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Four Solutions for Fractional p-Laplacian
Equations with Asymmetric Reactions

Antonio Iannizzotto and Roberto Livrea

Abstract. We consider a Dirichlet type problem for a nonlinear, nonlocal
equation driven by the degenerate fractional p-Laplacian, whose reaction
combines a sublinear term depending on a positive parameter and an
asymmetric perturbation (superlinear at positive infinity, at most linear
at negative infinity). By means of critical point theory and Morse theory,
we prove that, for small enough values of the parameter, such problem
admits at least four nontrivial solutions: two positive, one negative, and
one nodal. As a tool, we prove a Brezis-Oswald type comparison result.
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1. Introduction

Nonlinear elliptic partial differential equations with asymmetric nonlinearities
are usually written in the form

Lu = f(x, u) in Ω,

with several boundary conditions, where L is some elliptic operator, and
f : Ω × R → R is a nonlinear reaction with qualitatively different behaviors
as the second variable tends to ±∞, respectively. Typically, such asymmetric
behavior can be exploited to prove, via variational or topological methods,
the existence of multiple solutions to the equation.

The study of such asymmetric problems, to our knowledge, dates back
to the work of Motreanu, Motreanu and Papageorgiou [29,30], and was then
developed by several authors considering a wide range of semilinear or quasi-
linear equations with Dirichlet, Neumann, or even Robin boundary condi-
tions. We recall the results of [6,19,26,34,36].
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The present paper is devoted to the study of the following Dirichlet type
problem: {

(−Δ)s
p u = λ|u|q−2u + g(x, u) in Ω

u = 0 in Ωc.
(1.1)

Here Ω ⊂ R
N (N � 2) is a bounded domain with C1,1 boundary ∂Ω, s ∈

(0, 1), p � 2 are s.t. ps < N , and the leading operator is the degenerate
fractional p-Laplacian, defined for all u : RN → R smooth enough and x ∈ R

N

by

(−Δ)s
p u(x) = 2 lim

ε→0+

∫
Bc

ε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x − y|N+ps

dy (1.2)

(which for p = 2 reduces to the linear fractional Laplacian up to a dimensional
constant C(N, s) > 0, see [13]). The reaction in (1.1) is the sum of two
terms. The first, depending on a real parameter λ > 0, is a (p − 1)-sublinear
power of the unknown, i.e., q ∈ (1, p). The second is a Carathéodory mapping
g : Ω×R → R subject to a global subcritical growth condition and combining
a (p − 1)-linear or superlinear behavior near 0 with an asymmetric behavior
at ±∞, namely, g(x, t) is (p − 1)-superlinear at ∞ and at most (p − 1)-linear
at −∞.

Elliptic equations driven by linear nonlocal operators (whose prototype
is the fractional Laplacian) were first studied via variational methods in
[38,39], while regularity theory has its ground in [37], giving rise to a wide
literature (we refer the reader to the monograph [27]). In the quasilinear case
p �= 2, things are obviously more involved. The eigenvalue problem for (−Δ)s

p

was first studied in [25], variational methods for equations with several types
of reactions were established in [18], Hölder regularity of weak solutions was
studied in [20,21] (for p > 2), maximum and comparison principles were
proved in [10,23], equivalence between Sobolev and Hölder minimizers of
the energy functional was proved in [22], and a detailed study of sub- and
supersolutions was performed in [15]. Existence results for the fractional p-
Laplacian with asymmetric reactions were obtained in [17,35], while closely
related problems were studied in [1–3,7,11,40]. For a more detailed discus-
sion, we refer to the surveys [28,33].

Our approach to problem (1.1) is variational, inspired by [30]. We en-
code weak solutions as critical points of a C1 energy functional Φλ, defined
on a convenient fractional Sobolev space and depending on λ > 0. Due to
the presence of the asymmetric perturbation, Φλ has no definite asymptotic
behavior, so we define two truncated functionals Φ±

λ whose critical points
coincide with the positive and negative solutions of (1.1), respectively. We
prove that, for all λ > 0 small enough, Φ+

λ has at least two nonzero critical
points, one given by the mountain pass theorem and a local minimizer. Be-
sides, for all λ > 0, Φ−

λ contributes at least one global minimizer. So we have
three nontrivial constant sign solutions (Theorem 3.5).

Pushing forward our analysis, we see that, under slightly more restric-
tive hypotheses, for even smaller values of λ > 0, problem (1.1) admits a
smallest positive solution and a biggest negative solution (an idea that was
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first introduced in [9]). So, we truncate again the reaction introducing a new
energy functional Φ̃λ, which turns out to have one more critical point of
mountain pass type (in the sense of Hofer [16]), taking values between the
extremal constant sign solutions. Finally, by a Morse theoretic argument we
show that such critical point is not 0, hence it turns out to be a nodal (sign-
changing) solution of (1.1). Thus, we conclude that (1.1) admits at least four
nontrivial solutions for all λ > 0 small enough (Theorem 4.6).

In proving the existence of the smallest positive solution, we do not
apply (as usual in such cases, see [30]) the strong comparison principle of
[23], since it requires rather restrictive assumptions on the data p, s. In-
stead, we present a special comparison result for sub-supersolutions under a
monotonicity condition, inspired by the classical Brezis-Oswald work [5] (see
[12,24,32] for other versions). We believe that such comparison result (stated
in Theorem 2.8 below) can be useful also in different frameworks.

Our result represents an application of classical methods in nonlinear
analysis combined with the recently established theory for the fractional p-
Laplacian (mainly the results of [10,15,22]). To our knowledge, this is the first
multiplicity result for a fractional order problem with asymmetric reaction,
even in the linear case p = 2.

The paper has the following structure: in Sect. 2 we collect some prelim-
inary results on fractional p-Laplace equations and prove a comparison result;
in Sect. 3 we prove the existence of two positive and a negative solutions; and
in Sect. 4 we prove the existence of extremal constant sign solutions and of
a nodal solution.

Notation: For any A ⊂ R
N we shall set Ac = R

N \ A. For any two
measurable functions u, v : Ω → R, u � v will mean that u(x) � v(x) for a.e.
x ∈ Ω (and similar expressions). The positive (resp., negative) part of u is
denoted u+ (resp., u−). Every function u defined in Ω will be identified with
its 0-extension to R

N . If X is an ordered Banach space, then X+ will denote
its non-negative order cone. The open and closed balls, respectively, centered
at u with radius ρ > 0 will be denoted Bρ(u), Bρ(u). For all r ∈ [1,∞], ‖ · ‖r

denotes the standard norm of Lr(Ω) (or Lr(RN ), which will be clear from
the context). Moreover, C will denote a positive constant (whose value may
change case by case).

2. Preliminaries

In this section, for the reader’s convenience, we recall some basic results about
the general Dirichlet problem for the degenerate fractional p-Laplacian (some
also hold in the singular case p ∈ (1, 2)):{

(−Δ)s
p u = f(x, u) in Ω

u = 0 in Ωc,
(2.1)

where Ω, p, s are as in the Introduction and f satisfies the following hypothe-
ses:
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H0 f : Ω × R → R is a Carathéodory function, and there exist c0 > 0,
r ∈ (p, p∗

s) s.t. for a.e. x ∈ Ω and all t ∈ R

|f(x, t)| � c0(1 + |t|r−1).

By p∗
s we denote the critical fractional Sobolev exponent, namely, p∗

s =
Np/(N − ps). Also, for all (x, t) ∈ Ω × R we set

F (x, t) =
∫ t

0

f(x, τ) dτ.

We provide problem (2.1) with a variational structure, following [15]. For all
measurable u : RN → R define the Gagliardo seminorm

[u]s,p =
[ ∫∫

RN ×RN

|u(x) − u(y)|p
|x − y|N+ps

dxdy
] 1

p

.

We define the fractional Sobolev spaces

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p < ∞}

,

W s,p
0 (Ω) =

{
u ∈ W s,p(RN ) : u = 0 in Ωc

}
,

the latter being a uniformly convex, separable Banach space under the norm
‖u‖ = [u]s,p, with dual space W−s,p′

(Ω) (see [13]). The embedding W s,p
0 (Ω) ↪→

Lq(Ω) is continuous for all q ∈ [1, p∗
s ] and compact for all q ∈ [1, p∗

s). For
any u ∈ W s,p

0 (Ω) we can define (−Δ)s
p u ∈ W−s,p′

(Ω) by setting for all
v ∈ W s,p

0 (Ω)

〈(−Δ)s
p u, v〉 =

∫∫
RN ×RN

|u(x) − u(y)|p−2(u(x) − u(y))(v(x) − v(y))
|x − y|N+ps

dxdy.

