(wη)− ηp−1g(v)

)
− Cρεp−1.

Since

K(ηp−1 − 1) +
(
g(wη)− ηp−1g(v)

)
→ 0

uniformly in Ω \Bρ(x0) as η → 1+, we have for all η > 1 close enough to 1{
(−∆p)

swη + g(wη) 6 (−∆p)
s u+ g(u) weakly in Ω \Bρ(x0)

wη 6 u in (Ω \Bρ(x0))c.

Testing with (wη − u)+ ∈ W s,p
0 (Ω \ Bρ(x0)), recalling the monotonicity of g, and applying

Proposition 2.1 we get u > wη in Ω \Bρ(x0). So we have in Ω

u > ηv > v,

hence the conclusion. In particular, if u, v ∈ int(C0
s (Ω)+), then clearly

inf
Ω

u− v
dsΩ

> inf
Ω

(η − 1)v

dsΩ
> 0,

so u− v ∈ int(C0
s (Ω)+). �

Remark 2.8. Both results above exhibit unexpected differences when compared to the cor-
responding local versions, i.e., the case of the classical p-Laplacian. For example, according to
Theorem 2.6, the strong maximum principle holds for supersolutions of the Dirichlet problem{

(−∆p)
s u+ uσ = 0 in Ω

u = 0 in Ωc
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for any σ > 0, while for s = 1 the same is not true when σ < p−1 due to the possible presence
of dead cores (see [34, p. 204]). Also, the strong comparison principle of Theorem 2.7 includes
cases which are excluded in the local case (see [11, Example 4.1]). This is essentially due to
the nonlocal nature of the operator.

3. The subdiffusive case

In this section we study problem (Pλ) with 1 < q < p < r < p∗s. For all λ > 0, t ∈ R we set

fλ(t) = λ(t+)q−1 − (t+)r−1,

Fλ(t) =

∫ t

0
fλ(τ) dτ = λ

(t+)q

q
− (t+)r

r
.

Note that fλ : R → R satisfies hypotheses H as stated in Section 2. So we may set for all
u ∈W s,p

0 (Ω)

Φλ(u) =
‖u‖p

p
−
∫

Ω
Fλ(u) dx,

and deduce that Φλ ∈ C1(W s,p
0 (Ω)) and the positive critical points of Φλ coincide with the

solutions of (Pλ).

In this case we have the following global existence and uniqueness result (corresponding to
case (a) of Theorem 1.1):

Theorem 3.1. Let 1 < q < p < r < p∗s. Then, for all λ > 0 problem (Pλ) has a unique
solution uλ ∈ int(C0

s (Ω)+), s.t. uλ − uµ ∈ int(C0
s (Ω)+) for all λ > µ > 0 and uλ → 0 in both

W s,p
0 (Ω) and C0

s (Ω) as λ→ 0+.

Proof. Fix any λ > 0. We will find the solution of (Pλ) by direct minimization. First we prove
that Φλ is coercive. Indeed, since q < r, the mapping Fλ is clearly bounded from above, i.e.,
there exists C > 0 s.t. for all t ∈ R it holds Fλ(t) 6 C. So, for all u ∈W s,p

0 (Ω) we have

Φλ(u) >
‖u‖p

p
− C|Ω|,

and the latter tends to ∞ as ‖u‖ → ∞. Besides, by the compact embeddings W s,p
0 (Ω) ↪→

Lq(Ω), Lr(Ω), it is easily seen that Φλ is sequentially weakly lower semicontinuous in W s,p
0 (Ω).

So, there exists uλ ∈W s,p
0 (Ω) s.t.

(3.1) Φλ(uλ) = inf
W s,p

0 (Ω)
Φλ =: mλ.

Besides, let û1 ∈ int(C0
s (Ω)+) be defined as in Section 2, then for all τ > 0

Φλ(τ û1) = τp
‖û1‖p

p
− λτ q ‖û1‖qq

q
+ τ r

‖û1‖rr
r

,

and the latter is negative for all τ > 0 small enough (recall that q < p < r). So, in (3.1) we

have mλ < 0, implying uλ 6≡ 0. From (3.1) we deduce that Φ′λ(uλ) = 0 in W−s,p
′
(Ω), i.e., we

have weakly in Ω

(3.2) (−∆p)
s uλ = fλ(uλ).

