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Abstract

An existence result for Neumann elliptic systems with singular, convective, sign-changing, arbitrarily 
growing reactions is established. Proofs are chiefly based on sub-super-solution and truncation techniques, 
nonlinear regularity theory, and fixed point arguments. As a consequence, infinitely many solutions are 
obtained through appropriate sequences of sub-super-solution pairs.
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1. Introduction

In this paper, we investigate the following homogeneous Neumann problem:

⎧⎪⎪⎨
⎪⎪⎩

−�pu = f (x,u, v,∇u,∇v) in �,

−�qv = g(x,u, v,∇u,∇v) in �,

u,v > 0 in �,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂�,

(P)
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where � ⊆ RN , N ≥ 3, is a bounded domain with C2-boundary ∂� having outer normal ν, 
1 < p, q < +∞, �r denotes the r-Laplacian, namely

�ru := div
(
|∇u|r−2∇u

)
∀u ∈ W 1,r (�),

and f, g : � × (0, +∞)2 ×R2N → R are Carathéodory functions; see Section 3 for details.
The parabolic Neumann problem associated with (P), whose simplest form is the well-known 

Gierer-Meinhardt system, arises in biological pattern formation by auto- and cross-catalysis, 
morphogenesis, and cellular differentiation (cf. [12,13]). In particular, it is used to model the 
head formation of hydra, a freshwater animal long about 15 millimeters. Much attention received 
also its elliptic counterpart; see, e.g., [8].

From a mathematical point of view, (P) exhibits several difficulties. In particular,

• −�p and −�q are not maximal monotone under Neumann boundary conditions.
• f, g can be singular at zero, sign-changing, and with arbitrary behavior.
• f, g depend on the gradient of solution, which prevents to apply variational methods.

We took inspiration from the works [20,14] where Dirichlet and Robin problems, respectively, 
have been investigated in the scalar case (i.e., for a single differential equation) and with spe-
cial reactions, which are non-negative, sub-linear, and split as the sum of a singular term plus 
a convective one. Here, these restrictions are removed at all. Adding potential terms, truncat-
ing nonlinearities, and using trapping region techniques allow to solve an auxiliary system with 
frozen gradients (cf. Lemma 3.3). Through arguments partially patterned after those in [20,14]
we next achieve a solution of (P); see Theorem 3.8. It should be noted that problem (P) includes 
both non-cooperative and non-competitive systems, because no monotonicity is assumed.

Unlike [20,14], where a sub-solution permits to avoid the singularity of reactions and the 
differential operators are maximal monotone, we also need a super-solution. In fact, Poincaré’s 
inequality is not available now, and potential terms do not appear, neither in equations nor in 
boundary conditions. Consequently, Schaefer’s fixed point theorem, on which [20,14] basically 
rely, seems to be inapplicable here. The analysis of such problems looks harder and there are 
only few works on this subject; see [28] for a critical point theory approach. A further benefit of 
having a super-solution is the possibility to truncate nonlinearities with bad behavior, as a super-
critical one (cf., e.g., [15]). Although the argument is elementary, constructing a super-solution 
could be very difficult. In our case, we succeed provided reactions grow super-linearly near the 
origin.

Another hopefully interesting aspect of this work comes from Theorems 4.2 and 4.3, where a 
whole sequence of solutions is obtained without assuming any symmetry condition or parametric 
control on the reactions. In fact, recall that a symmetric source often produces infinitely many 
critical points of the energy functional associated with the differential problem. A classical ref-
erence is [33], while [17] contains more recent results; concerning applications, see for instance 
[15,21]. Some variational principles (cf., e.g., [2]) yield the same conclusion for parametric prob-
lems, once the parameter belongs to a suitable interval. Theorems 4.2–4.3 below are obtained by 
first constructing monotone sequences of sub-super-solution pairs in the C1(�)2-cone of positive 
functions, and then using Theorem 3.8 in each order interval.