The definition above agrees with (1.2) when u ∈ S(RN ). By
[15, Lemma 2.1], (−Δ)s

p : W s,p
0 (Ω) → W−s,p′

(Ω) is a monotone, continuous,
(S)+-operator. Besides, the following inequality holds for all u, v ∈ W s,p

0 (Ω)
as an immediate consequence of Hölder’s inequality:

〈(−Δ)s
p u, v〉 � ‖u‖p−1‖v‖. (2.2)

Since the mapping t 
→ t+ is Lipschitz, for all u ∈ W s,p
0 (Ω) we have

u± ∈ W s,p
0 (Ω), but in general

‖u‖p �= ‖u+‖p + ‖u−‖p,

unlike in the case of the classical Sobolev space W 1,p
0 (Ω). The following lemma

illustrates some simple properties of positive and negative parts, which will
be used in our arguments:

Lemma 2.1. Let u ∈ W s,p
0 (Ω), then:

(i) ‖u±‖ � ‖u‖;
(ii) ‖u±‖p � 〈(−Δ)s

p u,±u±〉.
Proof. We only deal with u+ (the argument for u− is analogous). Set

A+ =
{
x ∈ R

N : u(x) > 0
}
, A− = Ac

+.
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Then we have

‖u+‖p =
∫∫

RN ×RN

|u+(x) − u+(y)|p
|x − y|N+ps

dxdy

=
∫∫

A+×A+

|u(x) − u(y)|p
|x − y|N+ps

dxdy +
∫∫

A+×A−

u(x)p

|x − y|N+ps
dxdy

+
∫∫

A−×A+

u(y)p

|x − y|N+ps
dxdy

�
∫∫

A+×A+

|u(x) − u(y)|p
|x − y|N+ps

dxdy +
∫∫

A+×A−

(u(x) − u(y))p

|x − y|N+ps
dxdy

+
∫∫

A−×A+

(u(y) − u(x))p

|x − y|N+ps
dxdy

�
∫∫

RN ×RN

|u(x) − u(y)|p
|x − y|N+ps

dxdy

= ‖u‖p,

which proves (i). Besides, by [2, Lemma A.2] (with g(t) = G(t) = t+) we
have for all a, b ∈ R

|a − b|p−2(a − b)(a+ − b+) � |a+ − b+|p.
So we have

〈(−Δ)sp u, u
+〉 =

∫∫
RN×RN

|u(x) − u(y)|p−2(u(x) − u(y))(u+(x) − u+(y))

|x − y|N+ps
dxdy

�
∫∫

RN×RN

|u+(x) − u+(y)|p
|x − y|N+ps

dx dy = ‖u+‖p,

which proves (ii). �

A function u ∈ W s,p
0 (Ω) is a (weak) solution of problem (2.1) if for all

ϕ ∈ W s,p
0 (Ω)

〈(−Δ)s
p u, ϕ〉 =

∫
Ω

f(x, u)ϕ dx.

Similarly, we say that u is a (weak) supersolution of (2.1) if for all
ϕ ∈ W s,p

0 (Ω)+

〈(−Δ)s
p u, ϕ〉 �

∫
Ω

f(x, u)ϕ dx.

The definition of a (weak) subsolution is analogous. For short, in such
cases, we will say that u satisfies weakly in Ω

(−Δ)s
p u = (�, �) f(x, u).

If u is a subsolution and v is a supersolution s.t. u � v in Ω, we say that
(u, v) is a sub-supersolution pair of (1.1), and we set

S(u, v) =
{
w ∈ W s,p

0 (Ω) : w is a solution of (2.1), u � w � v in Ω
}
.
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The properties of the set S(u, v) are investigated in
[15, Lemmas 3.2 – 3.4, Theorem 3.5] (even under a more general definition
of sub- and supersolution):

Proposition 2.2. Let H0 hold, (u, v) be a sub-supersolution pair of (2.1).
Then, S(u, v) is a nonempty, compact set in W s,p

0 (Ω), both upward and down-
ward directed, in particular it has a smallest and a biggest element (with
respect to the pointwise ordering of W s,p

0 (Ω)).

As a special case of [7, Theorem 3.3], we have the following a priori
bound for solutions:

Proposition 2.3. Let H0 hold, u ∈ W s,p
0 (Ω) be a solution of (2.1). Then,

u ∈ L∞(Ω) with ‖u‖∞ � C for some C = C(‖u‖) > 0.

It is well known that, though solutions of (2.1) can be very regular
in Ω, they fail to be smooth up to the boundary, even in simple cases
(see [21, Lemma 2.2]). So, a major role in fractional regularity theory is
played by the following weighted Hölder spaces. Set ds

Ω(x) = dist(x,Ωc)s,
define

C0
s (Ω) =

{
u ∈ C0(Ω) :

u

ds
Ω

has a continuous extension to Ω
}

,

and for all α ∈ (0, 1)

Cα
s (Ω) =

{
u ∈ C0(Ω) :

u

ds
Ω

has a α-Hölder continuous extension to Ω
}

,

whose norms are defined, respectively, by

‖u‖0,s =
∥∥∥ u

ds
Ω

∥∥∥
∞

, ‖u‖α,s = ‖u‖0,s + sup
x�=y

|u(x)/ds
Ω(x) − u(y)/ds

Ω(y)|
|x − y|α .

The embedding Cα
s (Ω) ↪→ C0

s (Ω) is compact for all α ∈ (0, 1). Unlike in
W s,p

0 (Ω), the positive cone C0
s (Ω)+ of C0

s (Ω) has a nonempty interior given
by

int(C0
s (Ω)+) =

{
u ∈ C0

s (Ω) : inf
x∈Ω

u(x)
ds

Ω(x)
> 0

}
(equivalent characterization as in [18, Lemma 5.1]). By Proposition 2.3 and
[21, Theorem 1.1] we have the following:

Proposition 2.4. Let H0 hold, u ∈ W s,p
0 (Ω) be a solution of (2.1). Then,

u ∈ Cα
s (Ω) for some α ∈ (0, s].

The strong maximum principle and Hopf’s lemma for the p-Laplacian
have an analogue in the following result, see [10, Theorems 1.2, 1.5]:

Proposition 2.5. Let H0 hold, and η0 ∈ L∞(Ω)+ be s.t. for a.e. x ∈ Ω and
all t � 0

f(x, t) � −η0(x)tp−1.

Then, for all u ∈ W s,p
0 (Ω)+ \ {0} solution of (2.1) we have u ∈ int(C0

s (Ω)+).
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We define an energy functional for problem (2.1) by setting for all u ∈
W s,p

0 (Ω)

Φ0(u) =
‖u‖p

p
−

∫
Ω

F (x, u) dx.

By H0, it is easily seen that Φ0 ∈ C1(W s,p
0 (Ω)) with Gâteaux derivative given

for all u, ϕ ∈ W s,p
0 (Ω) by

〈Φ′
0(u), ϕ〉 = 〈(−Δ)s

p u, ϕ〉 −
∫

Ω

f(x, u)ϕ dx.

So, u ∈ W s,p
0 (Ω) is a solution of (2.1) if it is a critical point of Φ0,

denoted u ∈ K(Φ0). For all definitions and classical results of critical point
theory, including elementary Morse theory, we refer to [31]. Since we are going
to work with truncations, we shall need the following equivalence principle
for Sobolev and Hölder local minimizers of Φ0, respectively, see [22, Theorem
1.1] (this is in fact a nonlocal, nonlinear version of the classical result of [4]):

Proposition 2.6. Let H0 hold, u ∈ W s,p
0 (Ω). Then, the following are equiva-

lent:

(i) there exists ρ > 0 s.t. Φ0(u + v) � Φ0(u) for all v ∈ W s,p
0 (Ω), ‖v‖ � ρ;

(ii) there exists σ > 0 s.t. Φ0(u + v) � Φ0(u) for all v ∈ W s,p
0 (Ω) ∩ C0

s (Ω),
‖v‖0,s � σ.

Contrary to many works in this area, we are not going to use much of
the spectral properties of the leading operator (−Δ)s

p . We only recall that
the principal eigenvalue λ1 > 0 of (−Δ)s

p in W s,p
0 (Ω) is characterized by

λ1 = inf
u∈W s,p

0 (Ω)\{0}
‖u‖p

‖u‖p
p
, (2.3)

the infimum being attained at a one-dimensional eigenspace. We denote û1 ∈
int(C0

s (Ω)+) the unique positive, Lp-normalized eigenfunction (see [25]). We
will use the following technical lemma:

Lemma 2.7. Let ξ0 ∈ L∞(Ω) be s.t. ξ0 � λ1 in Ω, ξ0 �≡ λ1. Then, there exists
σ > 0 s.t. for all u ∈ W s,p

0 (Ω)

‖u‖p −
∫

Ω

ξ0(x)|u|p dx � σ‖u‖p.

Proof. Equivalently, we prove that for all u ∈ W s,p
0 (Ω), ‖u‖ = 1

‖u‖p −
∫

Ω

ξ0(x)|u|p dx � σ.

Arguing by contradiction, assume that there exists a sequence (un) in W s,p
0 (Ω)

s.t. ‖un‖ = 1 for all n ∈ N and

lim
n

[
‖un‖p −

∫
Ω

ξ0(x)|un|p dx
]

= 0.
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Since (un) is bounded, passing if necessary to a subsequence we have un ⇀ u
in W s,p

0 (Ω), un → u in Lp(Ω). By (2.3) we have

0 � ‖u‖p − λ1‖u‖p
p

� ‖u‖p −
∫

Ω

ξ0(x)|u|p dx

� lim
n

[
‖un‖p −

∫
Ω

ξ0(x)|un|p dx
]

= 0. (2.4)

Besides, since un → u in Lp(Ω) we have∫
Ω

ξ0(x)|u|p dx = lim
n

∫
Ω

ξ0(x)|un|p dx = 1,

hence u �= 0. So, u is a principal eigenfunction. By simplicity of λ1, there
exists τ �= 0 s.t. u = τ û1. Since û1 ∈ int(C0

s (Ω)+), we deduce |u| > 0 in Ω,
so ∫

Ω

ξ0(x)|u|p dx < λ1‖u‖p
p,

against (2.4). �

We conclude this section by presenting a weak comparison result for
positive sub-supersolutions of (2.1). This will play a crucial role in the proof
of existence of extremal constant sign solutions (see Sect. 4 below), but it
also is of independent interest:

Theorem 2.8. Let H0 hold and assume that

t 
→ f(x, t)
tp−1

is decreasing in (0,∞) for a.e. x ∈ Ω. Let u, v ∈ int(C0
s (Ω)+) be a subsolution

and a supersolution, respectively, of (2.1). Then, u � v in Ω.