By Lemma 2.3 we have uλ ∈ Cαs (Ω). Besides, testing (3.2) with −u−λ ∈W
s,p
0 (Ω) and applying

(2.2), we have

‖u−λ ‖
p 6 〈(−∆p)

s uλ,−u−λ 〉 =

∫
Ω
fλ(uλ)(−u−λ ) dx = 0.
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so uλ > 0. Now Theorem 2.6 implies uλ ∈ int(C0
s (Ω)+), so uλ solves (Pλ).

Next we prove uniqueness. Let vλ ∈ int(C0
s (Ω)+) be another solution of (Pλ). We have for all

t > 0
fλ(t)

tp−1
= λtq−p − tr−p,

and such mapping is decreasing in (0,∞). Applying Proposition 2.4 twice, we have uλ = vλ.

To see monotonicity, let 0 < µ < λ, and uµ, uλ ∈ int(C0
s (Ω)+) be the solutions of (Pµ), (Pλ),

respectively. We have weakly in Ω

(−∆p)
s uµ < λuq−1

µ − ur−1
µ ,

so uµ is a strict subsolution of (Pλ). By Proposition 2.4 again we have uµ 6 uλ in Ω. This in
turn implies that weakly in Ω

(−∆p)
s uµ + ur−1

µ = µuq−1
µ < λuq−1

λ = (−∆p)
s uλ + ur−1

λ .

Since g(t) = tr−1 is continuous and with locally bounded variation, we can apply Theorem
2.7 and see that uλ − uµ ∈ int(C0

s (Ω)+).

Finally, let (λn) be a decreasing sequence in (0,∞) s.t. λn → 0+, and un ∈ int(C0
s (Ω)+) be

the solution of (Pλn) for all n ∈ N, i.e., we have weakly in Ω

(3.3) (−∆p)
s un = fλn(un).

Since q < p and (λn) is decreasing, we can find C > 0 s.t. for all n ∈ N, t ∈ R

fλn(t)t 6 C.

Testing (3.3) with un ∈W s,p
0 (Ω), for all n ∈ N we have

‖un‖p = 〈(−∆p)
s un, un〉 =

∫
Ω
fλn(un)un dx 6 C|Ω|.

So, (un) is a bounded sequence in W s,p
0 (Ω). By reflexivity and the compact embeddings

W s,p
0 (Ω) ↪→ Lq(Ω), Lr(Ω), we can pass to a subsequence s.t. un ⇀ u0 in W s,p

0 (Ω) and un → u0

in both Lq(Ω) and Lr(Ω). Testing (3.3) with (un−u0) ∈W s,p
0 (Ω) and using Hölder’s inequality,

we have for all n ∈ N

〈(−∆p)
s un, un − u0〉 =

∫
Ω

(λnu
q−1
n − ur−1

n )(un − u0) dx

6 λ1‖un‖q−1
q ‖un − u0‖q + ‖un‖r−1

r ‖un − u0‖r,

and the latter tends to 0 as n → ∞. By the (S)+-property of (−∆p)
s , we have un → u0 in

W s,p
0 (Ω). So we can pass to the limit in (3.3) as n→∞ and get weakly in Ω

(−∆p)
s u0 = −ur−1

0 .

Testing with u0 ∈W s,p
0 (Ω) we have

‖u0‖p + ‖u0‖rr = 0,

i.e., u0 = 0. Plus, we note that, by (3.3) and Proposition 2.3, (un) is bounded in Cαs (Ω),
hence, passing to a further subsequence, un → 0 in C0

s (Ω). Recalling that λ 7→ uλ is strictly
increasing, we conclude that globally uλ → 0 in both W s,p

0 (Ω) and C0
s (Ω), as λ→ 0+. �
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4. The equidiffusive case

In this short section we assume 2 6 q = p < r < p∗s, a case that does not differ too much from
the previous one, except that the threshold for the parameter λ turns out to be the principal
eigenvalue λ̂1 > 0 defined in (2.4). We define fλ, Fλ, and Φλ as in Section 3.

Our existence and uniqueness result (corresponding to case (b) of Theorem 1.1) is the following:

Theorem 4.1. Let 2 6 q = p < r < p∗s. Then, for all λ ∈ (0, λ̂1] problem (Pλ) has no

solution, while for all λ > λ̂1 problem (Pλ) has a unique solution uλ ∈ int(C0
s (Ω)+), s.t.

uλ−uµ ∈ int(C0
s (Ω)+) for all λ > µ > λ̂1 and uλ → 0 in both W s,p

0 (Ω) and C0
s (Ω) as λ→ λ̂+

1 .

