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ABSTRACT. — We consider a non-coercive vectorial boundary value problem with non smooth
coeflicients and a drift term and we study the regularity of a solution u and its gradient in the frame-
work of suitable Morrey spaces.
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1. INTRODUCTION

In this paper we will study the regularity of a weak solution u of the following
homogeneous Dirichlet vectorial problem (under the Einstein’s convention over
repeated indices)

a rs aur rs r| __ S :
() _O_Xj M; (x) ox E; (x)u"| = f*(x) inQ

u* =0 on 09,

where s =1,2,..., N, with N > 2, Q is a bounded open subset of R”, with n > 2,
M : Q — R are measurable and bounded entries of a symmetric, elliptic, non
(necessarily) diagonal matrix M. Concerning the tensor E = (E/*(x)) and the
right-hand side /" = (f*(x)), we assume that they belong to some suitable Morrey
spaces to be specified later on and we recover an estimate on the modulus of the
gradient Du of a solution « of problem (1) in the corresponding Morrey space, as
in the classical Morrey—Campanato’s theory.

The operator we are dealing with presents at least three difficulties: it is a vec-
torial operator, it has non smooth coefficients and it is non coercive.

Namely, we will consider a weak solution u of the aforementioned linear
system with the coefficients of the principal part belonging to the space VMO
and, without assuming any further condition, we will prove the Morrey regular-
ity of Du and its fractional differentiability by using the Campanato—Mingione
approach.

Concerning the existence of weak solution we point out that, already in the
case of one single equation, the main issue is due to the noncoercitivity of the
operator u — —div[M (x)Vu — E(x)u] and it can be overcome by assuming a
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smallness condition on the || |E]| |
neering papers [53, 54].

In turn, the Morrey estimate obtained for |Du| allows us to extend to the
problem (1) the Calderon—Zygmund theory introduced in the paper [50] by G.
Mingione (see also [1]). The results we will prove extend to the vectorial Dirichlet
problem (1) those obtained in [11] in the scalar case (that is N = 1).

In the framework of regularity theory of weak solutions the reader can also
refer to the following papers [5, 24, 29, 30, 31, 32, 33, 34, 35, 36, 51, 52, 16, 7,
8,9, 10, 13, 18, 42, 44, 45, 27, 28].

1> as it was done by G. Stampacchia in his pio-

2. MAIN NOTATIONS, FUNCTIONS SPACES AND AUXILIARY LEMMAS

In this section, for reader’s convenience, we recall some useful properties of func-
tions spaces and we well use some lemmas that we are going to exploit.

Let Q be a bounded open subset of R", n > 2, with a sufficiently smooth
boundary 0Q and diameter do and N € N, N > 2.

Given xp € R” and r > 0, we denote by B(xo,r) the ball centered at x, with
radius r.

DEFINITION 2.1 (Morrey space). Let p>1and 0 < 1 < n. LP*(Q,R") is the
space of all functions u € L?(Q, R") such that

sup r‘ﬂ/ lul? dx < +c0.
x0€Q,0<r<dqg QN B(xp,r)

DEerFINITION 2.2 (Fractional Sobolev space). Let 7€]0,1] and p=>1.
W7 (Q, RY) is the space of all functions u € L?(Q, R") such that

HuHW’-I’(Q,RN) = ||”||Ln(Q,RN) + [u], )0 <+
where
|u .
T W e dy) ifr<1
t,p,Q —
HDuHLI’ (@.RY) if £ =1.

REMARK 2.3. Some well-known features of Morrey spaces, tacitly used through-
out the paper, are the following:

o LPHQ) ¢ LPH(Q), Ve > 0;
o if p>gand =% < 2ol then LPH(Q,RY) — L4#(Q,RY).

Moreover, we introduce the notion of VM O class for matrix-valued function.
Given a matrix-function w € L'(Q, RV’ ) and r > 0, we define

1
V(x,r) = sup

Tyl w(y) — (w | dy
0</’§r|QmB(xap)| QF\B(XA/))| ( ) ( )QOB("’/)>|
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where for any measurable subset B C R”

_i w(x)dax
(W)B=|B|/B ()d

denotes the average of a function w in B. We introduce the VM O-continuity
modulus for w

V(r) = sup V(x,r).
xeQ

DEFINITION 2.4 (Sarason VMZO space). By VMO we denote the space of all
matrix-functions w € L'(Q, R"") such that

V(r)<+oo forall0<r<dq and [ir% V(r)=0.