Proof. Since u, v ∈ int(C0
s (Ω)+), we can find C > 1 s.t. in Ω

1
C

� u

ds
Ω

,
v

ds
Ω

� C,

hence u/v, v/u ∈ L∞(Ω). We argue by contradiction, assuming that |Ω0| > 0,
where

Ω0 =
{
x ∈ Ω : u(x) > v(x)

}
.

Define u0, v0 ∈ Lp(RN ), ϕ ∈ L1(RN ) by setting

u0 = uχΩ0 , v0 = vχΩ0 , ϕ = (up − vp)+ = up
0 − vp

0 .

In the following lines, we will identify the functions ϕ/up−1, ϕ/vp−1 with the
0-extensions of such functions to R

N . We aim at using ϕ/up−1, ϕ/vp−1 as
test functions in (2.1), so we need to check that these functions belong in
W s,p

0 (Ω). First we note that there exists M > 0 s.t. in R
N

0 � ϕ

up−1
,

ϕ

vp−1
� Mu0,
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hence ϕ/up−1, ϕ/vp−1 ∈ Lp(RN )+ and both vanish in Ωc. Moreover, we claim
that there exists C > 0 s.t. for all x, y ∈ R

N

∣∣∣ ϕ(x)
up−1(x)

− ϕ(y)
up−1(y)

∣∣∣, ∣∣∣ ϕ(x)
vp−1(x)

− ϕ(y)
vp−1(y)

∣∣∣ � C
(|u(x)−u(y)|+ |v(x)−v(y)|).

(2.5)
Indeed, fix x, y ∈ R

N . By symmetry, we only consider the following cases:

(a) if x, y ∈ Ω0 and u(x) > u(y), then by Lagrange’s theorem we have∣∣∣ ϕ(x)
up−1(x)

− ϕ(y)
up−1(y)

∣∣∣ =
∣∣∣u(x) − vp(x)

up−1(x)
− u(y) +

vp(y)
up−1(y)

∣∣∣
� (u(x) − u(y)) +

∣∣∣ vp(x)
up−1(x)

− vp(y)
up−1(x)

+
vp(y)

up−1(x)
− vp(y)

up−1(y)

∣∣∣
� (u(x) − u(y)) +

|vp(x) − vp(y)|
up−1(x)

+ vp(x)
up−1(x) − up−1(y)
up−1(x)up−1(y)

� (u(x) − u(y)) + p
max{vp−1(x), vp−1(y)}

up−1(x)
|v(x) − v(y)|

+ (p − 1)v(y)
max{up−2(x), up−2(y)}

up−1(x)
(u(x) − u(y))

� p|u(x) − u(y)| + p|v(x) − v(y)|,
while using the boundedness of u/v, v/u we derive∣∣∣ ϕ(x)

vp−1(x)
− ϕ(y)

vp−1(y)

∣∣∣ =
∣∣∣ up(x)
vp−1(x)

− v(x) − up(y)
vp−1(y)

+ v(y)
∣∣∣

� |v(x) − v(y)| +
∣∣∣ up(x)
vp−1(x)

− up(y)
vp−1(x)

+
up(y)

vp−1(x)
− up(y)

vp−1(y)

∣∣∣
� |v(x) − v(y)| +

up(x) − up(y)
vp−1(x)

+ up(y)
|vp−1(x) − vp−1(y)|

vp−1(x)vp−1(y)

� |v(x) − v(y)| + p
max{up−1(x), up−1(y)}

vp−1(x)
(u(x) − u(y))

+ Cu(y)(p − 1)
max{vp−2(x), vp−2(y)}

vp−1(x)
|v(x) − v(y)|

� |v(x) − v(y)| + C(u(x) − u(y)) + C
up−1(x)
vp−1(x)

|v(x) − v(y)|
� C|u(x) − u(y)| + C|v(x) − v(y)|;

(b) if x ∈ Ω0, y /∈ Ω0, then∣∣∣ ϕ(x)
up−1(x)

− ϕ(y)
up−1(y)

∣∣∣ =
up(x) − vp(x)

up−1(x)

� p
max{up−1(x), vp−1(x)}

up−1(x)
(u(x) − v(x))

= p
[
(u(x) − u(y)) + (u(y) − v(y)) + (v(y) − v(x))

]
� p|u(x) − u(y)| + p|v(x) − v(y)|,
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and similarly∣∣∣ ϕ(x)
vp−1(x)

− ϕ(y)
vp−1(y)

∣∣∣ � C|u(x) − u(y)| + C|v(x) − v(y)|;

(c) if x, y /∈ Ω0, finally, then

ϕ(x) = ϕ(y) = 0.

In all cases, (2.5) holds. Hence, by integrating we have∫∫
RN ×RN

∣∣∣ ϕ(x)
up−1(x)

− ϕ(y)
up−1(y)

∣∣∣p dxdy

|x − y|N+ps
� C(‖u‖p + ‖v‖p),

so ϕ/up−1 ∈ W s,p
0 (Ω)+. Similarly we see that ϕ/vp−1 ∈ W s,p

0 (Ω)+. The next
step consists in proving that for all x, y ∈ R

N

jp(v(x) − v(y))
[ ϕ(x)
vp−1(x)

− ϕ(y)
vp−1(y)

]
� jp(u(x) − u(y))

[ ϕ(x)
up−1(x)

− ϕ(y)
up−1(y)

]
,

(2.6)
where we have set jp(a) = |a|p−2a for all a ∈ R. First, we rephrase (2.6) as

A + B � C + D,

where

A = jp(v(x) − v(y))
[ up

0(x)
vp−1(x)

− up
0(y)

vp−1(y)

]
,

B = jp(u(x) − u(y))
[ vp

0(x)
up−1(x)

− vp
0(y)

up−1(y)

]
,

C = jp(v(x) − v(y))(v0(x) − v0(y)), D = jp(u(x) − u(y))(u0(x) − u0(y)).

As above, we consider three cases:
(a) if x, y ∈ Ω0, then we apply a discrete Picone’s inequality:

jp(a − b)
[ cp

ap−1
− d

bp−1

]
� |c − d|p

for all a, b > 0, c, d � 0 (see [3, Proposition 2.2]), to get

A = jp(v(x) − v(y))
[ up(x)
vp−1(x)

− up(y)
vp−1(y)

]
� |u(x) − u(y)|p = D,

and similarly B � C;
(b) if x ∈ Ω0, y /∈ Ω0, then v(y)/v(x) � u(y)/u(x), hence

A − C = jp(v(x) − v(y))
up(x) − vp(x)

vp−1(x)

= jp

(
1 − v(y)

v(x)

)
(up(x) − vp(x))

� jp

(
1 − u(y)

u(x)

)
(up(x) − vp(x))

= jp(u(x) − u(y))
up(x) − vp(x)

up−1(x)
= D − B;
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(c) if x, y /∈ Ω0, then

A = B = C = D = 0.

Integrating (2.6), we immediately get〈
(−Δ)s

p v,
ϕ

vp−1

〉
�

〈
(−Δ)s

p u,
ϕ

up−1

〉
. (2.7)

Now recall that u and v are a sub- and a supersolution, respectively, of (2.1),
so testing with ϕ/up−1, ϕ/vp−1 ∈ W s,p

0 (Ω)+ and applying the monotonicity
assumption we have〈

(−Δ)s
p u,

ϕ

up−1

〉
�

∫
Ω

f(x, u)
ϕ

up−1
dx

=
∫

Ω0

f(x, u)
up−1

(up − vp) dx

<

∫
Ω0

f(x, v)
vp−1

(up − vp) dx

=
∫

Ω

f(x, v)
ϕ

vp−1
dx

�
〈
(−Δ)s

p v,
ϕ

vp−1

〉
,

against (2.7). Thus u � v in Ω. �

Remark 2.9. Theorem 2.8 is a partial analogue for the fractional p-Laplacian
of the classical results of [5,12]. Similar results in the fractional setting were
obtained in [24] for p = 2, in [3] for any p > 1 and a pure power reaction, and
in [32] for Robin boundary condition. In our case, we make a close connection
to the regularity result of [21] in assuming that both u, v ∈ int(C0

s (Ω)+),
which allows for a simpler proof. We note, en passant, that by applying
Theorem 2.8 twice one can easily prove that, under the same monotonicity
assumption, problem (2.1) has at most one solution.