The literature on elliptic problems with convection terms looks by now daily increasing; let us 
mention the very recent papers [22,29,30] for equations and [1,27] concerning singular systems, 
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as well as their bibliographies. The monographs [4,12] represent general references on singular 
problems, while cooperative and competitive structures are discussed in [25] and [26], respec-
tively. Dirichlet systems have been thoroughly investigated, mainly via variational techniques 
[23], sub-super-solution and truncation methods [5], or fixed point theorems [16]. To the best 
of our knowledge, much less attention received Neumann problems; actually, we can only cite 
[7,10].

The paper is organized as follows. Section 2 deals with preliminaries. The abstract existence 
result concerning (P) is proved in Section 3. The last section contains some meaningful special 
cases, obtained after explicitly constructing sub-super-solution pairs.

2. Preliminaries

Let Y, Z be two metric spaces and let S be a multifunction from Y into Z (briefly, S : Y →
2Z). We say that S is lower semicontinuous when for every y ∈ Y , {yn}n ⊆ Y converging to y, 
and z ∈ S(y) there exists {zn}n ⊆ Z with the following properties: zn → z in Z; zn ∈ S(yn) for 
all n ∈N .

Let Y, Z be two Banach spaces. An operator T : Y → Z is called compact if it maps bounded 
sets into relatively compact sets. An analogous definition holds for multifunctions. We denote 
by Y ↪→ Z the continuous embedding of Y into Z; if the embedding is compact, then we write 

Y
c

↪→ Z.
Henceforth, for 0 < α < 1 < r < +∞, � as in the Introduction, and z : � →R, the following 

notation will be adopted:

‖z‖Lr(�) :=
⎛
⎝∫

�

|z(x)|rdx

⎞
⎠

1
r

; ‖z‖L∞(�) := ess sup
x∈�

|z(x)|;

‖z‖W 1,r (�) := (‖z‖r
Lr (�) + ‖∇z‖r

Lr (�))
1
r ; ‖z‖C1(�) := ‖z‖L∞(�) + ‖∇z‖L∞(�);

[∇z]C0,α(�) := sup
x �=y

|∇z(x) − ∇z(y)|
|x − y|α ; ‖z‖C1,α(�) := ‖z‖C1(�) + [∇z]C0,α(�).

Moreover,

W
1,r
b (�) := W 1,r (�) ∩ L∞(�).

Recall that C1,α(�) 
c

↪→ C1(�), according to Ascoli-Arzelà’s theorem [18, Theorem 1.5.3].
If Z is a real function space on � and v, w ∈ Z, then v ≤ w means v(x) ≤ w(x) for almost 

every x ∈ �, while

v+ := max{0, v}, [v,w] := {z ∈ Z : v ≤ z ≤ w}, Z+ := {z ∈ Z : 0 ≤ z}.
Let Z2 := Z × Z and let (v1, v2), (w1, w2) ∈ Z2. By definition, one has

(v1, v2) ≤ (w1,w2) ⇐⇒ v1 ≤ w1 and v2 ≤ w2.

If ‖ · ‖Z is a norm on Z, then we put BZ(ρ) := {z ∈ Z : ‖z‖Z ≤ ρ}, ρ > 0, as well as
851



U. Guarnotta and S.A. Marano Journal of Differential Equations 271 (2021) 849–863
‖(z1, z2)‖Z2 := ‖z1‖Z + ‖z2‖Z ∀ (z1, z2) ∈ Z2.

3. An existence result

Recall that f, g : � × (0, +∞)2 × R2N → R satisfy Carathéodory’s conditions. Pick any 
w := (w1, w2) ∈ C1(�)2 and consider problem (P) with ‘frozen’ gradients, i.e.,⎧⎪⎪⎨

⎪⎪⎩
−�pu = h1(x,u, v) in �,

−�qv = h2(x,u, v) in �,

u,v > 0 in �,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂�,

(Pw)

where

h1(x, s, t) := f (x, s, t,∇w1(x),∇w2(x)),

h2(x, s, t) := g(x, s, t,∇w1(x),∇w2(x)).
(3.1)

The assumption below will be posited.