We make the reader aware that in the sequel we will denote by ¢ various pos-
itive constants depending only on the known data and whose values may vary
from one line to another.

Next lemma concerns the product between a tensor-valued function and a
vector-valued function belonging to Morrey spaces and it can be readily deduced
from Lemma 5.1 of [23].

LEMMA 2.5. Let n—2 < u<n, E e L**(Q R"™") and u e L>"*2(Q, R") such
that Du e L>"(Q, R"™) for some v € [0,n — 2[. Then

2, u+v—n+2 nN
Eue L (Q, R™)
and moreover

[Eul 2.00sni2 vy < CIIE

L2#(Q, RHNZ)(||D“||L2='”(Q,[R”N) + ”u||L2=2+"(Q,RN))

for some C > 0 independent of u and E.

Finally, the last result we state is a Sobolev—Morrey embedding Lemma for
vector-valued functions whose proof follows applying component-wise Lemma
5.1 of [17].

LEMMA 2.6. Assume that 0Q e C'. Let ue WOI’Z(Q, RY) such that Du e
L>Y(Q,R™) with v €0,n — 2|.
Then

1 1 1
2,,v N - _
ue L™"(Q,RY)  where SR A,

and moreover there exists a positive constant C depending on n, N, v such that

||u||L21'v"(Q,RN) < C||D”||L2(Q.R"N)-
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3. STATEMENT OF THE MAIN RESULTS

Let M : Q — R”Y be a matrix-function with measurable entries M?(x) such
that for a.e. x € Q

(2) M;S(x) €L (Q)NnVMOQ)
fori,j=1,2,...,nandr,s =1,2,... N,

2 rs res 2 s7 _ rs nN
(3)  wld]” < MF(x)EE < pIET, M (x) = M (x), foranyeR"™.

Let E: Q — R"™’ be a matrix-valued function whose entries are the measur-
able functions E/*(x) such that

(4) EF(x) e L**(Q) withn—2<pu<n,

fori=1,...,nr,s=1,...,N.
Let /: Q — R" be a vector-valued function such that

(5) feLimi(QRY) with0<i<n—2.

Finally, given a vector-valued function u = (u*)_, , y, Du denotes its gradi-
ent, that is

Du = (%

= (Du’) _ L .
ax,’)s=1,2...‘,N;i=172,...,n ( i )371,2,...,N,171,2,...,71

DEFINITION 3.1. By a weak solution of the problem (1) we mean a function u
such that

ue W, (Q,RY)

6
( ) /M;S(X)Diu"D/(psdx: / E}r's(x)u7~D/¢de+/fS¢de
Q o A

forall g € Wom(Q, RY).

REMARK 3.2. We point out that the existence of a weak solution of the prob-
lem (1) can be ensured by assuming the additional hypotheses on the drift
term E e L"(Q, R"™Y 2) and [|E],, @R sufficiently small, as it was done by G.
Stampacchia in the papers [53, 54].

More recently, T. Del Vecchio, M. R. Posteraro [22] and L. Boccardo [2] re-
trieved the results proved by G. Stampacchia, weakening also the assumptions on
the right-hand side, and without any smallness assumption on the norm of the
drift term (see also |3, 4]).

In the vectorial case (that is N > 2), the smallness condition on | E]| , @'
can be removed by assuming further “ad hoc” structural conditions for the 7prin—
cipal part and the first order term, which recall back the so called “Landes con-
dition” (see [12]).
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We also stress that, for some constants ¢ > 0, one has
n 2*
|Eu| < c(|E]* + [u] )

so that our lower order term falls in the case of “controlli limite” (see Campanato
(6, pages 122 and 125]).

Here we state a regularity result similar to Campanato’s one (see [6, page 91])
that can be proved for weak solutions of problem (1).

THEOREM 3.3. Assume that conditions (3), (4), (5) hold and let u € Wol’z(Q, RY)
be a weak solution of the problem (1). Then,

i) Due L>*(Q,R™) 11 |

i) ue L>*(Q,RY) where N R

with corresponding norms estimates.

REMARK 3.4. Observe that if |[E| = 0 then we retrieve the result of Theorem 8.V,
page 92 of [6].