3. Constant Sign Solutions

This section is devoted to the existence of positive and negative solutions of
(1.1). Here we assume the following hypotheses on the perturbation g:

H1 g : Ω×R → R is a Carathéodory function, we set G(x, t) =
∫ t

0

g(x, τ) dτ

for all (x, t) ∈ R, and
(i) there exist c1 > 0, r ∈ (p, p∗

s) s.t. for a.e. x ∈ R and all t ∈ R

|g(x, t)| � c1(1 + |t|r−1);

(ii) uniformly for a.e. x ∈ Ω

lim
t→∞

G(x, t)
tp

= ∞;
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(iii) there exist c2, β > 0, with max
{

q,
N(r − p)

ps

}
< β < p∗

s s.t. uni-

formly for a.e. x ∈ Ω

lim inf
t→∞

g(x, t)t − pG(x, t)
tβ

� c2;

(iv) there exist η1, η2 ∈ L∞(Ω)+ s.t. η2 � λ1 in Ω, η2 �≡ λ1, and
uniformly for a.e. x ∈ Ω

−η1(x) � lim inf
t→0

g(x, t)
|t|p−2t

� lim sup
t→0

g(x, t)
|t|p−2t

� η2(x);

(v) there exists θ ∈ L∞(Ω)+ s.t. θ � λ1 in Ω, θ �≡ λ1, and uniformly
for a.e. x ∈ Ω

lim sup
t→−∞

G(x, t)
|t|p � θ(x)

p
.

Hypothesis H1 (i) is a subcritical growth condition, useful in obtaining com-
pactness properties for the energy functional. Hypothesis (ii) forces for g(x, ·)
a (p − 1)-superlinear growth at ∞, tempered by an asymptotic condition
of Ambrosetti-Rabinowitz type (iii) (this was first introduced in [8] for the
Laplacian). By (iv), g(x, ·) is (p − 1)-linear at zero and by (v) it is at most
(p − 1)-linear at −∞, thus exhibiting an asymmetric behavior. For simplic-
ity, we assume in both cases that possible (p − 1)-linear behaviors have no
resonance with the principal eigenvalue in all of Ω.

Example 3.1. The following autonomous mapping g ∈ C(R) clearly satisfies
H1:

g(t) = a|t|p−2t + (t+)r−1,

with a ∈ (0, λ1), r ∈ (p, p∗
s) (set β = r in (iii)).

Fix λ > 0 and set for all (x, t) ∈ Ω × R

fλ(x, t) = λ|t|q−2t + g(x, t), Fλ(x, t) =
∫ t

0

fλ(x, τ) dτ.

Clearly, by H1 we see that fλ satisfies H0. So, we can define an energy
functional Φλ ∈ C1(W s,p

0 (Ω)) for problem (1.1) by setting for all u ∈ W s,p
0 (Ω)

Φλ(u) =
‖u‖p

p
−

∫
Ω

Fλ(x, u) dx.

By H1 (iv), we easily see that fλ(·, 0) = 0 in Ω, so 0 ∈ K(Φλ) for all λ > 0,
i.e., (1.1) always admits the trivial solution.

To detect constant sign solutions, we define two truncated energy func-
tionals. Set for all (x, t) ∈ Ω × R

f±
λ (x, t) = fλ(x,±t±), F±

λ (x, t) =
∫ t

0

f±
λ (x, τ) dτ,

and for all u ∈ W s,p
0 (Ω)

Φ±
λ (u) =

‖u‖p

p
−

∫
Ω

F±
λ (x, u) dx.
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We first focus on positive solutions, starting with a crucial compactness prop-
erty, see [30, Definition 5.14 (b)]:

Lemma 3.2. Let H1 hold. Then, Φ+
λ ∈ C1(W s,p

0 (Ω)) satisfies the Cerami (C)-
condition.

Proof. As in Sect. 2 we see that Φ+
λ ∈ C1(W s,p

0 (Ω)) with derivative given for
all u, ϕ ∈ W s,p

0 (Ω) by

〈(Φ+
λ )′(u), ϕ〉 = 〈(−Δ)s

p u, ϕ〉 −
∫

Ω

f+
λ (x, u)ϕ dx.

Let (un) be a sequence in W s,p
0 (Ω) s.t. (Φ+

λ (un)) is bounded in R and (1 +
‖un‖)(Φ+

λ )′(un) → 0 in W−s,p′
(Ω). Then, there exist C > 0 and a sequence

(εn) with εn → 0+, s.t. for all n ∈ N∣∣∣‖un‖p

p
−

∫
Ω

F+
λ (x, un) dx

∣∣∣ � C (3.1)

and for all ϕ ∈ W s,p
0 (Ω)∣∣∣〈(−Δ)s

p un, ϕ〉 −
∫

Ω

f+
λ (x, un)ϕ dx

∣∣∣ � εn‖ϕ‖
1 + ‖un‖ . (3.2)

First we prove that
u−

n → 0 in W s,p
0 (Ω). (3.3)

Choose ϕ = −u−
n ∈ W s,p

0 (Ω) in (3.2), then by Lemma 2.1 (ii) we have for all
n ∈ N

‖u−
n ‖p � 〈(−Δ)s

p un,−u−
n 〉

�
∫

Ω

f+
λ (x, un)(−u−

n ) dx +
εn‖u−

n ‖
1 + ‖un‖ � εn,

and the latter tends to 0 as n → ∞. Next we prove that

(u+
n ) is bounded in W s,p

0 (Ω). (3.4)

By (3.1) we have for all n ∈ N

‖un‖p −
∫

Ω

pF+
λ (x, un) dx � Cp.

Besides, by inequality (2.2) and Lemma 2.1 (i) we have for all n ∈ N

〈(−Δ)s
p un, u+

n 〉 � ‖un‖p−1‖u+
n ‖ � ‖un‖p,

which along with (3.2) with ϕ = u+
n ∈ W s,p

0 (Ω) yields

−‖un‖p +
∫

Ω

f+
λ (x, un)u+

n dx � εn.

Adding the inequalities above and recalling the definition of f+
λ , we have∫

Ω

[
g(x, u+

n )u+
n − pG(x, u+

n )
]
dx � λ

(p

q
− 1

)
‖u+

n ‖q
q + C.

By H1 (iii) we can find K > 0 s.t. for a.e. x ∈ Ω and all t > K

g(x, t)t − pG(x, t) � c2

2
tβ .
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Also recalling H1 (i), we can find C > 0 s.t. for all n ∈ N∫
Ω

[
g(x, u+

n )u+
n − pG(x, u+

n )
]
dx � c2

2
‖u+

n ‖β
β − C.

By the previous relations and Hölder’s inequality, we have

‖u+
n ‖β

β � C
(‖u+

n ‖q
q + 1

)
� C

[ ∫
Ω

(u+
n )β dx

] q
β |Ω|1− q

β + C

� C
(‖u+

n ‖q
β + 1),

which by q < β implies that (u+
n ) is bounded in Lβ(Ω), and hence in Lq(Ω).

In H1 (i) we may assume β � r < p∗
s, so we can find τ ∈ [0, 1) s.t.

1
r

=
1 − τ

β
+

τ

p∗
s

.

By the interpolation inequality, boundedness of (u+
n ) in Lβ(Ω), and the em-

bedding W s,p
0 (Ω) ↪→ Lp∗

s (Ω) we have

‖u+
n ‖r � ‖u+

n ‖1−τ
β ‖u+

n ‖τ
p∗

s
� C‖u+

n ‖τ .

Test (3.2) with ϕ = u+
n ∈ W s,p

0 (Ω) and apply Lemma 2.1 (ii) to get

‖u+
n ‖p � λ‖u+

n ‖q
q +

∫
Ω

g(x, u+
n )u+

n dx + εn

�
∫

Ω

c1

[
u+

n + (u+
n )r

]
dx + C

� C
(
1 + ‖u+

n ‖1 + ‖u+
n ‖r

r

)
� C

(
1 + ‖u+

n ‖ + ‖u+
n ‖τr

)
. (3.5)

We note that, by H1 (iii),

1
r

< (1 − τ)
ps

N(r − p)
+ τ

N − ps

Np

=
ps

N(r − p)
+ τ

Nr − Np − psr

Np(r − p)
,

which by r < p∗
s implies

τr

p

Nr − Np − psr

N(r − p)
>

Nr − Np − psr

N(r − p)
,

and hence τr < p. So, from (3.5) we see that (u+
n ) is bounded in W s,p

0 (Ω).
By (3.3), (3.4) (un) is bounded in W s,p

0 (Ω). Passing to a subsequence,
we may assume that un ⇀ u in W s,p

0 (Ω), un → u in Lr(Ω). Testing (3.2)
with ϕ = un − u ∈ W s,p

0 (Ω), and applying Hölder’s inequality, we have

〈(−Δ)s
p un, un − u〉

� λ

∫
Ω

(u+
n )q−1(un − u) dx +

∫
Ω

g(x, u+
n )(un − u) dx +

εn‖un − u‖
1 + ‖un‖

� λ‖u+
n ‖q−1

q ‖un − u‖q + C
(‖un − u‖1 + ‖u+

n ‖r−1
r ‖un − u‖r + εn

)
,
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and the latter tends to 0 as n → ∞. By the (S)+-property of (−Δ)s
p , we

finally have un → u in W s,p
0 (Ω). Thus, Φ+

λ satisfies (C). �

Now we can prove the existence of two positive solutions for λ > 0 small
enough:

Lemma 3.3. Let H1 hold. Then, there exists λ∗ > 0 s.t. for all λ ∈ (0, λ∗)
problem (1.1) has at least two positive solutions u+, v+ ∈ int(C0

s (Ω)+).

Proof. Fix λ > 0 (to be better determined later). We will seek the first
positive solution by applying the mountain pass theorem. First, we claim
that there exists ρ > 0 s.t.

inf
‖u‖=ρ

Φ+
λ (u) = m+ > 0. (3.6)

Indeed, by H1 (iv) and Lemma 2.7, there exists σ > 0 s.t. for all u ∈ W s,p
0 (Ω)

‖u‖p −
∫

Ω

η2(x)|u|p dx � σ‖u‖p.