Proof. First, fix λ ∈ (0, λ̂1]. Assume that u ∈W s,p
0 (Ω)+ satisfies weakly in Ω

(4.1) (−∆p)
s u = λup−1 − ur−1.

Testing (4.1) with u ∈W s,p
0 (Ω) and applying (2.4), we have

0 = ‖u‖p − λ‖u‖pp + ‖u‖rr > (λ̂1 − λ)‖u‖pp + ‖u‖rr > ‖u‖rr,

hence u = 0. So (Pλ) admits no solution.

Now let λ > λ̂1. Arguing as in Theorem 3.1, we see that Φλ has a global minimizer uλ ∈
W s,p

0 (Ω)+. Besides, for all τ > 0 we have

Φλ(τ û1) = τp
[‖û1‖p

p
− λ‖û1‖pp

p

]
+ τ r

‖û1‖rr
r

= τp
λ̂1 − λ
p

+ τ r
‖û1‖rr
r

,

and the latter is negative for τ > 0 small enough (as p < r). So, uλ 6≡ 0. The rest of the proof
follows exactly as in Theorem 3.1. �

5. The superdiffusive case

In this final section we assume 2 6 p < q < r < p∗s and define fλ, Fλ, Φλ as in Section 3. Let

Λ =
{
λ > 0 : (Pλ) has a solution uλ ∈ int(C0

s (Ω)+)
}
.

In the following lemmas we shall investigate the structure of the set Λ and additional properties
of solutions. We begin with a lower bound:

Lemma 5.1. We have Λ 6= ∅ and λ∗ := inf Λ > 0.

Proof. Fix λ > 0. As in the proof of Theorem 3.1 we find uλ ∈W s,p
0 (Ω)+ s.t.

(5.1) Φλ(uλ) = inf
W s,p

0 (Ω)
Φλ =: mλ.

Let û1 ∈ int(C0
s (Ω)+) be defined as in Section 2, then we have

Φλ(û1) =
‖û1‖p

p
− λ‖û1‖qq

q
+
‖û1‖rr
r

,

which tends to −∞ as λ → ∞. So, for all λ > 0 big enough we have mλ < 0 in (5.1), hence
uλ 6= 0. As in Theorem 3.1 we see that uλ ∈ int(C0

s (Ω)+) and it solves (Pλ). Thus λ ∈ Λ.

We claim that there exists λ0 > 0 s.t. for all t > 0

(5.2) fλ0(t) 6 λ̂1t
p−1,
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with λ̂1 > 0 defined by (2.4). Indeed, since p < q < r we have for any λ > 0

lim
t→0+

fλ(t)

tp−1
= 0, lim

t→∞

fλ(t)

tp−1
= −∞.

So we can find δ ∈ (0, 1) s.t. for all t ∈ (0, δ) ∪ (δ−1,∞) and all λ ∈ (0, 1]

fλ(t) 6 λ̂1t
p−1.

Now set

λ0 = min{λ̂1δ
q−p, 1} > 0.

Then, for all t ∈ [δ, δ−1] we have

fλ0(t) < λ0t
q−1 6 λ̂1t

p−1,

hence (5.2) holds for all t > 0. We prove that inf Λ > λ0, arguing by contradiction. Assume
that for some λ ∈ (0, λ0) problem (Pλ) has a solution uλ ∈ int(C0

s (Ω)+). Testing with
uλ ∈W s,p

0 (Ω) and using (5.2) we get

‖uλ‖p =

∫
Ω
fλ(uλ)uλ dx <

∫
Ω
fλ0(uλ)uλ dx 6 λ̂1‖uλ‖pp,

against (2.4). �

Next we prove that Λ is a half-line and the mapping λ 7→ uλ is strictly increasing:

Lemma 5.2. If λ > λ∗ then λ ∈ Λ, besides uλ − uµ ∈ int(C0
s (Ω)+) for all λ > µ > λ∗.