Finally, we state a theorem on the fractional differentiability of Du.

THEOREM 3.5. Assume that hypotheses (3), (4), (5) and
rs 0,

Mi(x) e CP"(Q), 0<p<1

hold. Let u e W} (Q,RN) be a weak solution of (1). Then

(7) Du e Wi (Q,R"™)
for every t € [0,70[ and for every & € [0, min{l,%}[.

Moreover, for every couple of open subset Q' CC Q" CC Q there exists a con-
stant c¢ = cg(a, ff,n, N, Q, ||EHL2” 0 R"?)’ S ) independent of u, such
that

Ln+2 n+2 Q RN

(8) [Du]%/V“z(Q',R"N) S 66 [L,, |Du‘2dx + ||Du||i2,2(QII’RnN) .

Further details can also be found in [13, 14, 15, 19, 20, 21, 25, 26, 37, 38, 39,
40, 41, 43, 46, 47, 48, 49].
4. PROOFS OF THEOREMS 3.3 AND 3.5

PROOF OF THEOREM 3.3. Letu e W1 2(Q, RM) be a weak solution of the prob-
lem (1). Let xp € Q and R > 0 be such that Br(xp) CC Q and v e W 2(Bg(xo),
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R™) be the solution of

9) D;(M;(x)D;v") =0 in Bg
vi=u’ on 0Bg,s=1,...,N.

Then the function
w(x) = u(x) —v(x), x € Bgr(xp)
is the unique weak solution of the vectorial problem

(10) —D,-(Mij."(x)D,;w") = —D/(Ejs’(x)u’) + f* in Bg
w' =20 on0Bg,s=1,...,N.

Choosing w as test function in the weak formulation of the problem (10)
and using hypothesis (3), Young’s and Sobolev’s inequality, for any ¢ > 0 we
obtain

1 N n . . o N n )
(11) oc/ |Dw|2dxsZZZ/ |E" (x)u |2dx+§ZZ/ |Dw?|* dx
Br s=1 j=1 7 Br s=1 j=1 v/ Br

nt2

nzfzdx)T—ﬁ—o,V/ |Dw|? dx
Br

+C@ () I

1
< — [ |E(x)u*dx+
o Bg 2 Br

x |Dw|* dx

nt+2

nz_édx)7+0<¢/ |Dw|? dx
Br

+C@ () I

where |E(x)u| denotes the norm of tensor E(x)u in R™ and .# is the Sobolev’s
constant.
Choosing a suitable ¢ > 0, we get

nt2
(12) |Dw2dx£c[/ |E(x)u|2dx+(/ |f|%dx) ]
Br Br Br

On the other hand, in force of assumption (2), a solution v of the problem
(9) satisfies the Saint Venaint’s principle (see Theorem 5.1 of [46]), that is,
there exist two positive constants ¢ = ¢(«,f,n) > 0 and y = y(%,n) € 10, 1] such
that

n—2+42
(13) / |Dv|2dxsc(£>1 ’ |Dv|2dx, forall0 < p <R.
B, R Br

Therefore, by (12) and (13), we deduce for every 0 < p < R
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(14) /|Du|2dx—c/ |Dv|2dx+c/ |Dw|? dx
B, B, B,

n—2+42y
< c(ﬁ) Dol dx+c¢ [ [E(x)ul*dx
R Br Br

nt+2

o, 1rax)”

n—2+2y
< c(£> / Dul*dx+c¢ [ |E(x)ul*dx
R BR BR

nt2

o[ 1rrax)”
Br
Since u € W, 2(Q,RY) then ue L*(Q,RY) c L>*(Q,R") and Due L*(Q,
R™V), consequently, by virtue of Lemma 2.5, one has
Eue L>"(Q,R"™) with g =pu—n+2

and from (14) we obtain

n—2+2y
15 / DudeSCB Dul|? dx
sy [ ipu (&) ], pd

+ C”EHHLZ 1o Q RnN)R'uO + C||f|| 2n_ Ri

Lnt2 nn+7(Q7 [RN)
n—242y
< c(£> / |Dul?* dx
R B

+ (| Eul 20, 1111 2 )R

Ln+2 n+2 Q RN)
where
(16) Wy = min{ gy, A} <n—2.