(H) There exist ε > 0, (u, v), (u, v) ∈ W
1,p
b (�) × W

1,q
b (�) such that

(ε, ε) ≤ (u, v) ≤ (u, v).

Moreover, if K := C1(�)2 ∩ ([u, u] × [v, v]), then:
(i) For appropriate ρ, C > 0 one has

|f (·, u, v,∇w)| ≤ ρ, |g(·, u, v,∇w)| ≤ ρ

whenever (u, v, w) ∈ [u, u] × [v, v] × D, where

D := {w ∈ K : ‖∇w‖L∞(�)2 ≤ C}. (3.2)

(ii) For every fixed w ∈ D the pair (u, v), (u, v) is a sub-super-solution to problem (Pw), namely

{ ∫
�

|∇u|p−2∇u∇ϕ dx ≤ ∫
�

h1(·, u, v)ϕ dx,∫
�

|∇v|q−2∇v∇ψ dx ≤ ∫
�

h2(·, u, v)ψ dx,{ ∫
�

|∇u|p−2∇u∇ϕ dx ≥ ∫
�

h1(·, u, v)ϕ dx,∫
�

|∇v|q−2∇v∇ψ dx ≥ ∫
�

h2(·, u, v)ψ dx

(3.3)

whenever (u, v) ∈ [u, u] × [v, v], (ϕ, ψ) ∈ W
1,p
b (�)+ × W

1,q
b (�)+.

Now, given (u, v) ∈ W 1,p(�) × W 1,q (�), we define

Tp(u)(x) :=
⎧⎨
⎩

u(x) if u(x) < u(x),

u(x) if u(x) ≤ u(x) ≤ u(x),

u(x) if u(x) > u(x),

x ∈ �,
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Tq(v)(x) :=
⎧⎨
⎩

v(x) if v(x) < v(x),

v(x) if v(x) ≤ v(x) ≤ v(x),

v(x) if v(x) > v(x).

x ∈ �.

Lemma 2.89 of [4] ensures that the operators Tp : W 1,p(�) → W 1,p(�) and Tq : W 1,q (�) →
W 1,q(�) are continuous.

Truncating reactions allows to neglect the singular behavior in zero as well as possible super-
critical growths at infinity. Hence, we add a potential term in both sides, which makes the 
differential operator strictly monotone, and truncate the right-hand one, thus coming to the prob-
lem

⎧⎨
⎩

−�pu + |u|p−2u = k1(x,u, v) in �,

−�qv + |v|q−2v = k2(x,u, v) in �,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂�,

(P̃w)

where

k1(·, u, v) := h1(·, Tp(u), Tq(v)) + |Tp(u)|p−2Tp(u),

k2(·, u, v) := h2(·, Tp(u), Tq(v)) + |Tq(v)|q−2Tq(v).
(3.4)

Solutions of (P̃w) will be sought by freezing reactions again. Accordingly, bear in mind (3.2), 
and, for every fixed (u, v, w) ∈ W 1,p(�) × W 1,q (�) × D, consider the variational problem

⎧⎨
⎩

−�pû + |û|p−2û = k1(x,u(x), v(x)) in �,

−�qv̂ + |v̂|q−2v̂ = k2(x,u(x), v(x)) in �,
∂û
∂ν

= ∂v̂
∂ν

= 0 on ∂�.

(P̃(u,v,w))

Remark 3.1. Hypothesis (H)(i) evidently forces

k1(·, u, v), k2(·, u, v) ∈ L∞(�).

So, through Moser’s iteration technique [11, Theorem 6.2.6], we see that any solution (û, v̂) of 
(P̃(u,v,w)) turns out essentially bounded. Lieberman’s regularity theory up to the boundary [19]
(see also [24, Theorem 8.10]), yields α ∈ (0, 1) and R > 0 (depending only on p, q, �, ρ) such 
that

(û, v̂) ∈ BC1,α(�)2(R) ⊆ BC1(�)2(R).