Proof. Fix λ > λ∗. Then we can find µ ∈ Λ s.t. µ < λ, and a solution uµ ∈ int(C0
s (Ω)+) of

(Pµ). We have weakly in Ω

(5.3) (−∆p)
s uµ = fµ(uµ) < fλ(uµ),

i.e., uµ is a strict subsolution of (Pλ). We use uµ to truncate the reaction fλ. Set for all
(x, t) ∈ Ω× R

f̂λ(x, t) =

{
fλ(uµ(x)) if t 6 uµ(x)

fλ(t) if t > uµ(x)

and

F̂λ(x, t) =

∫ t

0
f̂λ(x, τ) dτ.

So f̂λ : Ω× R→ R satisfies H. Set for all u ∈W s,p
0 (Ω)

Φ̂λ(u) =
‖u‖p

p
−
∫

Ω
F̂λ(x, u) dx,

then as in Section 2 it is seen that Φ̂λ ∈ C1(W s,p
0 (Ω)). Reasoning as in Theorem 3.1 we also

see that Φ̂λ is coercive and sequentially weakly l.s.c., so there exists uλ ∈W s,p
0 (Ω) s.t.

Φ̂λ(uλ) = inf
W s,p

0 (Ω)
Φ̂λ.

As a consequence we have Φ̂′λ(uλ) = 0 in W−s,p
′
(Ω), i.e., weakly in Ω

(5.4) (−∆p)
s uλ = f̂λ(x, u).
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Testing (5.4) with (uµ − uλ)+ ∈W s,p
0 (Ω)+ we get

〈(−∆p)
s uλ, (uµ − uλ)+〉 =

∫
Ω
f̂λ(x, uλ)(uµ − uλ)+ dx

=

∫
Ω
fλ(uµ)(uµ − uλ)+ dx,

which along with (5.3) gives

〈(−∆p)
s uµ − (−∆p)

s uλ, (uµ − uλ)+〉 6 0.

By Proposition 2.1 we have uµ 6 uλ in Ω. So (5.4) rephrases as

(−∆p)
s uλ = fλ(uλ)

weakly in Ω, and moreover uλ > 0 in Ω. As in Lemma 5.1 we see that uλ ∈ int(C0
s (Ω)+) and

it solves (Pλ), so λ ∈ Λ.

Finally, for all λ > µ > λ∗ we have weakly in Ω

(−∆p)
s uµ + ur−1

µ = µuq−1
µ < λuq−1

λ = (−∆p)
s uλ + ur−1

λ ,

as well as 0 < uµ 6 uλ in Ω. By Theorem 2.7 we conclude that uλ − uµ ∈ int(C0
s (Ω)+). �

Note that in Lemma 5.2 we cannot use Proposition 2.4 to prove the monotonicity of λ 7→ uλ,
as we did in sub- and equidiffusive cases: this is due to the fact that t 7→ fλ(t)/tp−1 is not
a decreasing mapping in (0,∞) (recall that q > p). The same reason prevents the use of
Proposition 2.4 to prove uniqueness of the solution.

In fact, for λ > λ∗ we detect at least one more solution beside uλ:

Lemma 5.3. For all λ > λ∗ there exists a second solution vλ ∈ int(C0
s (Ω)+) of (Pλ) s.t.

uλ − vλ ∈ int(C0
s (Ω)+).

Proof. Fix λ > λ∗. As in Lemma 5.2 we pick µ ∈ Λ s.t. λ∗ < µ < λ, define Φ̂λ ∈ C1(W s,p
0 (Ω)),

and find a global minimizer uλ ∈ int(C0
s (Ω)+), which solves (Pλ) and satisfies uλ − uµ ∈

int(C0
s (Ω)+). Set now

V =
{
uµ + v : v ∈ int(C0

s (Ω)+)
}
,

an open set in C0
s (Ω) containing uλ. For all x ∈ Ω, t > uµ(x) we have

F̂λ(x, t) =

∫ uµ(x)

0
fλ(uµ(x)) dτ +

∫ t

uµ(x)
fλ(τ) dτ

= Fλ(t) +
[
fλ(uµ(x))uµ(x)− Fλ(uµ(x))

]
,

hence for all u ∈ V ∩W s,p
0 (Ω) (note that u > uµ in Ω)

Φ̂λ(u) =
‖u‖p

p
−
∫

Ω
Fλ(u) dx−

∫
Ω

[
fλ(uµ)uµ − Fλ(uµ)

]
dx = Φλ(u)− C,

with C ∈ R independent of u. So, recalling that uλ minimizes Φ̂λ over W s,p
0 (Ω), for all

u ∈ V ∩W s,p
0 (Ω) we have

Φλ(u) > Φλ(uλ),
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i.e., uλ is a local minimizer of Φλ in C0
s (Ω). By Proposition 2.5, uλ is as well a local minimizer

of Φλ in W s,p
0 (Ω). To proceed with the proof we need to perform a different truncation on

the reaction. Set for all (x, t) ∈ Ω× R

f̃λ(x, t) =

{
fλ(t) if t 6 uλ(x)

λuq−1
λ (x)− tr−1 if t > uλ(x)

and as usual

F̃λ(x, t) =

∫ t

0
f̃λ(x, τ) dτ.

