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1. Introduction

In this paper we study the existence and multiplicity of nontrivial smooth solutions for the nonlinear

Robin problem:

—Apu(2) + £(2)[u(2) P ?u(z) = f(z,u(z)  in 0

oo+ B P u=0 on O%2. (L1
onp

In this problem 2 C RY is a bounded domain with C%-boundary 8f2. By A, we denote the p-Laplace
differential operator defined by
Apu = div(|DufP>Du) for all u € WHP(2), 1 < p < +o0.

The potential function £(z) € L*°(f2) and is, in general, sign changing. So, the differential operator of
the problem cannot be coercive. The reaction term f(z,z) is a Carathéodory function (that is, for all z € R
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the function z — f(z,z) is measurable and for a.a. z € 2 the function x — f(z,z) is continuous). The
conditions on f(z,-) are minimal and imply that the energy (Euler) functional of the problem is coercive.
Our aim is to prove multiplicity theorems for problem (1.1) and provide sign information for all the solution
produced. We prove two such multiplicity theorems, which differ in the geometry of the energy functional
near the origin. In the first, we assume the presence of a concave term (that is, of a (p — 1)-sublinear term)
near zero. In the second, we assume that f(z,-) has (p — 1)-linear growth near zero. In both cases, we prove
the existence of at least three nontrivial smooth solutions all with sign information (a positive solution, a
negative solution and a nodal (sign changing) solution). When p = 2 (semilinear problem), we can improve
the second multiplicity theorem and, using the theory of critical groups, we can generate a second nodal
solution for a total of four nontrivial smooth solutions with sign information. Moreover, in the semilinear
case, we can relax the conditions on potential function £(-) and assume that £ € L°(£2), with s > N, and
&t € L*°(2) (so &(+) can be unbounded below). At the end we use our results to a particular parametric
logistic equation with reaction of equidiffusive type. We show that for all A > A* () € R being the parameter),
the problem has three nontrivial solutions all with sign information. Also, we identify exactly the critical
parameter value A* > 0 by means of the spectrum of the differential operator. Our work here complements
that of Papageorgiou—Radulescu—Repovs [23], where the reaction f(z,-) is asymptotically, as £ — +o0, at
resonance with respect to a non principal eigenvalue of the differential operator u — —A,yu + &(2)|ul’ 2y
with Robin boundary condition. This makes the energy functional noncoercive. To have a complete overview
on the literature one can refer also to the relevant papers [15,19-21].
For other kind of operators with lower order terms see also [7-9]

2. Mathematical background. Hypotheses

In the analysis of problem (1.1), we will use the Sobolev space W'(2) and the Banach space C*(12).
By || - [lw1.p() we denote the norm of W'?((2) defined by

lullweqay = [||u||§,,(m +] D”H’ipm)] VP for all w € Whe(0).
The Banach space C'(f2) is ordered with positive (order) cone given by
Cy ={ueCR) : u(z) >0Vze 2}.
This cone has a nonempty interior given by
intCy ={u€Cy : u(z) >0Vz e R}
Also we will use another open cone in C({2), namely

D, = ueC’l(fZ):u(z)>OVz€f2,% <0,p.
on 802Nu—1(0)

On 912 we consider the (N — 1)-dimensional Hausdorff (surface) measure o(-). Using this measure we can
define, in the usual way, the boundary Lebesgue spaces LP(812), 1 < p < +o0. There is a unique continuous
linear map v : WHP(2) — LP(012), known as the “trace map”, such that

Y0(u) = ujpe Yu € WH(2)NC(R2).

So, the trace map extends the notion of boundary values to all Sobolev functions. This map is not
surjective. In fact we have

1
im~yo =W " (02) (1/p+1/p' =1) and keryo = Wy*(R2).
Moreover, vo(-) € LIWLP(£2), LP(012)) is compact.
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In the sequel, for the sake of notational simplicity, we drop the use of trace map. All restrictions of Sobolev

functions on 02 are understood in the sense of traces.

We will use some facts about the spectrum, of the differential operator u — —A,u + &(2)u/’">u with

Robin boundary condition. So, we consider the following nonlinear eigenvalue problem

—Apu(z) + E(2)|u(2) P u(z) = AMu(2) P u(z)  in 2
s+ B u=0 on 502.

(2.1)

We say that A € R is an “eigenvalue” if (2.1) admits a nontrivial solution @ € W2 (£2) which is known as
an “eigenfunction” corresponding to the eigenvalue . We impose the following conditions on the potential
function £(-) and on the boundary coefficient §(:).

H(£): € € L™ ().

Remark 2.1. So the potential function is in general sign changing,.
H(B): B € C%*(812) for some a €]0,1[ and B(z) > 0, Vz € 002.
Remark 2.2. The case § = 0 is also included and corresponds to the Neumann problem.

Let K : W1P(2) — R be the C'-functional defined by

K(u) = ||Du||’£,,(m +/Q§(z)|u|p dz + /an B(2)|ul’ do  for all u € WP(12).

The eigenvalue problem (2.1) was studied by Papageorgiou-Radulescu [12] and Fragnelli-Mugnai-
Papageorgiou [5]. We know that the set (p) C R of eigenvalues is closed and there is a smallest eigenvalue
A1 € R which has the following properties:

(@) A is isolated, that is, there exists € > 0 such that
JA1, M+ [né(p) = 0,

(b) X is simple, that is, if @, 9 are eigenfunctions corresponding to Ay, then @ = 59 for some 5 € R \ {0},
(o)
A1 = inf _K(u) cu € WHP(2), u#03. (2.2)
”u”ip(g)

The infimum in (2.2) is realized on the corresponding one dimensional eigenspace (see (b)). From (2.2)
it follows that the elements of this eigenspace have fixed sign. In fact \; is the only eigenvalue with
eigenfunctions of fixed sign. All the other eigenvalues have eigenfunctions which are nodal (sign changing).

By ; we denote the positive, LP-normalized (that is, ||| zr(0) = 1) eigenfunction corresponding to M.
Nonlinear regularity theory (see Lieberman [10]) and the nonlinear maximum principle (see Pucci—Serrin [22],
pp. 111, 120) imply that @1 € intC... Since A; is isolated and &(p) is closed, the second eigenvalue X3 is well
defined by

X :inf{j\::\e&(p), 3\>5\1}.