Lemma 3.2. Let (H)(i) be satisfied and let (u, v, w) ∈ W 1,p(�) × W 1,q (�) × D. Then problem 
(P̃(u,v,w)) possesses a unique solution (û, v̂) ∈ B 1,α 2(R).
C (�)
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Proof. The energy functionals associated with equations in (P̃(u,v,w)), i.e.,

�1(z) := ‖z‖p

W 1,p(�)
−

∫
�

k1(·, u, v)zdx, z ∈ W 1,p(�),

�2(z) := ‖z‖q

W 1,q (�)
−

∫
�

k2(·, u, v)zdx, z ∈ W 1,q (�),

are weakly lower semi-continuous, strictly convex, and coercive, because p, q > 1. By 
Weierstrass-Tonelli’s theorem, they have a unique global minimizer, say û ∈ W 1,p(�) for �1

and v̂ ∈ W 1,q (�) for �2. Obviously, (û, v̂) is a weak solution to (P̃(u,v,w)). In fact, the nonlinear 
Green’s formula [6, Theorem 3] entails ∂û

∂ν
= ∂v̂

∂ν
= 0 on ∂�. Now the conclusion stems from 

Remark 3.1. �
Next, pick w ∈ D. For every (u, v) ∈ BC1(�)2(R) we set


(u,v) := (û, v̂), (3.5)

where (û, v̂) is as in Lemma 3.2. Since

BC1,α(�)2(R)
c

↪→ BC1(�)2(R), (3.6)

the operator 
 : BC1(�)2(R) → BC1(�)2(R) defined by (3.5) is compact. It will play a basic role 
to prove the following

Lemma 3.3. If (H) holds and w ∈ D, then (Pw) admits solutions in K .

Proof. We claim that 
 is continuous. In fact, let {(un, vn)}n ⊆ BC1(�)2(R) satisfy (un, vn) →
(u, v) in C1(�)2 and let (ûn, v̂n) := 
(un, vn), n ∈ N . The compactness of 
 forces (ûn, v̂n) →
(û, v̂) in C1(�)2, where a sub-sequence is considered when necessary. On the other hand, each 
(ûn, v̂n) solves (P̃(un,vn,w)), whence (û, v̂) turns out a solution to (P̃(u,v,w)), as we easily see once 
n → ∞ in (P̃(un,vn,w)). By uniqueness one has (û, v̂) = 
(u, v), thus showing the continuity 
of 
.

Now, Schauder’s fixed point theorem gives (u, v) ∈ BC1(�)2(R) such that (u, v) = 
(u, v), 
namely (u, v) solves (P̃w). Testing with ((u − u)+, (v − v)+) produces
854
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∫
�

|∇u|p−2∇u∇(u − u)+dx +
∫
�

|u|p−2u(u − u)+dx

=
∫
�

k1(·, u, v)(u − u)+dx,

∫
�

|∇v|q−2∇v∇(v − v)+dx +
∫
�

|v|q−2v(v − v)+dx

=
∫
�

k2(·, u, v)(v − v)+dx.

(3.7)

Through (H)(ii), written for (Tp(u), Tq(v)) in place of (u, v), we get

∫
�

|∇u|p−2∇u∇(u − u)+dx +
∫
�

|u|p−2u(u − u)+dx

≤
∫
�

k1(x,u, v)(u − u)+dx,

∫
�

|∇v|q−2∇v∇(v − v)+dx +
∫
�

|v|q−2v(v − v)+dx

≤
∫
�

k2(x,u, v)(v − v)+dx.

(3.8)

Subtracting (3.7) from (3.8) leads to

∫
�

(|∇u|p−2∇u − |∇u|p−2∇u)∇(u − u)+dx

+
∫
�

(|u|p−2u − |u|p−2u)(u − u)+dx ≤ 0,

∫
�

(|∇v|q−2∇v − |∇v|q−2∇v)∇(v − v)+dx

+
∫
�

(|v|q−2v − |v|q−2v)(v − v)+dx ≤ 0.