Iterating the above inequality (see Campanato [6], Lemma 1.1, page 7), we
establish that

2, p N
Due L. (Q,R"™),
with the corresponding norm estimate

2 2
(17)  [|Dul; < cllDull 72 o) + 1Eull 200,y + 117 2 2 o]

L" QRN = L+ n+2(Q RY)

where ¢ > 0 is independent of u, £ and f.
Now, through an extension technique and successive standard “flattening and
covering” arguments (see the Appendix), we get the regularity of Du up to the
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boundary of Q, with the norm estimate

(18) 1Dl 720 o) <l oy + 1Bl s oy + 1 2 g o
We now compare y, with /.
If o > 4 then y; = 4 and the thesis follows Otherwise = Ho and we can
apply Lemma 2.6 to the function u € W (Q RY). Thus, since Du € L>#1(Q,
R"V) we obtain

1 1 1
ue L (QRY) where — =~ — .
2, 2 n—p

On the other hand, L% % (Q, R") is embedded into L>>**(Q, R") therefore
a new application of Lemma 2.5 gives us

Eu e L (Q R™)

with the norm estimate

(19)  ||Eul| p2ugtm @, vy < Cl|E]l 0@, R"V?) (IDull 2 @ ey + 1]l L2200 (0, )

for some ¢ > 0 independent of « and E.
Applying to (14) the improved norm estimate (19), we have

n—2+42
(20) /B DuPdx<e(B) /B 1Dl dx + €| B 22 e g g R

+e|l /172 R’

Lr+2 n+2 Q RN )

n—2+2y
<c (E) | Dul* dx
R Br

+ (1Bl F2som @) + 1712 2 g

)R,Uz
where
o =min{ug + py, A} <n—2.

As in the previous step, Lemma 1.1 from [6], provides us the local regularity

Du e L2"(Q, R™)

loc

which can be extended up to the boundary of Q, and we deduce that

Du e L**(Q, R"™)
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with the corresponding estimate

(21) IDul20m(@ %) < €lIDl oy + N 20 o) + 11 g g )

where ¢ > 0 is a constant independent of u, £ and f.
Iterating the previous procedure and setting for every k = 1,2,...

(22) pye = min{ g + ., Ay <n—2,
it follows
i) Eu e L>*+(Q, R™), with the norm estimate
k
[ Eull 2.0 0, vy < €k E 2 o) (D L2 0, vy + et 2200, 1))

for some constant ¢; > 0 independent of # and E, and

i)
n—2+2
/ Duf*dx < c(%) " [ |Du*dx
B, R Br
(HE“HLZ wotue (Q, RV T ||f|| 2wk ) R#e

Lt nt3(Q, RY)

iii) Du e L>#+1(Q, R™), with norm estimate

2 2 2
D[ 2001 @Rr™) = C[HD“HLZ(Q,R"N) + HE”Hszﬂo*ﬂk( V) ”fHLm (R >]

for some constant ¢ > 0 independent of u, £ and f.

After a finite number of steps we will have u, + g > A, which implies
Wi = 4, and in turn Du e L>*(Q, R™Y).
Finally, a further application of Lemma 2.6 provides us

ue L»*(QRY)

1
2; 2 n=x O

PrOOF oF THEOREM 3.5. We will exploit the method introduced in [50] (see
also [18]).

Let B CC Q be a ball of radius R and let B be the enlarged ball of radius 32R.
We shall denote by Q;,,(B) and Q,,,(B) the largest and the smallest cubes, con-
centric to B and with sides parallel to the coordinate axes, contained in B and
containing B respectively. If we put

Q[rm — Qinn(B>> Qout - Qout(B)

and

Qinn = Qimn (B)v Qout Qout( )
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we have the following inclusions
(23) Qinn CBcCC 4B cC Qinn CBC Qout

(with kB we denote the ball with radius kR, k € N).

Let Q' and Q" be a couple of open subset such that Q' cc Q" cc Q and
xo € Q'. For any 7 € ]0, 1] (that will be chosen later) we fix 7 € R with 0 < |A| «
min{1,d(Q’,0Q")} such that, denoted with B = B(xy, |h|") the ball centered in x,
and with radius |A|°, the outer cube of B, Q,,, is included in Q".