Moreover, using Ljusternik—Schnirelmann minimax scheme, we can generate a whole sequence {3\19} k>1

of distinct eigenvalues (LS-eigenvalues for short). We do not know if the LS-eigenvalues exhaust 6 (p). When

p = 2, then §(p) = {:\k}k>1‘ Also :\; = :\2, that is, the second eigenvalue coincides with the second LS-

eigenvalue. The Ljusternik—Schnirelmann minimax scheme provides a variational (minimax) characterization
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of X2. But for our purposes this characterization is not convenient. Instead we will use an alternative one
which can be found in Papageorgiou—Radulescu [12].
So, let OB = {u € LP(2) : |[u||Lr(0) = 1} and M = W'P(2) N OB}*. We consider the following set of
continuous paths
F= {5 eC(-1,1],M) : 5(-1) = iy, 4(1) = i}

Proposition 2.3. \; = inf, . p max;e 1 1) K(5(t))-
By A: WP(Q2) — W1P(2)* we denote the nonlinear map defined by
(A(u), by = / \DulP~2(Du, Dh)gn dz for all u, h € WP(2).
Q

The next proposition presents the main properties of this map (see Papageorgiou—-Radulescu-Repovs [18],
pp. 114, 158).

Proposition 2.4. The map A(:) is bounded, continuous, monotone, and of type (S)., that is, the following
implication holds:

“f up, = u in WHP(R2) and limsup,,_,, oo (A(Un), un —u) < 0= u, — u in WHP(2)” (see [18], Definition
2.10.11(a)).

If z € R, we set ¥ = max{%z,0} and if u € W1P(£2), then we define u*(z) = u(2)* for all z € 2. We
know that
uEewP(2), u=u" —u”, |ul=ut4+u".

Given u,v € WHP(2) with u(z) < v(z) for a.a. z € 2, we define
[u,v] = {h € WHP(2) : u(z) < h(z) < v(z) for a.a. z € 2}.

Also, by intc1(p)[u, v] we denote the interior in the C*(2)-norm topology of [u,v] N C(R).

We say that a set S C WP(£2) is a “downward directed” (resp. “upward directed”) if for all u;,uy € S,
we can find u € S such that u < uy, u < uy (resp. for all vy,vo € S, we can find v € S such that v; < v,
vy < ).

Finally let us recall some basic facts about critical groups which we will need in the sequel.

So, let X be a Banach space and ¢ € C*(X;R). For € R, we introduce the following sets

Ko={ue X :¢(u)=0}, Kj={ueK,:pu)=n}, ¢"={ueX:p()<n}

Also for any topological pair (Y1,Y2), with Y2 C Y7 C X, and every k € Ny, by Hi(Y1,Y2) we denote the
kth-relative singular homology group with integer coefficients for the pair (Y1, Y2).
If u € K, is isolated and ¢p(u) = c (that is, u € Kg), then the critical groups of ¢ at u are defined by

Cr(p,u) = He(e*NU,p°NU \ {u}) for all k& € Ny,

with U being a neighborhood of v such that K, N¢°NU = {u}.

The excision property of singular homology implies that the above definition is independent of the choice
of the isolating neighborhood U.

Suppose that ¢(-) satisfies the Cerami condition (C-condition, for short) and inf¢(K,) > —oo. Let
¢ < inf p(K,). Then the critical groups of ¢ at infinity are defined by

Cr(p,00) = Hp(X, ¢°) for all k € Ny.
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From the Second Deformation Theorem (see [18], Theorem 5.3.12, p. 386), we see that this definition is
independent of the choice of ¢ < inf p(K,).
Suppose that K, is finite. We define

M(t,u) = Zrank Cr(p,u)tF forallt e Rallu € K,
k>0

P(t,u) = Zmnk Cr(p,00)t* for all t € R.
k>0

The Morse relation says that

Z M(ta u) = P(ta OO) + (1 + t)Q(t)a

u€K,

where Q(t) = Zkzo Br t* is a formal series in t € R with nonnegative integer coefficients.

3. Constant sign solutions

In this section we prove the existence of constant sign smooth solutions for problem (1.1). We also show
the existence of extremal constant sign solutions (that is, a smallest positive solution and a biggest negative
solution). These extremal constant sign solutions will be helpful in producing a nodal solution, see Section 4.

We state the conditions on the source term f(z,xz). Recall that p* is the critical Sobolev exponent for

Ne. ifp< N
1,thatisp*={ N P
p>1,thatisp {+oo ifNSp

Hiq: Let f: 2 x R — R be a Carathéodory function such that f(z,0) =0 for a.a. z € 2 and

(2) there exists a function o € L*°(£2) such that
|f(z,2)| < a(z)[1+ |x|T_1] fora.a.z€ 2,allz € R, p < r < p*

(43)
f(z,)

= —oo uniformly for a.a. z € {2,

(444) there exists a function 7 € L* such that
n(z) > M1, foraa. z€ R, n# A,

lim inf f(z,_:;)
z—0 |m|p T

> n(z) uniformly for a.a. z € £2.

Proposition 3.1. If hypotheses H(§), H(B), H1 hold, then problem (1.1) has at least two constant sign
solutions

up €intCy and wvo € —intCy.

Proof. First we produce a positive solution.
Hypothesis H; implies that we can find M; > 0 such that

f(z,7)

"~z

< —€llpe(ey for a.a. z € 2, all [z| > M. (3.1)
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With 6 > ||£|| L (), we introduce the Carathéodory function f4+(z,z) defined by

fo(nz) = flzyzT)+0(zT)P~t ifz <M
T flz, My) 4+ 0MP! if z > M.

We set £ (z,2) = [y f1(z,s)ds and consider the C'-functional ¢ : WP(2) — R defined by

R 1 0 N
bulu) = ZK@)+ [l = [ Frlzwdz VueW'n(@),

From (3.2) and since 6 > [|£]| Lo (), We see that ¢ (-) is coercive. Also using the Sobolev embedding the-
orem and the compactness of the trace map, we infer that @4 (-) is sequentially weakly lower semicontinuous.
By the Weierstrass—Tonelli theorem, we can find ug € W1P(£2) such that

@+ (uo) = inf [Py (u) 1 u € WHP(2)]. (3.3)

Let F(z,z) = foz f(z,8) ds. Hypothesis H(i4i) implies that given € > 0, we can find § = §(e) €]0, M1

such that 1

1—7[77(2) —é¢]|z|P < F(z,z) for a.a. z € 2, all |z| < 4. (3.4)
Recall that 4; € int Cy. So, we can find ¢ € |0, 1] small such that

0<tty <4 forall ze (. (3.5)

Then from (3.2), (3.4) and (3.5), we see that

tP tP
bu(tin) < —Kmn——/mw—d?a
y4 P Jao

» R (3.6)
= 5 [/ [A1 — n(2)]a} dz + 6:| (recall |41 pp(2) = 1).
Q
Hypothesis Hj(444) implies that
To = / [n(z) — A]af dz > 0.
2
From (3.6) we have
g
¢4 (thy) < —[-To+ €] <0 (choosing € €]0, 79[),
= @4(uw) <0=0¢4(0) (see (3.3)),
= wug#0.
From (3.3) we have
@;(UO) = 05
(3.7)