By strict monotonicity of the operator z �→ −�rz + |z|r−2z (cf., e.g., [31, Lemma A.0.5]), this 
entails both (u − u)+ = 0 and (v − v)+ = 0 in �. So, (u, v) ≤ (u, v). An analogous argument 
yields (u, v) ≤ (u, v). The proof ends bearing in mind (3.4). �
855



U. Guarnotta and S.A. Marano Journal of Differential Equations 271 (2021) 849–863
Define, for every w ∈ D,

S(w) := {(u, v) ∈ K : (u, v) is a solution to (Pw)}.
The above lemma ensures that the multifunction S : D → 2K takes nonempty values. Moreover,

Lemma 3.4. Let (H) be fulfilled. Then S is compact.

Proof. Since (u, v) ∈ K , problem (P̃w) coincides with (Pw) for any w ∈ D. Thus, the compact-
ness of S is a consequence of Remark 3.1 and (3.6). �
Lemma 3.5. Under (H), the multifunction S is lower semicontinuous.

Proof. Although the reasoning is similar to that in [14, Lemma 3.7], we will sketch it, because 
here super-solutions play a role. Pick {wn}n ⊆ D satisfying

lim
n→∞wn = w in C1(�)2 (3.9)

and choose any

(u0, v0) ∈ S(w). (3.10)

Consider the family of two-index problems, say m, n ∈N ,

⎧⎨
⎩

−�pum
n + |um

n |p−2um
n = rm

n (x) in �,

−�qvm
n + |vm

n |q−2vm
n = sm

n (x) in �,
∂um

n

∂ν
= ∂vm

n

∂ν
= 0 on ∂�,

(Pm
n )

where

rm
n (x) = f (x,um−1

n (x), vm−1
n (x),∇wn(x)) + (um−1

n (x))p−1,

sm
n (x) = g(x,um−1

n (x), vm−1
n (x),∇wn(x)) + (vm−1

n (x))q−1,

(u0
n, v

0
n) = (u0, v0),

for all m, n. We construct a double sequence {(um
n , vm

n )}m,n by fixing n ∈ N and using 
Weierstrass-Tonelli’s theorem to solve (Pm

n ) inductively on m. In fact, (Pwn) coincides with (P̃wn)

since (um−1
n , vm−1

n ) ∈ K , thus the argument exploited in the proof of Lemma 3.2 works. Observe 
next that

(um
n , vm

n ) ∈ BC1,α(�)2(R) ∩ K ∀m ∈ N;
cf. Lemma 3.3. Hence, from (3.6) it follows

lim
m→∞(um

n , vm
n ) = (un, vn) in C1(�)2 (3.11)

up to sub-sequences. Letting m → ∞ in (Pm) we readily obtain
n
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(un, vn) ∈ S(wn), n ∈N. (3.12)

Keep now m ∈N fixed and reason similarly, to arrive at

lim
n→∞(um

n , vm
n ) = (um, vm) in C1(�)2. (3.13)

One actually has

(um, vm) = (u0, v0) for all m. (3.14)

In fact, through (Pm
n ), (3.9), and (3.13), we deduce that (um, vm) solves the problem

⎧⎨
⎩

−�pum + |um|p−2um = rm(x) in �,

−�qvm + |vm|q−2vm = sm(x) in �,
∂um

∂ν
= ∂vm

∂ν
= 0 on ∂�,

where

rm(x) = f (x,um−1(x), vm−1(x),∇w(x)) + (um−1(x))p−1,

sm(x) = g(x,um−1(x), vm−1(x),∇w(x)) + (vm−1(x))q−1,

which possesses a unique solution. Recalling (3.10), an induction procedure on m yields (3.14). 
Finally, the double limit lemma, when combined with (3.11), (3.13), and (3.14), entails

lim
n→∞(un, vn) = lim

n→∞ lim
m→∞(um

n , vm
n ) = lim

m→∞(um, vm) = (u0, v0).

On account of (3.9), (3.10), and (3.12), this completes the proof. �
Via a standard argument (cf., e.g., [14, Lemmas 3.8–3.9]), chiefly based on Lemma 3.4, we 

can verify the following

Lemma 3.6. Suppose (H) to be satisfied. Then, for every w ∈ D, the set S(w) admits minimum.