Moreover, given a vector-valued function w : Q@ — R and a real number #,
forany i =1,..., N we define the finite difference operator t;; as

() (x) = o(x + he;) — o(x),
for x € Q such that x + he; € Q, where {e;};_,

of RY.
Let v € W2(B,R") be the unique weak solution to the problem

» denotes the canonical basis

(24) {Dj(Ml_:/- (x)Djp") =0 in B A
v’ =u’ on 0B

and let vp € W'2(8B,R") be the unique weak solution to the problem

D; (M (x0)Djvg) =0 in 8B B
(25) {US:DS onogg S= LN
Then we have
(26) / |‘L',-h(Du)|2 dx < c[/ |Tih(DU())|2 dx—i—/ IDu — Dv|2dx

+ / |Dv — Dvo|2dx].
8B

The first term and the third term in the right-hand side of (26) can be esti-
mated, respectively, as

(27) / |2i(Dug)|* dx < c|h|2(lr)/ IDug — zo|*dx  for all zy € R,
B 88
and
(28) / IDv — Deo|* dx < c|h|2"f/ IDuf dx
8B B

(see [50]).
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Finally, we have to estimate
/ |Du — Du|* dx.
B

Let us observe that the function w = v — u € Wy *(B, R") is the weak solution
to the equation

(29) DM (x)Di(w" +u")] =0, s=1,...,N inB,

whence, by assumption (3), we deduce
(30) / |Du — Do|* dx = / |Dw|? dx
B

/ M (x)Dau'Dyw* dx < = / |Du| |Dw|dx

Sc(s/B|D(u—v)|2dx+C(e)/B|Du|2dx)

with ¢, C(&) positive constants independent of the radius of B.
In turn, for a sufficiently small ¢, inequality (30) yields

(31) /|Du—Dv|2dx§c/|Du|2dx,
B B

and the right hand side behaves as |4|™ thanks to Theorem 3.3.

From this point on, we gather together inequalities (26), (27), (28) and (31)
and we can argue as in the proof of Theorem 4 in [18], exploiting the method in-
troduced in [50]. O

5. APPENDIX

Now we prove the Morrey regularity of |Du| in Q. For this purpose, we follow
the idea of G. M. Troianiello [55] adapted to the case of systems (cfr [47]).

We denote a vector of R” by x = (x1,...,X,1,%,) = (X, x,,).

If y = (y’,0) we define

B, () ={x¢€ B(y,p): x, >0},
Lp(y) ={xeB(y,p) : x, = 0}.

Fixed Ry > 0, let M(x) = (M'(x)), ,_,

A M(x) = (M (X)); =1, n be a matrix-valued func-
tion and let E(x) = (E[*(x)),_y. -1 .y DEQ tensor and fx) = (%),

be a vector-valued function defined in Q By, ().

.....
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We begin by investigating a solution of the problem

ue W”(B+ (»),RY)
u‘rk =0

(32) / Mi;s(x)Djﬁ’DmS dx = / EP(x)a'Dp* dx + / fo*dx
B} () B, By,
forall g € Wol’z(BEI(y), RM).

We state the following
LEMMA 5.1. Assume that tensor M, satisfies (2), (3), tensor E and vector valued
function f satisfy (4) and (5) respectively with Q = B . Let pig = p —n + 2 and let
i be a solution of problem (32).

Then, for every R € 10, R[, we have

|Dﬂ| € LGul (B;;, erN) with Hy = min{inu()}v

and there exists a positive constant ¢ depending only on o, 5, n, N, Ry, such that

(33) ||D“||L (B}, R"™) <

B+ Rnh + ||Eu||L2/’O BJr R"N)

+ 17112 I

LN+2 N+2 B* JRY)Y

PROOF. We extend the tensors

M”(x Xn) if x, >0
~MPF(x',—x,) if x, <0

M(xX',x,) if x, >0

]W—,:;(xlaxn) = ~ .
-M(x',—x,) if x, <0

fori=1,...,.n—landforr,s=1,..., N,

M[;S(x’,xn) if x, >0

MP(x',x,) =4 .
v ( 2 {M;S(x’, —x,) if x, <0

for all the remaining values of i, j and forr,s =1,..., N,
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1S () .
Ep( ) = Drivon) i =0
_Erlzs(x/7 _xn) if x, <0
vy [ Fn) 520
EF(x',—x,) ifx,<0
fori=1,...,n—1,
fors=1,2,...,N
£Sel .
P ) = 4 o) i >0
—f(x',=x,) ifx, <0

and finally fors =1,2,...,N

B %) = s (x', xy) if x, >0
T =t (v, —x,) i x, < 0.
Note that the functions Mj satisfy (2) and (3), the tensor E and the vector valued
function f satisfy (4) and (5) respectively in Bg, (), and @ € Wol’z(BR1 (»), RM).
Given a function v(x), with x = (x’, x,) € Bg,(»), we set

(X', x,) = v(x, —x,).