= (A(uo),h) + /ﬂ [€(2) + 0] |uolP 2uoh dz + /a , B(2)uo|P 2uoh do = /ﬂ Fi(z,u0)hdz

for all h € WhP(02).
In (3.7) first we choose h = —uy; € WHP(£2). Then

K(uy) + 9”%_”72,,(9) =0 (see (3.2)),
= ”ua”:;l/lm(rz) <0 for some constant c¢; > 0 (since 6 > ||{|| o0 (02)),
= Uo 2 0, U # 0.
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Next in (3.7) we choose h = (ug — M1)* € WHP(R2). Then we have

(A(ug), (uop — My)*) + /Q[ﬁ(z) + 0Jub ™ (uo — M)t dz + /an B(2)ub ™ (uo — My) " do

/Q[f(z, M) + GMf’_l](uo —M;)Tdz (see (3.2))

IN

(A(My), (uo — My)*) + / [€(2) + 61MP (o — My)* dz + /6 B()ME ™ (1o~ M) do

2
(see (3.1) and hypothesis H(5)),
= wug < M; (recall that 0 > €] Loo(g2))-

So we have proved that
Uy € [O,Ml], U 75 0. (3.8)

From (3.2), (3.7) and (3.8) we infer that

{ —Apug(2) +&(2)uo(2)?" = f(z,u0(2))  in 2
(3.9)

u _
6_77;), +B()uE =0 on 902.

From Eq. (3.9) and Proposition 2.10 of Papageorgiou—Radulescu [14], we have that
Ug € Loo(ﬂ )
Then Theorem 2 of Lieberman [10] implies that

uo € C; \ {0}.
Let p = ||uo| Lo (). Hypotheses Hi (i), (ii7) imply that we can find €, > 0 such that
f(z,x) +§Ap P71 >0 foraa. z€ 2,allze|0,p).
Then from (3.9) we have
Apug(z) < [HEHLoo(Q) +ép] ug(z)P~! foraa.ze
= wup €intCy (by the nonlinear maximum principle).
Similarly, we obtain a negative solution vg € —int C, using this time the Carathéodory function

R _ [ flz,—My)—oMP~! if £ < —M
J-(zm) = { f(z, —a:_l) - 9(37_1)”_1 if z > _Mi' O

In fact we can produce extremal constant sign solutions for problem (1.1), that is, a smallest positive
solution and a biggest negative solution.

To this end, we proceed as follows. Hypotheses Hj (), (i44) imply that given £ > 0, we can find ¢, > 0
such that

f(z,z)x > [n(2) — €]|z|’ — ce|z|” for a.a. 2z € 2, all z € R. (3.10)

The unilateral growth restriction on f(z,-) leads to the following auxiliary nonlinear Robin problem

{ —Apuz) + E@)|u(2) P u(2) = [0(2) — el lu(2) P~ u(2) — celu(z)|*u(z)  in 2
u

il =2, _
on, +B(2)|ul""u=0 on 0f2.

(3.11)

Proposition 3.2. If hypotheses H(§), H(B) hold and € > 0 is small, then problem (3.11) admits a unique
positive solution 4 € intC'y and, since the equation is odd, = —t € —intC. is the unique negative solution
of (3.11).
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Proof. First we show the existence of a positive solution.
We consider the C'-functional ¥4 : W1?(£2) — R defined by

Yy (u) = %K(u) + §|Iu“l|2r(9) — %/ﬂ[n(z) —¢](ut)Pdz for all u € WHP(12).

As before (see the proof of Proposition 3.1), 8 > [[{||Loo()- Since 7 > p and 6 > |[{|| oo (o) We see that
1, (+) is coercive. Also it is sequentially weakly lower semicontinuous. So, we can find % € W1P(£2) such that

Yo (@) = inf {¢; (u) :u € WHP(02)}. (3.12)
Let € €]0, 79[. Then as in the proof of Proposition 3.1 and since r > p, we have that

Yy (@) <0=1,(0),
= a#0.

Also, from (3.2) it follows that
¥y () =0,
= (a@m+ [ @l ands+ [ p@)artands -0 [ @p-hao
? o0 0

(3.13)
= / [n(z) —e](@")P*hdz —/ ce(@t) "*hdz for all h € WhHP(2).
2 2
In (3.13) we choose h = —ii~ € W1P(2). Then
K@) +0]a|[75q) =0,
= c2||ﬁ“||%1’p(n) <0 for some constant c; > 0 (since 6 > ||{||oo(02)),
= >0, a#0.
From (3.13) we infer that
— Qi) +E(R)U=)" T = [n(z) — eli(z)P ! —cei(2)" i 2
oy B(z)aP~1 =0 on 042. (3.14)
ony,

Then the nonlinear regularity theory (see the proof of Proposition 3.1) implies that & € C\{0}. Moreover,
from (3.14) we have

A:Da(z) < [ce”a”;;én(g) + Ce]a(z)p_l
= @€ C+ (by the nonlinear maximum principle).
Next we show that this positive solution is unique. Suppose that § is another positive solution of problem
(3.11). Again we have that § € intC,. Let t > 0 be the biggest positive real such that tj < 4. Suppose
0 <t<1. Let p= ||t poo(p) and choose ép > 0 such that for a.a. z € £2, the function

z— [n(z) —glzP ! —coa™ 1 + épmp_l
is nondecreasing on [0, p|]. We have

—A,(t) + [€() + &,) ()7

P = ApT + (£(2) + &,)577 7] .

P (n(z) — )PP — "t 4+ £

(n(2) — ) tG)P~ — c(tg)™ ' + &,(t5)P~1 (since 0 <t < 1,p<T)
(n(2) — €)@’ — ca™ P+ €,aP~"  (since t§ < @)

—Apt+ [€(2) + ép]ﬁp_l for a.a. z € £2.

(3.15)

[ IAIA
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Note that since § € intC4+, p <r,0 < t < 1, we can find a constant ¢4 > 0 such that
ce(tP =t 1j(2)"" 1 > ¢4 >0 fora.a. z€ .
Therefore from (3.15) and Proposition 2.10 of Papageorgiou—Radulescu—Repovs [17], we have
i —tj € Dy,
which contradicts the maximality of ¢ > 0. So, we must have ¢ > 1 which implies that
g < a.
Reversing the roles of 4 and § in the above argument, we also have

I

S
I IA
@ &

=

proving the uniqueness of the positive solution & € Cy of problem (3.11). Since the problem is odd,
U = —i € —intC is the unique negative solution of (3.11). O

Remark 3.3. We present an alternative proof of the uniqueness part based on the nonlinear Picone’s
identity due to Allegretto—Huang [1]. So for v, w € intC, let

R(vw) = Bu(z) w(z) = [Do()P = (IDu@P*Du(a), 0 (75 ) .