So, it makes sense to define

�(w) := minS(w), w ∈ D. (3.15)

Obviously, � : D → K turns out a selection of S . Moreover,

Lemma 3.7. Let (H) be fulfilled. Then the map � is compact and continuous.

Proof. Compactness directly stems from Lemma 3.4, once we realize that �(A) ⊆ S(A) for any 
A ⊆ D. Pick {wn}n ⊆ D with wn → w in C1(�)2. Along a sub-sequence if necessary, one has

lim ‖�(wn) − (u∗, v∗)‖C1(�)2 = 0 (3.16)

n→∞
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for some (u∗, v∗) ∈ C1(�)2, because � is compact. We claim that (u∗, v∗) = �(w). In fact, 
letting n → ∞ in (Pwn) provides

(u∗, v∗) ∈ S(w). (3.17)

Thanks to Lemma 3.5, there exists {(un, vn)}n ⊆ D such that

(un, vn) ∈ S(wn) ∀n ∈N, (3.18)

lim
n→∞‖(un, vn) − �(w)‖C1(�)2 = 0. (3.19)

The minimality of �, together with (3.17), (3.16), (3.18), and (3.19), yield

�(w) ≤ (u∗, v∗) = lim
n→∞�(wn) ≤ lim

n→∞(un, vn) = �(w),

whence �(wn) → �(w), as desired. �
By [9, Theorem 3.1], any solution (u, v) ∈ K to (Pw) satisfies the gradient estimates

‖∇u‖L∞(�) ≤ η1‖f (·, u, v,∇w)‖
1

p−1
L∞(�),

‖∇v‖L∞(�) ≤ η2‖g(·, u, v,∇w)‖
1

q−1
L∞(�),

(3.20)

where η1, η2 > 0 denote suitable constants. Evidently, there is no loss of generality in assuming 
η1, η2 ≥ 1.

Our main result requires a further condition on the reaction terms, which however complies 
with various meaningful cases; see Theorems 4.2–4.3 below. Hereafter, we suppose that

ρ ≤ min

{(
C

η1

)p−1

,

(
C

η2

)q−1
}

, (3.21)

where ρ, C come from (H), while η1, η2 are as in (3.20).

Theorem 3.8. If (H) and (3.21) hold, then problem (P) possesses a solution belonging to 
C1,α(�)2 ∩ K .

Proof. Let � be given by (3.15). Condition (3.21) and (3.20) guarantee that �(D) ⊆ D. Thus, 
on account of Lemma 3.7, Schauder’s fixed point theorem can be applied, which entails (u, v) =
�(u, v) for some (u, v) ∈ D. Through (3.1) and Remark 3.1 we easily verify that (u, v) satisfies 
the conclusion. �
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4. Infinitely many solutions

Let er ∈ C1,α(�)+, r = p, q , be the unique solution to the problem

{ −�rer = 1 in �,

er = 0 on ∂�,

let Lr := ‖er‖L∞(�), and let �r > Lr . The following sequences of sub-super-solution pairs, 
which depend on a positive constant Cn, will be employed:

(un, vn) := (Cn(�p − ep),Cn(�q − eq)), n ∈N;
(un, vn) := (Cn(�p + ep),Cn(�q + eq)), n ∈N.

(4.1)

By the Boundary Point Lemma [32, Theorem 5.5.1] one has

max

{
∂un

∂ν
,
∂vn

∂ν

}
< 0 < max

{
∂un

∂ν
,
∂vn

∂ν

}
on ∂�, (4.2)

while the choice of �r (recall also that er ≥ 0) produces

(Cn(�p − Lp),Cn(�q − Lq)) ≤ (un, vn) ≤ (un, vn). (4.3)

4.1. The sub-linear case

We make the hypotheses below.