Now fix ε ∈ (0, σλ1). By H1 (i) (iv) we can find Cε > 0 s.t. for a.e. x ∈ Ω
and all t � 0

G(x, t) � η2(x) + ε

p
tp + Cεt

r.

Set σ′ = σ − ε/λ1 > 0. For all u ∈ W s,p
0 (Ω) we have 0 � u+ � |u| in Ω, so by

the estimates above, (2.3), and the embeddings of W s,p
0 (Ω) we have

Φ+
λ (u) � ‖u‖p

p
− λ

q
‖u+‖q

q −
∫

Ω

[η2(x) + ε

p
(u+)p + Cε(u+)r

]
dx

� 1
p

[
‖u‖p −

∫
Ω

η2(x)|u|p dx
]

− λ

q
‖u‖q

p|Ω| p−q
p − Cε‖u‖r

r − ε

p
‖u‖p

p

� σ′

p
‖u‖p − λ|Ω| p−q

p

qλ
q
p

1

‖u‖q − C‖u‖r = h(‖u‖)‖u‖p,

where for all t > 0 we have set

h(t) =
σ′

p
− λ|Ω|1− q

p

qλ
q
p

1

tq−p − Ctr−p.

Clearly, we have h ∈ C1(0,∞), h(t) → −∞ as t → 0, ∞ (recall that q < p <
r). So there is ρ > 0 s.t.

h(ρ) = max
t>0

h(t).

We can detect ρ > 0 by setting h′(ρ) = 0, which gives

ρ =

[
λ|Ω| q−p

p (p − q)

Cqλ
q
p

1 (r − p)

] 1
r−q

> 0.
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In turn, that implies

h(ρ) =
σ′

p
−

[
λ|Ω| q−p

p

qλ
q
p

1

] r−p
r−q [ p − q

C(r − p)

] q−p
r−q − C

p−q
r−q

[
λ|Ω| q−p

p (p − q)

q(r − p)λ
q
p

1

] r−p
r−q

,

and the latter tends to σ′/p > 0 as λ → 0+. So there exists λ∗ > 0 s.t. for all
λ ∈ (0, λ∗)

inf
‖u‖=ρ

Φ+
λ (u) � h(ρ)ρp > 0,

which proves (3.6). Let û1 ∈ int(C0
s (Ω)+) be as in Sect. 2, then we have

lim
τ→∞ Φ+

λ (τ û1) = −∞. (3.7)

Indeed, by H1 (i) (ii), for any M > 0 we can find CM > 0 s.t. for a.e. x ∈ Ω
and all t � 0

G(x, t) � Mtp − CM .

So, for all τ > 0 we have

Φ+
λ (τ û1) � τp

p
‖û1‖p − τ qλ

q
‖û1‖q

q −
∫

Ω

(
Mtp(û1)p − CM

)
dx

�
(λ1

p
− M

)
τp − τ qλ

q
‖û1‖q

q − CM |Ω|,

an the latter tends to −∞ as τ → ∞, as soon as we choose M > λ1/p. By
(3.6), (3.7) Φ+

λ exhibits a mountain pass geometry, while by Lemma 3.2 it sat-
isfies (C). By the mountain pass theorem (see for instance
[31, Theorem 5.40]) there exists u+ ∈ K(Φ+

λ ) s.t.

Φ+
λ (u+) � m+.

By (3.6) we have u+ �= 0. Testing (Φ+
λ )′(u+) = 0 with −u−

+ ∈ W s,p
0 (Ω)

and recalling Lemma 2.1 (ii), we have

‖u−
+‖p � 〈(−Δ)s

p u+,−u−
+〉

=
∫

Ω

f+
λ (x, u+)(−u−

+) dx = 0,

so u+ ∈ W s,p
0 (Ω)+ \ {0}. That in turn implies that u+ solves (1.1). Since fλ

satisfies H0, by Proposition 2.4 we have u+ ∈ Cα
s (Ω). Further, by H1 (ii) (iv)

we can find C > 0 s.t. for a.e. x ∈ Ω and all t � 0

fλ(x, t) � −Ctp−1.

By Proposition 2.5 we have u+ ∈ int(C0
s (Ω)+).

Now we seek a second positive solution. By H1 (iv) we can find δ, c > 0
s.t. for a.e. x ∈ Ω and all t ∈ [0, δ]

G(x, t) � −ctp.
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Since û1 ∈ int(C0
s (Ω)+), for all τ > 0 small enough we have 0 < τû1 � δ

in Ω, so

Φ+
λ (τ û1) � τp

p
‖û1‖p − λτ q

q
‖û1‖q

q + cτp‖û1‖p
p

=
(λ1

p
+ c

)
τp − λ

q
τ q,

and the latter is negative for all τ > 0 small enough. So, by (3.6) we have

inf
‖u‖�ρ

Φ+
λ (u) < 0 < m+. (3.8)

Since Φ+
λ ∈ C1(W s,p

0 (Ω)) is sequentially weakly l.s.c., there exists v+ ∈
Bρ(0) s.t.

Φ+
λ (v+) = inf

‖u‖�ρ
Φ+

λ (u).

By (3.6) and (3.8) we have ‖v+‖ < ρ, so v+ ∈ K(Φ+
λ ) is a local minimizer

of Φ+
λ (not a global one, due to (3.7)). Besides, since

Φ+
λ (v+) < 0 < m+ � Φ+

λ (u+),

we deduce v+ �= 0, u+. Arguing as above, we conclude that v+ ∈ int(C0
s (Ω)+)

solves (1.1) and complete the proof. �

The existence of a negative solution is achieved by combining trunca-
tions and direct methods. Notably, this holds for any λ > 0:

Lemma 3.4. Let H1 hold. Then, for all λ > 0 problem (1.1) has at least one
negative solution u− ∈ −int(C0

s (Ω)+).

Proof. Fix λ > 0 and recall the definition of Φ−
λ ∈ C1(W s,p

0 (Ω)). We prove
first that Φ−

λ is coercive. Indeed, by H1 (i) (v), for any ε > 0 we can find
Cε > 0 s.t. for a.e. x ∈ Ω and all t � 0

G(x, t) � θ(x) + ε

p
|t|p + Cε.

Besides, by Lemma 2.7 we can find σ > 0 s.t. for all u ∈ W s,p
0 (Ω)

‖u‖p −
∫

Ω

θ(x)|u|p dx � σ‖u‖p.

So, recalling that 0 � u− � |u| in Ω and using (2.3), we have

Φ−
λ (x) � ‖u‖p

p
− λ

q
‖u−‖q

q −
∫

Ω

[θ(x) + ε

p
(u−)p + Cε

]
dx

�
(
σ − ε

λ1

)‖u‖p

p
− C‖u‖q − C,

and the latter tends to ∞ as ‖u‖ → ∞, as soon as we choose ε < σλ1. Also,
Φ−

λ is sequentially weakly l.s.c. in W s,p
0 (Ω), so there exists u− ∈ W s,p

0 (Ω) s.t.

Φ−
λ (u−) = inf

u∈W s,p
0 (Ω)

Φ−
λ (u) = m−. (3.9)
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By H1 (iv) we can find c, δ > 0 s.t. for a.e. x ∈ Ω and all t ∈ [−δ, 0]

G(x, t) � −c|t|p.
Since û1 ∈ int(C0

s (Ω)+), for all τ > 0 small enough we have −δ <
−τ û1 < 0 in Ω, so

Φ−
λ (−τ û1) � τp

p
‖û1‖p − λτ q

q
‖û1‖q

q + cτp‖û1‖p
p

=
(λ1

p
+ c

)
τp − λτ q

q
‖û1‖q

q,

and the latter is negative for all τ > 0 small enough. So we deduce m− < 0,
hence by (3.9) we have u− �= 0. Testing (Φ−

λ )′(u−) = 0 with u+
− ∈ W s,p

0 (Ω)
and recalling Lemma 2.1 (ii), we have

‖u+
−‖p � 〈(−Δ)s

p u−, u+
−〉

=
∫

Ω

f−
λ (x, u−)u+

− dx = 0,

so u− ∈ −W s,p
0 (Ω)+ \ {0}. Arguing as in the proof of Lemma 3.3 and apply-

ing Propositions 2.4 and 2.5, we see that u− ∈ −int(C0
s (Ω)+) is a negative

solution of (1.1). �

Combining Lemmas 3.3 and 3.4, we achieve our result on constant sign
solutions:

Theorem 3.5. Let H1 hold. Then, there exists λ∗ > 0 s.t. for all λ ∈ (0, λ∗)
problem (1.1) has at least two positive solutions u+, v+ ∈ int(C0

s (Ω)+) and a
negative solution u− ∈ −int(C0

s (Ω)+).

Remark 3.6. We briefly outline that multiple constant sign solutions could be
ensured under an alternative set of assumptions involving asymmetric reac-
tions (see for instance [19]). In particular, the pure power term |u|q−2u can be
replaced by any Carathéodory mapping h : Ω×R → R with (p−1)-sublinear
growth at ±∞ and satisfying a kind of reverse Ambrosetti-Rabinowitz con-
dition at 0. Moreover, the subcritical growth condition H1 (i) on g(x, ·) can
be weakened to a ’quasi-critical’ one, namely, one may assume

lim
t→∞

g(x, t)
tp

∗
s−1

= 0 uniformly for a.e. x ∈ Ω.

In such a case, however, a quasi-monotonicity condition must be required for
the whole reaction fλ to retrieve the (C)-condition.