Clearly f̃λ : Ω× R→ R satisfies H. So, we set for all u ∈W s,p
0 (Ω)

Φ̃λ(u) =
‖u‖p

p
−
∫

Ω
F̃λ(x, u) dx

and thus define a functional Φ̃λ ∈ C1(W s,p
0 (Ω)). We note that for all (x, t) ∈ Ω× R we have

f̃λ(x, t) 6 fλ(t) and hence F̃λ(x, t) 6 Fλ(t). This in turn implies for all u ∈W s,p
0 (Ω)

(5.5) Φ̃λ(u) > Φλ(u).

Since uλ is a local minimizer of Φλ, we can find ρ > 0 s.t. Φλ(u) > Φλ(uλ) for all u ∈ Bρ(uλ),
hence by (5.5)

Φ̃λ(u) > Φλ(u) > Φλ(uλ) = Φ̃λ(uλ).

So, uλ is as well a local minimizer of Φ̃λ. Besides, fix ε ∈ (0, λ̂1) (with λ̂1 > 0 defined by
(2.4)), then we can find δ > 0 s.t. for all x ∈ R, |t| 6 δ

F̃λ(x, t) 6 Fλ(t) 6 ε
(t+)p

p
.

Since Ω is bounded, we can find σ > 0 s.t. ‖u‖∞ 6 δ for all u ∈ C0
s (Ω), ‖u‖0,s 6 σ. Then,

using also (2.4), for all u ∈W s,p
0 (Ω) ∩ C0

s (Ω) with 0 < ‖u‖0,s 6 σ we have

Φ̃λ(u) >
‖u‖p

p
−
∫

Ω
ε

(u+)p

p
dx > (λ̂1 − ε)

‖u‖pp
p

> 0.

So, 0 is a strict local minimizer of Φ̃λ in C0
s (Ω). By Proposition 2.5 again, 0 is as well a local

minimizer of Φ̃λ in W s,p
0 (Ω). From Lemma 5.1 we know that Φλ is coercive in W s,p

0 (Ω), so

by (5.5) Φ̃λ is coercive as well. As recalled in Section 2, Φ̃λ then satisfies the (PS)-condition.
Thus, we may apply the mountain pass theorem (see [33, Theorem 2.1]) and deduce the

existence of vλ ∈W s,p
0 (Ω) \ {0, uλ} s.t. Φ̃′λ(vλ) = 0 in W−s,p

′
(Ω). So we have weakly in Ω

(5.6) (−∆p)
s vλ = f̃λ(x, vλ).

Testing (5.6) with −v−λ ∈W
s,p
0 (Ω) and applying (2.2) we have

‖v−λ ‖
p 6 〈(−∆p)

s vλ,−v−λ 〉 =

∫
Ω
f̃λ(x, vλ)(−v−λ ) dx = 0,
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so vλ ∈ W s,p
0 (Ω)+ \ {0}. Recalling the definition of f̃λ and testing (5.6) with (vλ − uλ)+ ∈

W s,p
0 (Ω), we have

〈(−∆p)
s vλ, (vλ − uλ)+〉 =

∫
Ω
f̃λ(x, vλ)(vλ − uλ)+ dx

6
∫

Ω
fλ(uλ)(vλ − uλ)+ dx

= 〈(−∆p)
s uλ, (vλ − uλ)+〉,

which by Proposition 2.1 implies vλ 6 uλ in Ω. So, (5.6) rephrases as

(−∆p)
s vλ = fλ(vλ)

weakly in Ω. Using Theorem 2.6 as in Theorem 3.1, we see that vλ ∈ int(C0
s (Ω)+) and it

solves (Pλ). So we have vλ 6 uλ in Ω, vλ 6≡ uλ, and weakly in Ω

(−∆p)
s vλ + vr−1

λ = λvq−1
λ 6 λuq−1

λ = (−∆p)
s uλ + ur−1

λ .