(F1) There exist α1 < 0 < β1 satisfying α1 + β1 < p − 1, γ1, δ1 ∈ [0, p − 1), and a1, b1, c1 ∈
L∞(�) such that

|f (x, s, t, ξ1, ξ2)| ≤ a1(x)sα1 tβ1 + b1(x)(|ξ1|γ1 + |ξ2|δ1) + c1(x)

for all (x, s, t, ξ1, ξ2) ∈ � × (0, +∞)2 ×R2N .
(G1) There exist β2 < 0 < α2 satisfying α2 + β2 < q − 1, γ2, δ2 ∈ [0, q − 1), and a2, b2, c2 ∈

L∞(�) such that

|g(x, s, t, ξ1, ξ2)| ≤ a2(x)sα2 tβ2 + b2(x)(|ξ1|γ2 + |ξ2|δ2) + c2(x)

for all (x, s, t, ξ1, ξ2) ∈ � × (0, +∞)2 ×R2N .

Incidentally, similar conditions already appear in [3].

Remark 4.1. One can take γ1, δ1 ∈ [0, p − 1] provided ‖b1‖L∞(�) < 1
2η

−(p−1)
1 , with η1 given 

by (3.20). An analogous comment applies to γ2, δ2.

Theorem 4.2. Let (F1)–(G1) be satisfied. Then problem (P) admits a sequence of solutions 
{(un, vn)}n ⊆ C1(�)2 such that (un, vn) < (un+1, vn+1) for all n ∈ N and lim

n→∞un = lim
n→∞vn =

+∞ uniformly in �.
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Proof. Define

Kn := C1(�)2 ∩ ([un,un] × [vn, vn]
)

as well as

Dn := {w ∈ Kn : ‖∇w‖L∞(�)2 ≤ Cn},

where Cn > 0 comes from (4.1). If (u, v, w) ∈ Kn × Dn, then through (F1) we obtain

|f (·,u, v,∇w)|
≤ ‖a1‖L∞(�)u

α1
n vβ1

n + ‖b1‖L∞(�)(C
γ1
n + Cδ1

n ) + ‖c1‖L∞(�)

≤ ‖a1‖L∞(�)C
α1+β1
n (�p − Lp)α1(�q + Lq)β1

+ ‖b1‖L∞(�)(C
γ1
n + Cδ1

n ) + ‖c1‖L∞(�) ≤
(

Cn

η1

)p−1

,

(4.4)

once Cn > C∗, with C∗ > 0 large enough. Likewise, (G1) yields

|g(·, u, v,∇w)| ≤
(

Cn

η2

)q−1

. (4.5)

Hence, assumption (3.21) of Theorem 3.8 holds for K := Kn, D := Dn, C := Cn. Observe next 
that

−�pun = −C
p−1
n ≤ −C

p−1
n

η
p−1
1

≤ f (·, u, v,∇w) ≤ C
p−1
n

η
p−1
1

≤ C
p−1
n = −�pun

thanks to (4.1), the inequality η1 ≥ 1, and (4.4). Similarly, from (4.5) it follows

−�qvn ≤ g(·, u, v,∇w) ≤ −�qvn.

Now, integrating by parts and using (4.2) we easily achieve (3.3). So, also due to (4.3), hypoth-
esis (H) in Theorem 3.8 is fulfilled. Thus, for every n ∈ N , problem (P) possesses a solution 
(un, vn) ∈ Kn. If C1 > C∗ and

Cn+1 > max

{
�p + Lp

�p − Lp

,
�q + Lq

�q − Lq

}
Cn, n ∈N,

then un < un+1 as well as vn < vn+1, which entails (un, vn) < (un+1, vn+1). The proof ends by 
noting that Cn → +∞, whence lim un = lim vn = +∞ uniformly in �. �
n→∞ n→∞
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4.2. The super-linear case

The conditions below will be posited.