4. Extremal Constant Sign Solutions and Nodal Solution

In this section we get more precise information on constant sign solutions
of (1.1), proving the existence of a smallest positive and a biggest negative
solution, then we exploit such information to detect a nodal solution. To do
so, we need to strengthen a bit our hypotheses on the perturbation g:
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H2 g : Ω×R → R is a Carathéodory function, we set G(x, t) =
∫ t

0

g(x, τ) dτ

for all (x, t) ∈ R, and
(i) there exist c1 > 0, r ∈ (p, p∗

s) s.t. for a.e. x ∈ R and all t ∈ R

|g(x, t)| � c1(1 + |t|r−1);

(ii) uniformly for a.e. x ∈ Ω

lim
t→∞

G(x, t)
tp

= ∞;

(iii) there exist c2, β > 0, with max
{

q,
N(r − p)

ps

}
< β < p∗

s s.t. uni-

formly for a.e. x ∈ Ω

lim inf
t→∞

g(x, t)t − pG(x, t)
tβ

� c2;

(iv) uniformly for a.e. x ∈ Ω

lim
t→0

g(x, t)
|t|p−2t

= 0;

(v) there exists θ ∈ L∞(Ω)+ s.t. θ � λ1 in Ω, θ �≡ λ1, and uniformly
for a.e. x ∈ Ω

lim sup
t→−∞

G(x, t)
|t|p � θ(x)

p
;

(vi) there exist δ1 > 0 s.t. for a.e. x ∈ Ω and all |t| � δ1

g(x, t)t � 0.

Clearly H2 (i)–(v) imply H1, so all results of Sects. 2 and 3 still hold. In
addition, we assume that g(x, ·) is (p − 1)-superlinear at 0 (see (iv)) and
satisfies a local sign condition near zero (see (vi)).

Example 4.1. The following autonomous mapping g ∈ C(R) satisfies H2:

g(t) =

{
|t|γ−2t if t < −1
|t|r−2t if t � −1,

with 1 < γ < p < r < p∗
s (set β = r in (iii)).

Taking λ > 0 even smaller if necessary, problem (1.1) admits extremal
constant sign solutions. Unlike in [15] (where the reaction is (p − 1)-linear
at 0 without resonance with the principal eigenvalue), the result is obtained
by constructing a sub-supersolution pair by means of auxiliary problems and
using the comparison result of Theorem 2.8:

Lemma 4.2. Let H2 hold. Then, there exists λ∗ > 0 s.t. for all λ ∈ (0, λ∗)
problem (1.1) admits

(i) a smallest positive solution w+ ∈ int(C0
s (Ω)+), ‖w+‖∞ � δ1;

(ii) a biggest negative solution w− ∈ −int(C0
s (Ω)+), ‖w−‖∞ � δ1.
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Proof. We prove (i). First we consider the following torsion problem:{
(−Δ)s

p v = 1 in Ω
v = 0 in Ωc.

(4.1)

By direct variational methods (minimization) and Proposition 2.5, we
see that (4.1) has a unique solution v ∈ int(C0

s (Ω)+). Fix ε ∈ (0, ‖v‖1−p
∞ ),

then by H2 (i) (iv) we can find Cε > 0 s.t. for a.e. x ∈ Ω and all t � 0

g(x, t) � εtp−1 + Cεt
r−1.

We claim that there exists λ∗ > 0 with the following property: for all λ ∈
(0, λ∗) there is τ ∈ (0, δ1/‖v‖∞) s.t.

λ‖τv‖q−1
∞ + ε‖τv‖p−1

∞ + Cε‖τv‖r−1
∞ < τp−1. (4.2)

Arguing by contradiction, let (λn) be a sequence s.t. λn → 0+ and for all
n ∈ N, τ ∈ (0, δ1/‖v‖∞)

τp−1 � λn‖τv‖q−1
∞ + ε‖τv‖p−1

∞ + Cε‖τv‖r−1
∞ .

Then, letting n → ∞ and dividing by τp−1 > 0 we have

1 � ε‖v‖p−1
∞ + Cετ

r−p‖v‖r−1
∞ .

Now, letting τ → 0+ and recalling that r > p we get

1 � ε‖v‖p−1
∞ ,

a contradiction. So (4.2) is achieved. Now fix λ ∈ (0, λ∗), τ ∈ (0, δ1/‖v‖∞)
satisfying (4.2), and set

u = τv ∈ int(C0
s (Ω)+).

Then, by (4.1) and the estimate on f we have weakly in Ω

(−Δ)s
p u = τp−1

> λ‖u‖q−1
∞ + ε‖u‖p−1

∞ + Cε‖u‖r−1
∞

� λuq−1 + g(x, u),

i.e., u ∈ int(C0
s (Ω)+) is a (strict) supersolution of (1.1) satisfying 0 < u � δ1

in Ω.
For all k ∈ N set uk = û1/k ∈ int(C0

s (Ω)+) (with û1 defined as in Sect.
2). Clearly, uk → 0 uniformly in Ω, so for all k ∈ N big enough we have
uk < u (in particular, 0 < uk < δ1) in Ω, and λ1u

p−q
k < λ in Ω. By H2 (vi)

and the inequalities above, we have weakly in Ω

(−Δ)s
p uk =

λ1

kp−1
ûp−1

1

= λ1u
p−1
k

< λuq−1
k + g(x, uk).

So, for all k ∈ N big enough uk ∈ int(C0
s (Ω)+) is a (strict) subsolution

of (1.1) s.t. uk < u in Ω, namely (uk, u) is a sub-supersolution pair of (1.1).
By Proposition 2.2, the set

S(uk, u) =
{
w ∈ W s,p

0 (Ω) : w is a solution of (1.1), uk � w � u in Ω
}



MJOM Four Solutions for Fractional p-Laplacian Equations Page 21 of 32   220 

has a smallest element wk ∈ W s,p
0 (Ω). By Propositions 2.4 and 2.5 we have

wk ∈ int(C0
s (Ω)+). The sequence (wk) is relatively compact in W s,p

0 (Ω).
Indeed, for all k ∈ N we have wk ∈ S(0, u), and the latter is a compact set
in W s,p

0 (Ω) (Proposition 2.2 again). Thus, passing to a subsequence we have
wk → w+ in W s,p

0 (Ω), wk → w+ in Lp(Ω), and wk(x) → w+(x) for a.e. x ∈ Ω
(in particular, 0 � w+ � δ1 in Ω). We claim that

w+ �= 0. (4.3)

We argue by contradiction, assuming that wk → 0 in W s,p
0 (Ω). Again

we consider an auxiliary problem:{
(−Δ)s

p v̂ = λ(v̂+)q−1 in Ω
v̂ = 0 in Ωc,

(4.4)

with λ ∈ (0, λ∗) as above. Since q < p, by direct variational methods and
Proposition 2.5 we see that (4.4) has a solution v̂ ∈ int(C0

s (Ω)+). By
[15, Remark 3.6], passing to a subsequence we also have wk → 0 in C0

s (Ω),
in particular wk → 0 uniformly in Ω. So, let k ∈ N be large enough s.t.
0 < wk < δ1 in Ω. By H2 (vi) we have weakly in Ω

(−Δ)s
p wk = λwq−1

k + g(x,wk) � λwq−1
k ,

i.e., wk ∈ int(C0
s (Ω)+) is a supersolution of (4.4). Clearly, the mapping

t 
→ λ

tp−q

is decreasing in (0,∞), so by Theorem 2.8 we have v̂ � wk in Ω. Letting
k → ∞ we get v̂ � 0 in Ω, a contradiction. Thus, (4.3) is proved.

By strong convergence and (4.3), we see that w+ ∈ W s,p
0 (Ω)+\{0} solves

(1.1), hence as above we deduce w+ ∈ int(C0
s (Ω)+). Besides, from w+ � u

we deduce that in Ω

0 < w+ � δ1.

We prove now that w+ is the smallest positive solution of (1.1). Let u ∈
W s,p

0 (Ω)+ \ {0} be another positive solution of (1.1), then u ∈ int(C0
s (Ω)+).

So we can find k ∈ N s.t. in Ω we have

uk =
û1

k
� u.

Set

û = min{u, u}.

By [15, Lemma 3.1], û ∈ W s,p
0 (Ω) is a supersolution of (1.1), so (uk, û) is a

sub-supersolution pair. By Proposition 2.2 there exists a solution

v ∈ S(uk, û) ⊆ S(uk, u).

In particular, in Ω we have

wk � v � û � u.

Letting k → ∞, we have w+ � u in Ω.
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The existence (ii) of a biggest negative solution w− ∈ −int(C0
s (Ω)+) s.t.

‖w−‖∞ � δ1 is proved in a similar way. �

Remark 4.3. For alternative hypotheses to H2 see [15] where (as already
mentioned) extremal constant sign solutions are detected for (p − 1)-linear
reactions at 0. Also, in [30] (dealing with the local case s = 1) a different
set of assumptions is proposed to find a biggest negative solution, namely, a
(p − 1)-linear behavior of g(x, ·) near 0 with a global sign condition.

In what follows, we seek a fourth nontrivial solution of (1.1) under
hypotheses H2, for λ > 0 small enough. Set

λ̃ = min{λ∗, λ∗} > 0, (4.5)

with λ∗ > 0 as in Theorem 3.5 and λ∗ > 0 as in Lemma 4.2. Without loss
of generality we may assume that for all λ ∈ (0, λ̃) that u± ∈ ±int(C0

s (Ω)+)
are the extremal constant sign solutions given by Lemma 4.2, in particular
v+ � u+ in Ω. Set for all (x, t) ∈ Ω × R

κ(x, t) =

⎧⎪⎨
⎪⎩

u−(x) if t � u−(x)
t if u−(x) < t < u+(x)
u+(x) if t � u+(x).