Fixed a function v e C}(Bg,(»), R"), we note that v — & belongs in C| (Bx, (),
RY). Therefore, simple calculations show that

(34) M (x)DaDvdx — / E(x)uDvdx
Bg, (¥) Bg, (¥)

= / MU’T‘(X)DQD(U —0)dx — / EP(x)aD(v — 7) dx
By, (¥)

By, (¥)

— ff(v_ﬁ)dx:/ fodx

B, () Bg,(y)

and by a density argument we prove that the function # is solution of the problem
(1) in Q = Bg, (y) with M, E[* and f* replaced by M, E[* and [, respectively.
Therefore @ verifies (15) and hence (17) with Q = Bg, (). Now, the Lemma fol-

lows by changing back the coordinates. O

Now we are able to prove the claimed global Morrey regularity of Du.

Since 0Q € C!, for each y € 0Q and &, > 0, there is a ball Bg (¥) and
a C'(Bg,(p))-diffeomorphism A : Bg,(7) — Bs,r,(0), which straighten 0Q N
Bg,(¥) and such that
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(1) A(y) =0
(2) By x,(0) C A(Bgr,(7) nQ) C By  (0) for some 0 < J; < d».

Put Ry = 01Ry. If z € By, (0) = By, we set

0A;
ay h

(35) MP(z) = Mjp(A™(2) 5 (A ()) (A '(2))J(2)

0N\,
Oy

[@) =A@
i'(z) = ' (A7 (2))J(2)

EP(z) = Ep (A (2)) 5~ (AT (2)J (2)

(36)

where z = A(y), y= A~'(z) and J(z) denotes the absolute value of the Jacobian
determinant of A~ at z.

Let us observe that M 7’ belong to L*(Bj ) n VMO (see Lemma 2.1 of [46)),
E!* belong to L"(Bj, ) N 2 #(Bg,)-

Moreover, from the definition (35), it follows that

Crrs 21 S rs aA aA] s /
Mpes = M L) 20 Z(;‘Z ) m1nJ>oc|é|
= r I 1
for all & e R™Y.
Thus, a change of variables in (1) yields

e wh 2(B+ RY)
U‘FR = 0

(37) Mf(z)DﬁDgo dz = / EP(2)iDgdz + fipdz

By By, B}

forall g € Wol"z(BEI, RY).

To (37) we apply Lemma 5.1 and thus we get the membership of D# in
L>#(Bf,R™), 0 < R < Ry, with norm estimate (33).

We extend Dz a.e. to By setting Du(x',x,) = Dua(x’, —x,) if x, < 0. Thus
Dit € L>*1(Bg, R™).

As a consequence, since for some 7 >0 B,(7) nQ C A~'(B), the matrix-
function Di(A(y)), y € B.(¥) belongs to L># (B,(¥), R"™) that is, by the chain
rule, Du belongs to L>#1(Q n B,(7), R™); thus, thanks to (36), by changing back
coordinates in (33), we deduce

2 2 2
(38)  IDul| 20 (5,(5)n0) < cllDull 2, mmv) + [ Eull L2000, gy + [val T >]~

@,
Because 0Q is compact, there is a finite number of balls such as B,(¥), say
B',B?,..., B™, which cover dQ.
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Moreover, there exists an open set Q\ U/, B; C Hy CC Q such that H, B!,
B?,...,B" cover Q.

If {gi},—o 1. is @ partition of the unity relative to the above covering then it
turns out '

m
(39) ||Du||]_2.,¢l (Q’R)h\r) S Cc ||Du||L2.;¢l (HO’RHA’) + Z ||Du||L2‘/1l (B;”O_/) A Q7 RnN)

i=1

Then from (39) by joining together (38) and the interior estimate (33) we derive
the global Morrey estimate (18). O
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