By Theorem 2.7 we have uλ − vλ ∈ int(C0
s (Ω)+). �

To complete the picture, we examine the limiting case λ = λ∗. In such case we can prove
existence of at least one solution, to which all principal solutions uλ converge:

Lemma 5.4. There exists a solution u∗ ∈ int(C0
s (Ω)+) of (Pλ∗) s.t. uλ → u∗ in both W s,p

0 (Ω)

and C0
s (Ω) as λ→ λ+

∗ .

Proof. We prove a slightly more general assertion. Let (λn) be a decreasing sequence s.t.
λn → λ+

∗ , and denote by un ∈ int(C0
s (Ω)+) any solution of (Pλn), then up to a subsequence

un → u∗ in both W s,p
0 (Ω) and C0

s (Ω) as n→∞, being u∗ ∈ int(C0
s (Ω)+) a solution of (Pλ∗).

First, for all n ∈ N we have weakly in Ω

(5.7) (−∆p)
s un = fλn(un).

Arguing as in the proof of Theorem 3.1, we find u∗ ∈ W s,p
0 (Ω)+ s.t. up to a subsequence

un → u∗ in both W s,p
0 (Ω) and C0

s (Ω), hence we can pass to the limit in (5.7) and get weakly
in Ω

(5.8) (−∆p)
s u∗ = fλ∗(u∗).

We claim that u∗ 6≡ 0. Arguing by contradiction, assume that un → 0 in both W s,p
0 (Ω) and

C0
s (Ω), hence in particular un → 0 uniformly in Ω. Then, for all n ∈ N big enough we have

0 < un 6 1 in Ω. Set for all n ∈ N

vn =
un
‖un‖

∈W s,p
0 (Ω) ∩ int(C0

s (Ω)+).

The sequence (vn) is obviously bounded in W s,p
0 (Ω). By reflexivity and the compact embed-

ding W s,p
0 (Ω) ↪→ Lp(Ω), passing to a subsequence we have vn ⇀ v in W s,p

0 (Ω), vn → v in
Lp(Ω). Besides, by (5.7), for all n ∈ N we have weakly in Ω

(5.9) (−∆p)
s vn = λn

uq−1
n

‖un‖p−1
− ur−1

n

‖un‖p−1
.

Consider the first term in the right hand side of (5.9). Since 0 < un 6 1 in Ω and p < q, we
have

0 <
uq−1
n

‖un‖p−1
6

up−1
n

‖un‖p−1
= vp−1

n ,
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so (uq−1
n /‖un‖p−1) is bounded in Lp

′
(Ω). Passing to a subsequence, we have uq−1

n /‖un‖p−1 ⇀

w in Lp
′
(Ω), hence a fortiori in L1(Ω). By Hölder’s inequality and the continuous embedding

W s,p
0 (Ω) ↪→ Lq(Ω) we have

‖w‖1 6 lim inf
n

∫
Ω

uq−1
n

‖un‖p−1
dx

6 lim sup
n

‖un‖q−1
q |Ω|

1
q

‖un‖p−1

6 C lim sup
n
‖un‖q−p = 0.

So we get w = 0, i.e.,

(5.10)
uq−1
n

‖un‖p−1
⇀ 0 in Lp

′
(Ω).

An entirely similar argument proves that (ur−1
n /‖un‖p−1) is bounded in Lp

′
(Ω) and, up to a

subsequence,

(5.11)
ur−1
n

‖un‖p−1
⇀ 0 in Lp

′
(Ω).

Testing (5.9) with (vn − v) ∈W s,p
0 (Ω) and using Hölder’s inequality, we have for all n ∈ N

〈(−∆p)
s vn, vn − v〉 =

∫
Ω

[
λn

uq−1
n

‖un‖p−1
− ur−1

n

‖un‖p−1

]
(vn − v) dx

6 λ1

∥∥∥ uq−1
n

‖un‖p−1

∥∥∥
p′
‖vn − v‖p −

∥∥∥ ur−1
n

‖un‖p−1

∥∥∥
p′
‖vn − v‖p,

and the latter tends to 0 as n→∞ by the relations above. By the (S)+-property of (−∆p)
s we

have vn → v in W s,p
0 (Ω), hence ‖v‖ = 1. On the other hand, testing (5.9) with v ∈ W s,p

0 (Ω),
we have for all n ∈ N

〈(−∆p)
s vn, v〉 =

∫
Ω

[
λn

uq−1
n

‖un‖p−1
− ur−1

n

‖un‖p−1

]
v dx.