Accordingly, for all λ > 0 set

f̃λ(x, t) = λ|κ(x, t)|q−2κ(x, t) + g(x, κ(x, t)),

F̃λ(x, t) =
∫ t

0

f̃λ(x, τ) dτ.

Further, set for all u ∈ W s,p
0 (Ω)

Φ̃λ(u) =
‖u‖p

p
−

∫
Ω

F̃λ(x, u) dx.

Lemma 4.4. Let H2 hold. Then,

(i) Φ̃λ ∈ C1(W s,p
0 (Ω)) is coercive and satisfies the Palais-Smale (PS)-

condition;
(ii) if u ∈ K(Φ̃λ), then u− � u � u+ in Ω and u ∈ C0

s (Ω) solves (1.1).

Proof. We prove (i). By H2 (i) we see that f̃λ : Ω × R → R satisfies H0, so
Φ̃λ ∈ C1(W s,p

0 (Ω)) with derivative given for all u, ϕ ∈ W s,p
0 (Ω) by

〈Φ̃′
λ(u), ϕ〉 = 〈(−Δ)s

p u, ϕ〉 −
∫

Ω

f̃λ(x, u)ϕ dx. (4.6)

It is easily seen that Φ̃λ is coercive in W s,p
0 (Ω). Indeed, since u± ∈ C0

s (Ω),
the mapping κ is bounded in Ω × R, hence by H2 (i) f̃λ is bounded as well.
So, there exists C > 0 s.t. for a.e. x ∈ Ω and all t ∈ R

F̃λ(x, t) � C|t|.
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So, for all u ∈ W s,p
0 (Ω) we have

Φ̃λ(u) � ‖u‖p

p
−

∫
Ω

C|u|dx

� ‖u‖p

p
− C‖u‖,

and the latter tends to ∞ as ‖u‖ → ∞.
Next we prove that Φ̃λ satisfies (PS). Let (un) be a sequence in W s,p

0 (Ω)
s.t. |Φ̃λ(un)| � C for all n ∈ N, and Φ̃′

λ(un) → 0 in W−s,p′
(Ω). By coercivity,

(un) is bounded in W s,p
0 (Ω). Passing to a subsequence, we have un ⇀ u in

W s,p
0 (Ω), un → u in L1(Ω). By (4.6) we have for all n ∈ N and ϕ ∈ W s,p

0 (Ω)

〈(−Δ)s
p un, ϕ〉 =

∫
Ω

f̃λ(x, un)ϕ dx + o(1). (4.7)

Testing (4.7) with ϕ = un − u ∈ W s,p
0 (Ω) we have

〈(−Δ)s
p un, un − u〉 =

∫
Ω

f̃λ(x, un)(un − u) dx + o(1)

� C‖un − u‖1 + o(1),

and the latter tends to 0 as n → ∞. By the (S)+-property of (−Δ)s
p , we

deduce that un → u in W s,p
0 (Ω), so Φ̃λ satisfies (PS).

Now we prove (ii). Let u ∈ K(Φ̃λ). First we see that u � u+ in Ω.
Testing (4.7) with (u − u+)+ ∈ W s,p

0 (Ω), and recalling the definition of f̃λ,
we have

〈(−Δ)s
p u, (u − u+)+〉 =

∫
Ω

f̃λ(x, u)(u − u+)+ dx

=
∫

Ω

[
λ(u+)q−1 + g(x, u+)

]
(u − u+)+ dx

= 〈(−Δ)s
p u+, (u − u+)+〉.

Arguing as in the proof of [15, Lemma 3.2], we see that

‖(u − u+)+‖p � C〈(−Δ)s
p u − (−Δ)s

p u+, (u − u+)+〉 = 0,

hence (u − u+)+ = 0. Similarly, we prove that u � u− in Ω. Again by the
definition of f̃λ, we see that weakly in Ω

(−Δ)s
p u = fλ(x, u),

i.e., u is a solution of (1.1). By Proposition 2.4, we have u ∈ C0
s (Ω). �

By H2 (iv), it is easily seen that 0 ∈ K(Φ̃λ). Without loss of generality,
we may assume that 0 is an isolated critical point, i.e., that there exists a
neighborhood U of 0 s.t.

K(Φ̃λ) ∩ U = {0}.

Thus, we may compute the critical groups of Φ̃λ at 0
(see [31, Definition 6.43]):
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Lemma 4.5. Let H2 hold. Then, for all λ > 0, k ∈ N

Ck(Φ̃λ, 0) = 0.

Proof. Preliminarily we establish some precise estimates on F̃λ. First, by H2

(i) (iv), for all ε > 0 we can find Cε > 0 s.t. for a.e. x ∈ Ω and all t ∈ R

G(x, t) � −ε|t|p − Cε|t|r.
So, for all u−(x) � t � u+(x) we have

G(x, t) � −ε|t|p − Cε max{‖u+‖∞, ‖u−‖∞}r−p|t|p � −C|t|p.
Then, for any λ > 0 we get

F̃λ(x, t) � λ

q
|t|q − C|t|p. (4.8)

Now, fix μ ∈ (q, p). By H2 (i) we have

μF̃λ(x, t) − f̃λ(x, t)t �−μ
[λ

q
|t|q + C(|t| + |t|r)

]
− [

λ|t|q−1+C(1 + |t|r−1)
]|t|

� −Cμ(1 + |t|r),
with Cμ > 0 depending on μ. The latter inequality implies

lim inf
t→∞

μF̃λ(x, t) − f̃λ(x, t)t
tr

> −∞, (4.9)

uniformly for a.e. x ∈ Ω. Besides, by H2 (iv) (vi) we can find δ ∈ (0, δ1] s.t.
for a.e. x ∈ Ω and all |t| � δ we have both

|g(x, t)| � |t|p−1, G(x, t) � 0.

We claim that, by taking δ > 0 even smaller if necessary, for a.e. x ∈ Ω and
all 0 < |t| � δ we have

μF̃λ(x, t) − f̃λ(x, t)t > 0. (4.10)

Indeed, pick x ∈ Ω, t ∈ (0, δ] and distinguish two cases:

(a) if t > u+(x), then

F̃λ(x, t) =
∫ u+(x)

0

[
λτ q−1 + g(x, τ)

]
dτ +

∫ t

u+(x)

[
λu+(x)q−1 + f(x, u+(x))

]
dτ

=
λ

q
u+(x)q + G(x, u+(x)) +

[
λu+(x)q−1 + g(x, u+(x))

]
(t − u+(x));

(b) if 0 < t � u+(x), then simply

F̃λ(x, t) =
λ

q
tq + G(x, t).
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In any case, we have

μF̃λ(x, t) − f̃λ(x, t)t = μ
[λ

q
κ(x, t)q + G(x, κ(x, t))

]
+

[
λκ(x, t)q−1 + g(x, κ(x, t))

][
(t − u+(x))+ − t

]
� μλ

q
κ(x, t)q − [

λκ(x, t)q−1 + g(x, κ(x, t))
]
κ(x, t)

=
(μ

q
− 1

)
λκ(x, t)q − g(x, κ(x, t))κ(x, t)

� C1κ(x, t)q − C2κ(x, t),

with C1, C2 > 0 (recall that μ > q). Here we have used the equality

(t − u+(x))+ − t = −κ(x, t),

holding for all t > 0, along with G(x, t) � 0 and the relations in (a), (b).
Since p > q and κ(x, t) � t, for all t > 0 small enough we deduce

μF̃λ(x, t) − f̃λ(x, t)t > 0.

Similarly, we deal with t ∈ [−δ, 0), thus proving (4.10). Combining (4.9) and
(4.10), we find C > 0 s.t. for a.e. x ∈ Ω and all t ∈ R

μF̃λ(x, t) − f̃λ(x, t)t > −C|t|r. (4.11)

Armed with the estimates above, we can describe the behavior of Φ̃λ near 0.
First, fix ρ > 0 s.t.

K(Φ̃λ) ∩ Bρ(0) = {0}.

For any v ∈ W s,p
0 (Ω) \ {0} s.t. Φ̃λ(v) = 0, the mapping τ 
→ Φ̃λ(τv) is C1 in

(0,∞) and, by the chain rule, we have
d

dτ
Φ̃λ(τv)

∣∣∣
τ=1

= 〈Φ̃′
λ(v), v〉 − μΦ̃λ(v)

=
(
1 − μ

p

)
‖v‖p +

∫
Ω

[
μF̃λ(x, v) − f̃λ(x, v)v

]
dx

�
(
1 − μ

p

)
‖v‖p − C‖v‖r,

where we have used (4.11). Since μ < p < r, the latter is positive whenever
‖v‖ > 0 is small enough. So, taking ρ > 0 even smaller if necessary, for all
v ∈ Bρ(0) \ {0} s.t. Φ̃λ(v) = 0 we have

d

dτ
Φ̃λ(τv)

∣∣∣
τ=1

> 0. (4.12)

Now consider u ∈ Bρ(0)∩C0
s (Ω)\{0}. Since u± ∈ ±int(C0

s (Ω)+), for all τ > 0
small enough we have u± − τu ∈ ±int(C0

s (Ω)+), in particular u− < τu < u+

in Ω. So, by (4.8) we have

Φ̃λ(τu) � τp

p
‖u‖p −

∫
Ω

[λ

q
|τu|q − C|τu|p

]
dx

=
[‖u‖p

p
+ C‖u‖p

p

]
τp − λ

q
‖u‖q

qτ
q,
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and the latter is negative for all τ > 0 small enough (depending on u). The
same holds for all u ∈ Bρ(0) \ {0} by density (see [14, Theorem 6]), so we
may set

τ∗(u) = inf
{
τ > 0 : Φ̃λ(τu) > 0

}
> 0. (4.13)

Define the closed set

D =
{
u ∈ Bρ(0) : Φ̃λ(u) � 0

}
,

which is nonempty due to (4.13). We claim that D is contractible
(see [31, Definition 6.22]). First we prove that, for all u ∈ D \ {0} and all
τ ∈ [0, 1], we have τu ∈ D. Arguing by contradiction, let u ∈ D, τ0 ∈ (0, 1)
s.t.