We know that 0 < R(v,w) for a.a. z € £2 (see [1]). Suppose that @, § are two positive solutions of (3.11).
We have @, § € intCy. Then

/ ([1(2) — €] — cel™™P) (@ — §) d2
2

_ / (n(z) — el — coi™ ) (ap— ui{—i) dz
_ /( Ayt + £(2)@ ) (up i 1) dz

_ (3.16)
= / | Dai|P~ 2<DuD(up ) dz+/§(z % 1(u” ug; )dz
+ / B(z)aP~! (11 do  (using the nonlinear Green’s identity, see [18] p.35)
a0
= |DalR, g ~ DGR + /Q RG.0)dz+ [ €@ -#)di+ [ B -2 do
Interchanging the roles of % and § in the move argument, we also have
[ @) = &) - a7 7) 5P - ) s
(3.17)

D31 @) = 1Dl + [ RGD s+ [ €)@ -)as+ [ )@ - 7)do
Adding together (3.16) and (3.17), we obtain
0 < [ [RG0)+ R dz

/ &)@ P — P dz,

=1
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Now let Sy (resp. S_) be the set of positive (resp. negative) solutions of problem (1.1). From
Proposition 3.1 we know that

0 # S+ - ZTLtC+ and 0 # S_ - —zntC’+
Proposition 3.4. If Hypotheses H(£), H(8), H1 hold, then @ < u for allu € Sy and v < ¥ for allv € S_.

Proof. Let u € Sy C C4 and consider the following Carathéodory function

n(2) —€)(@t)Pt —ce(at) 1+ 0(xt)P !t if z <wu(2)

9+(2,7) = { [n(z) — el u(2)P~! — cou(2)""! + u(z)P~? if £ > u(z), (3.18)

with 0 < ¢ < min{7o, ming u} (since u € intC,) and as before 8 > ||| oo ().
T
We set G+ (z,z) = / g+ (2, 5)ds and consider the C-functional ¢, : W1?(2) — R defined by
0

R 1 6
Yy (u) = EK(U) + ;E”u”i”(ﬂ) - /QG'Jr(z,u) dz for all u € WhP(02).

Evidently . (-) is coercive (see (3.18) and recall that 8 > ||£|| Loo(@2))- Also, it is sequentially weakly lower
semicontinuous. So, we can find @iy € W1P(2) such that

o (fo) = inf [7/3+(U) Tu € W“’(Q)] : (3.19)
As before, since 0 < ¢ < min{ry, ming u}, we have

b (o) < 0= 14(0),
= dp #0.

From (3.19) we have

’(Z‘Q_(ﬁo) = 0’

= (A(iio), h) + /Q (€(2) + O]/ *~2uoh dz + /6 B o uoh do = /n o(mighde )

for all h € WhP(12).
In (3.20) first we choose h = —@i; € WP(2). We obtain

K(ag) +0lldg I3pq) = 0
= 05”"70_||€V1,p(9) <0 for some constant c5 > 0 (since 6 > ||{|| Lo (0)),
= g > 0, g 75 0.

Next in (3.20) we choose h = (g — u)* € WHP(£2). Then

(A(tho), (o — u) ™) + /Q[E(Z) + 6y~ (o —u) " dz + /60 B(z)ah " (G — ) do

= / [((2) — e)uP™! — cou™ "t + OuP (g — u) T dz  (see (3.18))
2

< / [F(2,u) + 6uP—1 (i — u)* dz  (see (3.10))
2

= (A(w), (G —u)*) + / [£(2) + OluP~H(To — u)* dz + / B(2)uP~ (o — u)* do
(since u € S4) ? -

= Uy < u.
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Hence we have proved that
Go € [0,u], Gg # 0. (3.21)

From (3.18), (3.21) and (3.20), it follows that @ is a positive solution of problem (3.11), therefore

g =4 € intC4  (see Proposition 3.2),
= 4<u forallues,.

Similarly using te Carathéodory function

_ [ ) —el@ )P —ce(@T) 7t = b(zT)P ! if £ < w(z)
9-(2z,x) = { —[n(2) — el(=v(2))P~! = ce(—v(2))" ! — O(—v(2))PH  if 2> ()

we show that v < v forallve S_. O

Now we can prove the existence of extremal constant sign solutions for the problem (1.1). These solutions
are important in producing a nodal solution (see Section 4).

Proposition 3.5. If hypotheses H(§),H(B), H; hold, the problem (1.1) has a smallest positive solution
u, € Sy C intCy and a biggest negative solution v, € S_ C —intCy (that is, u, < u for allu € S, and
v <y forallveS_).

Proof. From Papageorgiou—Radulescu—Repovs [16] (see the proof of Proposition 7), we know that S, is
downward directed. So, invoking Lemma 3.10, p. 178, of Hu-Papageorgiou [6], we can find {u,}n>1 C St
decreasing such that

éréfl U, = inf Sy.

We have
(A(un),h)+/ §(z)u§’f1hdz+/ ﬂ(z)uﬁ“lhdaz/ f(z,up)hdz (3.22)
2 a0 Q

for all h € W1P(2), alln € N,

@ <wu, <wu; forallnéeN (see Proposition 3.4). (3.23)

If in (3.22) we choose h = u, € WP(£2) and use (3.23) and hypothesis H (i), we infer that {u, }n>1 C St
is bounded. This fact and the monotonicity of the sequence {uy,},>1, imply that

Up = u,  in WHP(0). (3.24)
In (3.22) we choose h = u, — ux € WHP(£2), pass to the limit as n — +o0o and use (3.20). Then

lim (A(up), un — us) =0,
moteo . (3.25)
= u, > u, in WHP(2) (see Proposition 2.4).

So, if in (3.22) we pass to the limit and use (3.25) and (3.23), we obtain

(A(uy), h) +/Q§(z)u€_1h dz + /zm B(z)ut~thdo = /Q f(z,us)hdz for all h € W1P(02),

U < U,
= u, €S54 CintCy and u* =infSy.

Similarly we produce the biggest negative solution v, € S_ C —intC,.
Note that S_ is upward directed (see (3.10)). O
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4. Nodal solutions

In this section, using the extremal constant sign solutions from Proposition 3.5, we will produce a nodal
solution. We have two such results which differ in the growth of f(z,-) near zero.