Passing to the limit as n→∞ and recalling (5.10) and (5.11) we get ‖v‖p = 0, a contradiction.
Summarizing, u∗ ∈ W s,p

0 (Ω)+ \ {0} and satisfies (5.8). As in Lemma 5.1 we see that u∗ ∈
int(C0

s (Ω)+) solves (Pλ∗).

Finally, taking into account the monotonicity property of Lemma 5.2, we conclude that glob-
ally uλ → u∗ in both W s,p

0 (Ω) and C0
s (Ω), with monotone convergence, as λ → λ+

∗ , for some

u∗ ∈ int(C0
s (Ω)+) solving (Pλ∗). �

Looking at the proof of Lemma 5.4 above, we can easily argue that, for any sequence (λn) s.t.
λn → λ+

∗ , the sequence of solutions (vλn) provided by Lemma 5.3 has a subsequence which
converges to a solution of (Pλ∗), which might differ from the global limit of uλ.

Combining Lemmas 5.1–5.4, we obtain the following bifurcation result for the superdiffusive
case (corresponding to case (c) of Theorem 1.1):

Theorem 5.5. Let 2 6 p < q < r < p∗s. Then, there exists λ∗ > 0 with the following
properties: for all λ ∈ (0, λ∗) problem (Pλ) has no solution; (Pλ∗) has at least one solution
u∗ ∈ int(C0

s (Ω)+); and for all λ > λ∗ problem (Pλ) has at least two solutions uλ, vλ ∈
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int(C0
s (Ω)+) s.t. uλ − vλ ∈ int(C0

s (Ω)+), uλ − uµ ∈ int(C0
s (Ω)+) for all λ > µ > λ∗, and

uλ → u∗ in both W s,p
0 (Ω) and C0

s (Ω) as λ→ λ∗.

Remark 5.6. For simplicity, we confined our study to the pure power logistic reactions.
Nevertheless, most of our Theorem 5.5 can be extended to the following generalized logistic
equation: 

(−∆p)
s u = λf(x, u)− g(x, u) in Ω

u > 0 in Ω

u = 0 in Ωc,

where f, g : Ω×R→ R are Carathéodory mappings, both (p− 1)-superlinear at ∞ and at 0,
satisfying a subcritical growth condition like H, and jointly satisfying a pseudo-monotonicity
condition (see [23] for the case of the p-Laplacian).
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[11] M. Cuesta, P. Takáč, A strong comparison principle for positive solutions of degenerate elliptic equa-
tions, Differential Integral Eq. 13 (2000) 721–746.

[12] L.M. Del Pezzo, A. Quaas, Global bifurcation for fractional p-Laplacian and an application, Z. Anal.
Anwend. 35 (2016) 411–447.

[13] L.M. Del Pezzo, A. Quaas, A Hopf’s lemma and a strong minimum principle for the fractional p-
Laplacian, J. Differential Eq. 263 (2017) 765–778.

[14] A. Di Castro, T. Kuusi, G. Palatucci, Local behavior of fractional p-minimizers, Ann. Inst. Henri
Poincaré, Anal. Non Linéaire 33 (2016) 1279–1299.



18 A. IANNIZZOTTO, S. MOSCONI, N.S. PAPAGEORGIOU

[15] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull.
Sci. Math. 136 (2012) 521–573.

[16] S. Frassu, A. Iannizzotto, Extremal constant sign solutions and nodal solutions for the fractional
p-Laplacian, J. Math. Anal. Appl. art. 124205.

[17] M.E. Gurtin, R.C. MacCamy, On the diffusion of biological populations, Math. Biosci. 33 (1977) 35–49.
[18] A. Iannizzotto, S. Liu, K. Perera, M. Squassina, Existence results for fractional p-Laplacian prob-

lems via Morse theory, Adv. Calc. Var. 9 (2016) 101–125.
[19] A. Iannizzotto, R. Livrea, Four solutions for fractional p-Laplacian equations with asymmetric reac-

tions, preprint.
[20] A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional p-Laplacian,
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