(F2) There exist α1 < 0 < β1 satisfying α1 + β1 > p − 1, γ1, δ1 ∈ (p − 1, +∞), and a1, b1 ∈
L∞(�) such that

|f (x, s, t, ξ1, ξ2)| ≤ a1(x)sα1 tβ1 + b1(x)(|ξ1|γ1 + |ξ2|δ1)

for all (x, s, t, ξ1, ξ2) ∈ � × (0, +∞)2 ×R2N .
(G2) There exist β2 < 0 < α2 satisfying α2 + β2 > q − 1, γ2, δ2 ∈ (q − 1, +∞), and a2, b2 ∈

L∞(�) such that

|g(x, s, t, ξ1, ξ2)| ≤ a2(x)sα2 tβ2 + b2(x)(|ξ1|γ2 + |ξ2|δ2)

for all (x, s, t, ξ1, ξ2) ∈ � × (0, +∞)2 ×R2N .

Remark 4.1 can be adapted to (F2)–(G2).

Theorem 4.3. Under assumptions (F2)–(G2), problem (P) has a sequence of solutions
{(un, vn)}n ⊆ C1(�)2 such that (un+1, vn+1) < (un, vn) for every n ∈ N and lim

n→∞un =
lim

n→∞vn = 0 uniformly in �.

Proof. The argument is patterned after that of Theorem 4.2, because (4.4), written for c1 ≡ 0, 
and (4.5) hold whenever Cn < C∗, with C∗ sufficiently small. So, if C1 < C∗ and

Cn+1 < min

{
�p − Lp

�p + Lp

,
�q − Lq

�q + Lq

}
Cn, n ∈N,

then the conclusion follows at once. �
Remark 4.4. Conditions (Fi) and (Gi ), i = 1, 2, above have been formulated on the whole � ×
(0, +∞)2 ×R2N just for the sake of simplicity. In fact, consider, e.g., Theorem 4.3. Since C∗ is 
small enough, it suffices to request (F2) in (0, δ]2 × BRN (δ)2, because

C∗ <
δ

max{�p + Lp,�q + Lq,1} =⇒ max{u1, v1, |∇w1|, |∇w2|} < δ

for any (w1, w2) ∈ Dn, n ∈ N , and the same arguments work. So, we can actually treat reac-
tions f, g with arbitrary behavior, provided they exhibit a super-linear growth near the origin. 
Evidently, a ‘dual’ comment holds for Theorem 4.2.

Let us finally make two examples of nonlinearities f, g fulfilling (F1)–(G1) and (F2)–(G2), 
respectively, settled according to Remark 4.4.
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Example 4.5. Define, for every (x, s, t, ξ1, ξ2) ∈ � × [1, +∞)2 ×R2N ,

f (x, s, t, ξ1, ξ2) := σ1(x) e
1
st

(
|ξ1| p−1

2 + |ξ2| p−1
2

)
,

g(x, s, t, ξ1, ξ2) := σ2(x)

(
sq

t2 − |ξ1| q−1
4 |ξ2| q−1

4

)
,

where σ1, σ2 ∈ L∞(�). A simple computation shows that (F1)–(G1) are true provided a1 ≡ c1 ≡
c2 ≡ 0, b1 ≡ eσ1, a2 ≡ σ2, b2 ≡ 1

2σ2, γ1 = δ1 = p−1
2 , α2 = q , β2 = −2, and γ2 = δ2 = q−1

2 .

Example 4.6. Set, for every (x, s, t, ξ1, ξ2) ∈ � × (0, 1]2 × BRN ( 1
2 )2,

f (x, s, t, ξ1, ξ2) := θ1(x)

[
tp+1

s
sin

(
1

s

)
+ tp

∗
(es − 1) + e|ξ1|p+|ξ2|p − 1

]
,

g(x, s, t, ξ1, ξ2) := θ2(x)e|ξ1|+|ξ2|sq
(

log t + tq
∗)

,

where θ1, θ2 ∈ L∞(�). It is not difficult to see that (F2)–(G2) hold with a1 ≡ eθ1, b1 ≡ 2θ1, 
a2 ≡ 2eθ2, b2 ≡ 0, α1 = p + 1, β1 = −1, γ1 = δ1 = p, α2 = q , and β2 = − 1

2 .
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