In the first we require the presence of a concave term near zero. So, we strengthen hypothesis Hj (#i4).
The new conditions on the source term f(z,z) are the following:

H,: Let f: 2 x R — R be a Carathéodory function such that f(z,0) =0 for a.a. z € 2 and
(2) there exists a function o € L*°(£2) such that
1f(z,2)| < a(z)[1+|z|""] fora.a.ze R allzeR, p<r<p
(24)
f(z,2) _

= —oo uniformly for a.a. z € {2,

(422) there exist ¢ €]0,1[, § > 0 and ¢é > 0 such that
élz|? < f(z,x)x < qF(z,xz) foraa.ze€ 2,all |z| <4

(see (3.4) for definition of F(z,zx)).

Remark 4.1. Hypothesis Hz(i4i) is more restrictive than hypothesis Hj(i4i) and implies the presence of a
concave nonlinearity near zero.

In what follows u, € intC, and v, € —intC, are the two extremal constant sign solutions of problem
(1.1) produced in Proposition 3.5.

Proposition 4.2. If hypotheses H(§),H(B), Hy hold, then problem (1.1) admits a nodal solution yo €
[Vs, us] N CL(12).

Proof. Using the two extremal constant sign solutions u, € intCy and v, € —intC we define the following
Carathéodory function

F(2,0:(2) + 0vu(2) P20 (2)  if 2 < v,(2)
i(z2) =9 f(z,z) + 0z 2z if v, <z < uy(2) (4.1)
F(z,us(2)) + Ous(2)P~1 if £ > u(2).

(as before 6 > |[|£||L0()). Also we consider the positive and negative truncations of j(z,z), namely the
Carathéodory functions

j:l:(z’w) = j(z,:z:i). (42)

We set J(z,z) = / j(z,8)ds and Ji(z,z) = / j+(z,8)ds and consider the C'-functionals @, ¢4 :
0 0
WP(£2) — R defined by 5
1
p(u) = —K(u) + —||lul/? —/Jz,udz,
@(u) » (u) pll () ) (2,u)
P2u) = > K + ullnqy — [ Jx(ew)dz
+(u) = - - - +(2,
P ple@) = |
for all w € WhP(02).
Using (4.1), (4.2) and the nonlinear regularity theory, we show that

Ky C o, ul] NCHR2), Ky, C[0,u]NCq, Kp_ C [04,0]N(—C4).
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The extremality of u. and v. implies that
Ky C [vs,u] NCH2), Ky, ={0,u.}, Ks_{0,0.}. (4.3)

The functional ¢ is coercive and sequentially weakly lower semicontinuous. So we can find 7. € W1P(£2)
such that

¢4 () = inf{p (u) : u € WHP(2)}. (4.4)
From hypothesis Hz(ii7) and since ¢ < p, we see that for ¢ € ]0, 1] small, we have

@-ﬁ-(tal) <0,
= P4(0s) <0=04(0) (see (4.4)), (4.5)
= 1, #0.

From (4.4) we have that 4, € Ky, = {0,u.} (see (4.3)). Hence @, = u, (see (4.5)). Note that
@lc_{_ = ¢+|C+ (See (41)’ (42))a
u, € intC, is a local C'-minimizer of @, (4.6)

u, € intCy is a local W1P(£2)-minimizer of ¢
(see Papageorgiou—Radulescu [14], Proposition 2.12).

=
=

Similarly, using this time the functional ¢_, we show that
v, € —intCy  is a local WP (£2)-minimizer of . 4.7)

We may assume that ¢(vi) < @(u,) (the reasoning is the same if the opposite inequality holds, using
(4.7) instead of (4.6)). We assume that K is finite. Otherwise, on account of (4.3) and (4.1), we already
have an infinity of distinct smooth nodal solutions of (1.1) and so we are done. Then, on account of (4.6)
and using Theorem 5.7.6, p. 449, of Papageorgiou-Radulescu—Repovs [18], we can find p € |0, 1[ small such
that

B(02) < () < If{B(w) : 1~ wallwrnay = 0} =11, 0w — tallwrnay > . (48)
4.1) t

It is clear from (4.1) that ¢ is coercive. Therefore
@(+) satisfies the C-condition (4.9)

(see Papageorgiou—Radulescu—Repovs [18], Proposition 5.1.15, p. 369). Because of (4.8) and (4.9), we see
that we can apply the mountain pass theorem. So, we can find y, € W1P(£2) such that

Yo € Ky C [vs,us] NCH(2) (see (4.3)), 1 < @(yo)- (4.10)
From (4.10) and (4.8), we see that
Yo # ux and Yo # Vs. (4.11)

Also since yq is a critical point of ¢ of mountain pass type, from Theorem 6.5.8, p. 431, of Papageorgiou—
Radulescu—-Repovs [18], we have

C1($,90) # 0. (4.12)

On the other hand hypothesis Hy(4ii) and Proposition 3.7 of Papageorgiou—Radulescu—Repovs [13] (see
also Leonardi-Papageorgiou [8], Proposition 6, for a more general result) imply that

Cr(9,0) =0 for all k € No. (4.13)
From (4.12) and (4.13) it follows that yo # 0. Hence
Yo & {v«,ux,0} see (4.11).

Since yo € [vs,us] N C*(2), the extremality of u, and v, implies that y, is nodal. O



14 S. Leonardi and F.I. Onete / Nonlinear Analysis 195 (2020) 111760

We can also produce a nodal solution, if we assume that f(z,-) is (p — 1)-linear near zero. More precisely,
the new conditions on the source term are the following:

Hgj: Let f: 2 x R — R be a Carathéodory function such that f(z,0) =0 for a.a. z € 2 and
(2) there exists a function o € L*°(£2) such that
If(z,2)| < a(2)[1+|z|"""] fora.a.ze R alzeR, p<r<p%
(24)
f(z,x)

x—»rzll;loo| p—2
z|° %z

= —oo0 uniformly for a.a. z € {2,

(442)
f(|§,_r§) <o uniformly for a.a. z € £2.

x

Remark 4.3. Hypothesis H3(ii7) is more restrictive than H(#47). Not only it requires that asymptotically

as ¢ — 0 the quotient stays strictly above Ay > A1, but in addition f (2, -) is necessarily (p—1)-linear

p—2
z| "z
near zero.

Proposition 4.4. If hypotheses H(§), H(B), Hs hold then problem (1.1) admits a nodal solution

Yo € [vx, us] N CH(2).