Φ̃λ(τ0u) > 0.

Since Φ̃λ(u) � 0, by the mean value theorem we can find τ1 ∈ (τ0, 1] s.t.
Φ̃λ(τ1u) = 0. Set

τ2 = min
{
τ ∈ (τ0, 1] : Φ̃λ(τu) = 0

}
.

Then τ2 > τ0 and Φ̃λ(τu) > 0 for all τ ∈ [τ0, τ2), which by monotonicity
implies

d

dτ
Φ̃λ(τu)

∣∣∣
τ=τ2

� 0.

Besides, by (4.12) with v = τ2u ∈ Bρ(0) \ {0} and the chain rule we have

d

dτ
Φ̃λ(τu)

∣∣∣
τ=τ2

=
1
τ2

d

dτ
Φ̃λ(τv)

∣∣∣
τ=1

> 0,

a contradiction. So D is star-shaped, hence contractible by [31, Remark 6.23].
Now set

D0 =
{
u ∈ Bρ(0) \ {0} : Φ̃λ(u) � 0

}
, E0 =

{
u ∈ Bρ(0) \ {0} : Φ̃λ(u) > 0

}
,

so that D0 ∪E0 = Bρ(0)\{0}. We prove now that D0 is contractible. Indeed,
for all u ∈ E0, by (4.13) there exists τ(u) ∈ (0, 1) s.t.

Φ̃λ(τ(u)u) = 0.

By (4.12) and the implicit function theorem, τ(u) ∈ (0, 1) is unique and the
map τ : E0 → (0, 1) is continuous. So, set for all u ∈ Bρ(0) \ {0}

j(u) =

{
u if u ∈ D0

τ(u)u if u ∈ E0.

The map j : (Bρ(0)\{0}) → D0 is continuous. Indeed, avoiding trivial cases,
let (un) be a sequence in E0 s.t. un → u in W s,p

0 (Ω), for some u ∈ D0. Then
we have Φ̃λ(u) = 0, hence by uniqueness τ(un) → 1, which in turn implies

lim
n

j(un) = u = j(u).

Recalling that j(u) = u for all u ∈ D0, we conclude that j is a retraction of
Bρ(0)\{0} onto D0. Since W s,p

0 (Ω) is infinite-dimensional, then Bρ(0)\{0} is
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contractible, hence D0 is contractible as well. Finally, by the excision property
of critical groups and [31, Propositions 6.24, 6.25], we have for all k ∈ N

Ck(Φ̃λ, 0) = Hk(D,D0) = Hk(D, �) = 0,

which proves the assertion. �

We can finally prove our multiplicity result:

Theorem 4.6. Let H2 hold. Then, there exists λ̃ > 0 s.t. for all λ ∈ (0, λ̃)
problem (1.1) has at least four nontrivial solutions: u+, v+ ∈ int(C0

s (Ω)+),
u− ∈ −int(C0

s (Ω)+), and ũ ∈ C0
s (Ω) nodal.

Proof. Once again we remark that hypotheses H2 imply H1, so let λ∗, λ∗ > 0
be defined by Theorem 3.5 and Lemma 4.2, respectively, and λ̃ > 0 by (4.5).
As above, we assume that u± ∈ ±int(C0

s (Ω)+) are the extremal constant
sign solutions of (1.1) and v+ � u+ in Ω, and accordingly define Φ̃λ ∈
C1(W s,p

0 (Ω)). Finally, without loss of generality we assume that K(Φ̃λ) is a
finite set.

First we prove that u+ is a local minimizer of Φ̃λ. Indeed, set for all
(x, t) ∈ Ω × R

f̃+
λ (x, t) = f̃λ(x, t+), F̃+

λ (x, t) =
∫ t

0

f̃+
λ (x, τ) dτ,

and for all u ∈ W s,p
0 (Ω)

Φ̃+
λ (u) =

‖u‖p

p
−

∫
Ω

F̃+
λ (x, u) dx.

Arguing as in Lemma 4.4 we see that Φ̃+
λ ∈ C1(W s,p

0 (Ω)) is coercive,
satisfies (PS), and whenever u ∈ K(Φ̃+

λ ) we have that u ∈ C0
s (Ω) solves (1.1)

and 0 � u � u+ in Ω. So, there exists ũ+ ∈ W s,p
0 (Ω) s.t.

Φ̃+
λ (ũ+) = inf

u∈W s,p
0 (Ω)

Φ̃+
λ (u) = m̃+.

Using H2 (iv) as in Lemma 3.3 (precisely, see (3.8)) we see that m̃+ < 0,
hence ũ+ �= 0. Once again, Propositions 2.4, 2.5 imply that ũ+ ∈ int(C0

s (Ω)+).
So, ũ+ turns out to be a positive solution of (1.1) s.t. ũ+ � u+ in Ω, which
by extremality implies ũ+ = u+. Then, for all u ∈ W s,p

0 (Ω)∩ int(C0
s (Ω)+) we

have

Φ̃λ(u) = Φ̃+
λ (u) � Φ̃+

λ (u+) = Φ̃λ(u+),

in particular u+ is a C0
s (Ω)-local minimizer of Φ̃λ. By Proposition 2.6, u+ is

also a W s,p
0 (Ω)-local minimizer of Φ̃λ, as claimed.

Similarly, we see that u− ∈ −int(C0
s (Ω)+) is a local minimizer of Φ̃λ.

Recalling that K(Φ̃λ) is finite, by a topological version of the moun-
tain pass theorem (see [31, Theorem 6.99, Proposition 6.100]) we deduce the
existence of ũ ∈ K(Φ̃λ) s.t. ũ �= u± and

C1(Φ̃λ, ũ) �= 0. (4.14)
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Comparing (4.14) with Lemma 4.5, we see that ũ �= 0. Besides, by Lemma
4.4 ũ ∈ C0

s (Ω)\{0} solves (1.1) and u− � ũ � u+ in Ω. Then, ũ must change
sign in Ω. Indeed, assuming by contradiction that ũ � 0, then by Proposition
2.5 we would have ũ ∈ int(C0

s (Ω)+) with ũ � u+ and ũ �≡ u+, a contradiction
to Lemma 4.2. Similarly, if ũ � 0 in Ω, we reach a contradiction.

Thus, we have proved the existence of four solutions of (1.1) (beside 0):
u+, v+ ∈ int(C0

s (Ω)+), u− ∈ −int(C0
s (Ω)+), and ũ ∈ C0

s (Ω) nodal. �

Remark 4.7. Again we recall some alternative assumptions to H2, under
which existence of a nodal solution can be achieved. For instance, arguing as
in [30] one could require a linear behavior of g(x, t) as t → 0−, together with
a global sign condition. As in [19], one could assume a quasi-critical growth
with a quasi-monotonicity condition on fλ(x, ·) (see Remark 3.6). Finally, as
in [15], one can assume a different condition of the type

lim inf
t→0

fλ(x, t)
|t|p−2t

� λ2

uniformly for a.e. x ∈ Ω, where λ2 > λ1 denotes the second variational
eigenvalue of (−Δ)s

p in W s,p
0 (Ω) (this argument is based on a variational

characterization of λ2 proved in [2]).
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[8] Costa, D.G., Magalhães, C.A.: Variational elliptic problems which are non-
quadratic at infinity. Nonlinear Anal. 23, 1401–1412 (1994)

[9] Dancer, E.N., Du, Y.: On sign-changing solutions of certain semilinear elliptic
problems. Appl. Anal. 56, 193–206 (1995)

[10] Del Pezzo, L.M., Quaas, A.: A Hopf’s lemma and a strong minimum principle
for the fractional p-Laplacian. J. Differ. Equ. 263, 765–778 (2017)

[11] Del Pezzo, L.M., Quaas, A.: Global bifurcation for fractional p-Laplacian and
an application. Z. Anal. Anwend. 35, 411–447 (2016)

[12] Diaz, J.I., Saa, J.E.: Existence et unicité de solutions positives pour certaines
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fractional p-Laplacian. Rev. Mat. Iberoam. 32, 1353–1392 (2016)

[21] Iannizzotto, A., Mosconi, S., Squassina, M.: Fine boundary regularity for the
degenerate fractional p-Laplacian. J. Funct. Anal. 279, 108659 (2020)



  220 Page 30 of 32 A. Iannizzotto and R. Livrea MJOM

[22] Iannizzotto, A., Mosconi, S., Squassina, M.: Sobolev versus Hölder minimizers
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