Proof. Using the functional @, ¢ from the proof of Proposition 4.2 and reasoning as in that proof, we can
produce yo € WHP(£2) such that

Yo € Kp C [V, ul] NCH(N2) (see (4.3)) and yo & {us, v} (4.14)
The critical point yo was produced using the mountain pass theorem. So, we have

#(yo) = inf, max H(v(t)). (4.15)
According to (4.15), if we can find 4« € I" such that <p| < 0 then ¢(yo) < 0 = @(0) and so yo # 0. This
fact, combined with (4.14), 1mphes that yo € C*(2) is a nodal solution of (1.1).
Recall (see Section 2) that OB @ = ={u € LP(2) : ||ul|Lr(e) = 1} and M = W1P(2) N OBL ) Also
we set Mc = M N C*({2) and consider the following two sets of continuous paths

1, A(=1) = —01,4(1) = @},
={yeC(- ,1] Mc) (1) = —101,5(1) = 41}

Claim. I'c is dense in I'. )
Let4 € I and e > 0. We consider the multifunction K, : [-1,1] — 20 (@) defined by

K.(t) = {ueC' (@) : lu= AWl yrp, <t #-1<t<1
IR IR E0Y t= 1.

Evidently, this multifunction has nonempty and convez values. For t € [0,1] the set K.(t) is open, while
the sets K.(+1) are singletons. In addition, the continuity of 4(-) implies that the multifunction K.(-) is
lower semicontinuous (see Papageorgiou—Radulescu—Repovs [18], Theorem 2.5.4, p. 101). So, we can apply the
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selection Theorem of Michael [11] (Theorem 8.17°), see also Papageorgiou—Radulescu—Repovs [18], Theorem
2.5.17, p. 106, and find a continuous path 3. : [—1,1] — C*(2) such that 4(t) € K.(t) for allt € [-1,1].

Now, let e, = o T €N, and let {4, = Ae, }n>1 € C([—1,1],C*(2)) be the sequence of paths produced by
the previous argument. We have

1
192 () = 4D llwre(2) < . forallt € 0,1 An(£l) = £d1, for alln € N. (4.16)

Recall that 4(t) € 6pr<m for all t € [-1,1]. So, from (4.16) we see that we may assume that
17(#)|| p(2) # O for allt € [-1,1], alln € N. We define

sry = —mO it e —1,1], alin € N. (4.17)
7@ e(2)

We have
An € C([-1,1],M¢c) and A,(£l) ==xa1 foralln e N.

Using (4.16) and (4.17) we have
7@ =ADlwre@) < 192#) = @ llwree) + 13n(E) = 4O llwrr(a)

< H%)(E)Ll:;ml Fn@llwinay + - foralite[-1,1) alinen, 419)
Recall that 4(t) € M for allt € [—1,1]. Therefore we have
13, 1= (30Ol 7o)
— 1 150l ~ nOllro)
< max 150 = 300 ey
< o telfljlfl]”’?(t) — W)l wipa) for somecg >0
< % for alln € N (see (4.16)),
= A =4 inC(-1,1],M) (see (4.18)) and 4 € C([-1,1], M¢) for allm € N.
This proves the claim.
Proposition 2.3 and the Claim imply that given § > 0 small, we can find 4 € I'c such that
max K (4o(t)) < Ag + 6. (4.19)

te[—1,1]

On account of hypothesis H3(iii), we see that if § > 0 is small, then we can find 7 6]5\2 + §,m0[ and
0 < dp < 0 < min{ming us, ming(—v«)} (recall that u., —v« € intC,) such that

lﬁ0|x|p < f(z,z) fora.a.z € 2,all |z| < d. (4.20)
p
Recall that 4o € I'c and that u, € ntC, v. € —intC,. So, we can find p > 0 small such that
poAo(t) € [ve,us] and  polAo(t)(2)| < do for all t € [-1,1], all z € 2. (4.21)

Then we have

oluho(®) = K@) - / F(z,no%0(t)) dz  (see (4.1) and (4.18))
p 9]

IN

‘?[3\2 +6—o] (see (4.19), (4.20), (4.21))

< 0 forallte[-1,1].
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So, if we set o = oYo, then 7o is a continuous path in C*(2) € W'?(2) which connects —uof; and
poti such that
95, <0. (4.22)

Next we will produce another continuous path in W1 (£2) connecting o, and u, and ¢ is negative along
this new path.
Let a = ¢4 (us) = inf ¢4 < 0= ¢4 (0). From (4.3) we have

KY, ={0} % ={u.}. (4.23)

Using the Second Deformation Theorem (see Papageorgiou—Radulescu—Repovs [18], Theorem 5.3.12,
p. 317), we can find a deformation & : [0,1] x (@2 \ K(ﬁ&) — @Y such that

h(0,u) =u forall ue @Y \ K3, = @9 \ {0} (see (4.23)), (4.24)
A1, \ K3, ) C 9% = {u.} (see (4.23)), (4.25)
¢+ (h(t,u)) < @+ (h(s,u)) forall0<s<t<1, allue@l\{0}. (4.26)
Note that
P+ (Hot1) = G(potr) = G(F0(1)) <0 (see (4.22)), (4.27)

= poly € gﬁg_ \ {0}.
Therefore we can define
5, (t) = h(t, potn)™ for all t € [0,1].

Evidently this is a continuous path in W1?(2). Moreover, we have

Y+(0) = potly  (see (4.24)),
74(1) = (1, pottn) = us  (see (4.25), (4.27))
P(A0(t)) = ¢+ (Fo(t)) < A (ot1) = G(pota) <0

for all ¢t € [0,1] (see (4.26), (4.22)).
Therefore 4, is a continuous path in W1?(£2) connecting pof; and u. and such that

¢|ﬁ+ <0. (4.28)
Similarly we produce anther continuous path 4_ in W1?(£2) connecting —uoé; and v* and such that
¢l <o. (4.29)

We concatenate 4_, 79, ¥+ and generate a path 4, € I' such that

|-, <0 ((see (4.22), (4.28), (4.29))
= 9y #0 and so yy € [vs,u,] NCHR) is nodal. O

We can state the following multiplicity theorem for problem (1.1).

Theorem 4.5. If hypotheses H(£), H(B), Hy or Hz hold then problem (1.1) has at least three nontrivial
smooth solutions

ug € intCy, v € —intCy, and yo € [vo,uo| N CY() nodal.
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5. A particular case

In this section we consider the following parametric Robin problem

—Ayu(2) + E@N?u(z) = A ()P Pu(z) — gz u(z)  in 2
Lt Bl =0 on 0.2

(5.1)

In this problem A € R is a parameter and g(z, z) is a perturbation of the parametric term, which satisfies
the following conditions

H: Let g: 2 x R — R be a Carathéodory function such that g(2,0) =0 for a.a. z € 2 and

(2) there exists a function o € L°°({2) such that
l9(z,2)| < a(z)[1 + |z|"'] fora.a.zeR,allzeR,p<r<p*

()
9(z,2)
m -2
z—+o00 Imlp €T

= +oo uniformly for a.a. z € {2,

(ii4)
lim g(z,r;') =0

uniformly for a.a. z € (2.

Those conditions make the right-hand side of (5.1) a logistic reaction of equidiffusive type.
Using Theorem 4.5 (the case with hypotheses Hs), we have the following multiplicity theorem for
problem (5.1).

Theorem 5.1. If hypotheses H(£), H(B), H hold and X > o, then problem (5.1) has at least three nontrivial
smooth solutions ug € intCy, vo € —intCy, yo € [vo,uo) N C*(2) nodal.

6. Semilinear problem

In this section we deal with the semilinear problem (that is p = 2). So, the problem under consideration

{—AM@+ﬂ@M@=f®w@D in 2

is the following

g—z +B(z)u=0 on 9102 (6-1)

The conditions on the data of this problem are:
H(¢): € € L5(2) with s > N and £€1 € L>®(02).

Remark 6.1. Now in addition of {(-) being indefinite, we can have that it is also unbounded from below.
H(B): B8 € W->(82) and B(z) > 0, Vz € 812.
Remark 6.2. The case 8 = 0 is also included and corresponds to the Neumann problem.

Hy,: Let f: 2 x R — R be a Carathéodory function such that f(z,0) =0 for a.a. z € 2 and

(2) there exists a function a € L°°({2) such that

1f(z,z) <a(2)1+|z|"""] fora.a.zeR alzeR,2<r<2%
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(44)
lim M = —oo uniformly for a.a. z € {2,
z—+oo T

(i)
f(z,z) < limsup f(z:2)
L =

<fo uniformly for a.a. z € 2.
z—0 z

N < . .
Ay <mo < hgcn_}(r]lf
(iv) for every p > 0 there exists fp > 0 such that, for a.a. z € £2, the function
T — f(Z,ZL‘) +ép-7"

is nondecreasing on [—p, p].

Remark 6.3. We have added on more condition (hypothesis Hy(iv), a one-sided Lipschitz condition on
f(z,-)) compared to hypotheses H3 in order to have a stronger conclusion concerning the nodal solution.
The stronger conclusion will be used in the sequel, together with a stronger regularity on f(z,), in order to
produce a second nodal solution.

In this case K : H*(£2) — R is defined by

K(u) = ||Du||%p(9) +/ £(2)u?dz +/ B(z)u?do for all u € H(R).
Q on
From D’Agui-Marano—Papageorgiou [4], we know that there exists p > 0 such that

K(u) + u||u||%2(n) > 60”'“”22(9) for all u € H'(R2), some constant & > 0. (6.2)

In what follows, by E(j\z) we denote the eigenspace corresponding to A;, I € N. We know that E (:\,) C
C(f) and it is finite dimensional. We have

H'(2) =P EN).
i>1
For m € N we set

Hn=@E®X) and A.=H.= P ER).
i=1 i>m+1

‘We have the orthogonal direct sum decomposition
H'(2) = Hpn P Hnm.
So, every u € H(2) admits a unique decomposition
u=u+10 withae Hy,, 4¢c H,.

We recall that each eigenspace E();) has the unique continuation property (u.c.p for short) that is, if
ueFE (3\1) and vanishes on a set of positive Lebesgue measure, then u = 0.

Theorem 6.4. If hypotheses H(§)', H(B)', Hy hold then problem (6.1) has at least three nontrivial smooth
solutions

ug € 1tCy, vo € —intCy, Yo € intc1(g)[vo, uo)-
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Proof. The existence of three solutions
ug € intCy, vy € —intCy, yg € [U(),Uo] N CI(D)

is guaranteed by Theorem 4.5. Note that in the arguments leading to that multiplicity Theorem, we replace
0 > ||€||zoo(2) by p > 0 as in (6.2). Moreover, instead of the regularity theory of Lieberman [23] (nonlinear
problems), we use the one by Wang [25] (semilinear problem, for this reason the conditions on £(-) and 3(-)
are less restrictive). With these two changes, all the previous proofs remain valid and eventually give us the
three nontrivial smooth solutions mentioned above.

Let p = max{||uo|| Lo (), [|vol| Loo ()} and let ép > 0 be as postulated by hypothesis Hy(iv). We have

—Ayo(2) + [€(2) + &,lyo(2)

F(2,90(2)) + &oyo(2)

f(z,u0(2)) + fpuo(z) (see (3.3) and hypothesis Hy(iv))
—Aug(2) + [€(2) + Epluo(z) for aa. z € 2,

= A(uo — %0)(2) < [€(2) + &) (uo — o) (2) for a.a. z € 2,
= wug—yo € intCy (by Hopf’s maximum principle).

IA

Similarly we show that

Yo — vo € intCy.

So, we conclude that
Yo € intc1((—2)[v0,u0]. O
We can improve the conclusion of this theorem by strengthening the regularity of f(z,-). More precisely,
the new conditions on f(z,-) are the following:
Hi: Let f: 2 xR — R be a measurable function such that f(z,0) =0 for a.a. z € 2, f(z,-) € C}(R) and

(i) there exists a function o € L*°({2) such that
1f2(z,2)| < a(2)[1+|z|"] fora.a. ze R allzeR,2<r<2%

(if)
1(z,)

lim ———* = —o0 uniformly for a.a. z € {2,
z—+o0 x

(iii) there exist m € N, m > 2, n € L*°(£2) and d > 0 such that
n(2)z? < f(z,2)z < Ami12®  for a.a. z € 2, all |z| < 6, (6.3)

if m > 3, then A, < n(2) for a.a. z € 2, A # 7,
if m = 2, then :\2 < essinfp n;
moreover, for every x # 0, the second inequality is strict on a set of positive Lebesgue measure.

Remark 6.5. In this case, due to the differentiability of f(z, -), hypothesis Hy(iv) is automatically satisfied.

Theorem 6.6. If hypotheses H(E)', H(B)', Hs hold, then problem (6.1) admits at least four nontrivial smooth
solutions

ug € intCy, vo € —intCy, Yo,y € intci g)lvo, uo] nodal.
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Proof. From Theorem 6.4, we already have three nontrivial smooth solutions

ug € intCy, vo € —intCy, yo € intc1(o) [vo, up] nodal.

Let A €]Am, Am+1[ and consider the C2-functional ¢ : H!(£2) — R defined by
1 A2 1
Y(u) = §K(u) - §||u|]L2(Q) for all w € H'(£2).

From Proposition 6.2.6, p. 479, of Papageorgiou—Radulescu—Repovs [18], we have

Cr(¥,0) = 0k,4,,Z for all k € Ny, with d,,, = dimH,p,.
Let ¢ : H'(£2) — R be the energy functional for problem (6.1) defined by

<p(u)=%K(u)—/0F(z,u)dz for all u € H(R2).

We know that ¢ € C2(H(£2)) and we consider the homotopy f;(u) defined by
hy(u) = (1 — t)p(u) + tp(u) for all (¢,u) € [0,1] x HL(£2).
For 0 < t <1 we have
((hy)' (), B) = (1 — t){(¢' (w), h) + t(x'(u), h) for all u,h € H(12).
If h = @ — u, then the orthogonality of the component spaces implies
(¢, —) = K(@) = K@) = [ f(eu)(a—7)dz

By hypothesis Hj(iit), we have
f(z,z)

T

n(z) < < Amy1 foraa. ze 2, all |z| <4
So, if u € C1(2) and lullci(my <6, then
N A1 (82 — @2)(2) if u(z)(a —u)(z) >0
TG )@= a6) { )@ -w))  fu(E)@—0)(:) <O
= f(z,u)(@® — 4%)(2) < Am4102 —n(2)a? for a.a. z € Q2.

We use (6.7) in (6.6) and we have
(@' (u), @t — @) > K (@) — Ao [[@]|72 ) — K (@) + /Q n(z)a’ dz > 0.
Since A e]f\m, /A\m+1[ we have
(W' (w), 4 — u) > cs||u||§{1(m for some constant cg > 0, all u € H!(2).
Therefore for 0 < ¢t < 1 and u € C*(£2), with 0 < |ullc1(y < 6, we have
(1 — )@ (w), @ — @) + t(¥' (w), & — @) > teg||ul 1 g)-
Since Kj, C C*(2) for all t € [0,1] (regularity theory, see Wang [25]), we infer that

u = 0 is an isolated critical point of hy(-) for all 0 < t < 1.

(6.7)
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For t = 0, we have ho = ¢. Suppose we could find {un}n>1 C H'(£2) such that

up — 0 in H'(2) and ¢'(up)=0 forallneN. (6.8)
We have 5
Aug + E(2)un = f(z,uy) in 2, % + B(2)u, =0 on 912. (6.9)

From (6.9) and the regularity theory of Wang [25] we know that we can find « € ]0, 1] and constant ¢7 > 0
such that
u, € CH%(2) and lunllcre@y <cr foralneN. (6.10)

Recall that C1%(2) < C*(£2) compactly. So, from (6.8) and (6.10) it follows that

u, =0 in C1(2),
= “unllcl(fz) <¢§ foralln> ng,
= f(2,un) (O — Up) < Amp182 —n(2)a2  for a.a. z € 2, all n > ng (see (6.7)).

So, we have

0 = (' (un), Un — tn) > K(lin) — 5‘m+1||"2n||§,2(g) — K(tn) + / n(z)ﬂi dz
()

cs||ﬁn||fql(m for some constant cg > 0, all n > ng

v

(see D’Agui-Marano—Papageorgiou [4], Lemma 2.2),
= U, =0 forall n> ny,
= K(i,) :A/\m-i-l”ﬁn||%2(9)a
= U, € E(Am+1) \ {0} for all n > ny.

By the unique continuation property, we have 4, (z) # 0 for a.a. z € £2. So, by hypothesis Hs(ii7) we have
K(b,) = /A\m+1||ﬂn||%2(m > / f(z,up)l, dz for all n > ny,
Q

a contradiction. This proves that « = 0 is an isolated critical point of ¢ = fzo. Now we apply the homotopy
invariance property of critical groups (see Papageorgiou-Radulescu—Repovs [18], Theorem 6.3.8, p. 505) and
have

Cr(?] o1y 0) = Cr(®] g, 0) for all k € N,
=  Cr(p,0) = Cx(3,0) forall k € Ny

(since C1(2) — H'(R2) densely, see Papageorgiou—Radulescu—Repovs [18], Th. 6.2.26),
= Ck(p,0) = 6k,a,,Z for all k € Ny (see (6.4)).

If ¢(-) is as in the proof of Proposition 4.2 (with u.,v. replaced by ug,vo respectively), then again by
Theorem 6.6.26, p. 545, of [18], we have

Cr(¢,0) = 0k,4,,Z for all k € Ny . (6.11)
Since yg € intor g)['ug, ug] and yo € K is of mountain pass type, we have
Cr(p,90) = Cx(@,90) for all k € No, C1(4,y0) # 0. (6.12)

But ¢ € C%(H'(2)), so from (6.12) and Theorem 6.5.11, p. 530, of Papageorgiou-Radulescu—Repovs [18],
we have

Ck((ﬁ,yo) = 5k,1Z for all k € Np . (613)
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From the proof of Proposition 4.2 we know that wug, vy are local minimizers of ¢. Hence we have
Cr(@,u0) = C(P,v0) = 0,0Z forall ke Ny . (6.14)
Finally recall that ¢(-) is coercive (see (4.1)). Therefore
C(p,00) = 0k,0Z forall k e Ny . (6.15)

Suppose that K, = {0, 4o, %o, vo}. Then from (6.11), (6.13), (6.14), (6.15) and the Morse relation with

t = —1, we have
(=)@ 4+ (=)' +2(-1)° = (-1)°,
= (=1)% =0, a contradiction.

So, there exists § € Ky C [vg, ug] N C(2) (see (4.3)) such that § & {0,yo, v, uo}. Evidently ¢ is the

second nodal Smoot solution of (6.1) and as in the proof of Theorem 6.4, we have § € intc1(g)[vo, uo]. O

Now we consider the following semilinear equidiffusive logistic Robin problem

{ —Au(z) + £(2)u(z) = Au(z) — g(z,u(2)) in 2

ou B (6.16)
T B(z)u=0 on 012.

The conditions on the perturbation g(z,z) are the following:
H: Let g: 2 x R — R be a measurable function such that g(z,0) = 0 for a.a. z € 2, g(z,-) € C}(R) and

(2) there exists a function o € L*°(£2) such that

l9h(z,2)| < a(2)[1+|z|"""] fora.a. ze R, allzeR,2<r<2%

)
lim M = 400 uniformly for a.a. z € {2,
T—+o0 T
(i44)
gi(z,z) = lim 9(2,2) =0 uniformly for a.a. z € £2.
z—0 x

Then Theorem 6.6 leads to the following multiplicity theorem for problem (6.16)

Theorem 6.7. If hypotheses H(€)', H(B)', H hold and A > Xy then problem (6.16) has at least four nontrivial
smooth solutions

up € itCy, vo € —intCy, Yo, § € intca g)lvo, uo] nodal.

Remark 6.8. Theorem 6.7 extends the works of Ambrosetti-Lupo [2], Ambrosetti-Mancini [3] and
Struwe [23,24] (Theorem 10.5, p.147) which deal with the Dirichlet problem, £ = 0 (no potential term)
and produce three solutions but not nodal solutions
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