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Abstract

An existence result for Neumann elliptic systems with singular, convective, sign-changing, arbitrarily
growing reactions is established. Proofs are chiefly based on sub-super-solution and truncation techniques,
nonlinear regularity theory, and fixed point arguments. As a consequence, infinitely many solutions are
obtained through appropriate sequences of sub-super-solution pairs.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we investigate the following homogeneous Neumann problem:

—Apu=f(x,u,v,Vu,Vv) ing,

—Agv=g(x,u,v,Vu, Vv) in 2, p
u,v>0 in 2, (P)
g—"j = g—g =0 on 9€2,
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where Q C RY, N > 3, is a bounded domain with C 2-boundary d€2 having outer normal v,
1 < p,q < 400, A, denotes the r-Laplacian, namely

Ayu = div (|Vu|’_2Vu) Ve W (Q),

and f, g :Q x (0, —i—oo)2 x R2N 5 R are Carathéodory functions; see Section 3 for details.
The parabolic Neumann problem associated with (P), whose simplest form is the well-known
Gierer-Meinhardt system, arises in biological pattern formation by auto- and cross-catalysis,
morphogenesis, and cellular differentiation (cf. [12,13]). In particular, it is used to model the
head formation of hydra, a freshwater animal long about 15 millimeters. Much attention received
also its elliptic counterpart; see, e.g., [8].
From a mathematical point of view, (P) exhibits several difficulties. In particular,

e —A, and —A, are not maximal monotone under Neumann boundary conditions.
e f, g can be singular at zero, sign-changing, and with arbitrary behavior.
e f, g depend on the gradient of solution, which prevents to apply variational methods.

We took inspiration from the works [20,14] where Dirichlet and Robin problems, respectively,
have been investigated in the scalar case (i.e., for a single differential equation) and with spe-
cial reactions, which are non-negative, sub-linear, and split as the sum of a singular term plus
a convective one. Here, these restrictions are removed at all. Adding potential terms, truncat-
ing nonlinearities, and using trapping region techniques allow to solve an auxiliary system with
frozen gradients (cf. Lemma 3.3). Through arguments partially patterned after those in [20,14]
we next achieve a solution of (P); see Theorem 3.8. It should be noted that problem (P) includes
both non-cooperative and non-competitive systems, because no monotonicity is assumed.

Unlike [20,14], where a sub-solution permits to avoid the singularity of reactions and the
differential operators are maximal monotone, we also need a super-solution. In fact, Poincaré’s
inequality is not available now, and potential terms do not appear, neither in equations nor in
boundary conditions. Consequently, Schaefer’s fixed point theorem, on which [20,14] basically
rely, seems to be inapplicable here. The analysis of such problems looks harder and there are
only few works on this subject; see [28] for a critical point theory approach. A further benefit of
having a super-solution is the possibility to truncate nonlinearities with bad behavior, as a super-
critical one (cf., e.g., [15]). Although the argument is elementary, constructing a super-solution
could be very difficult. In our case, we succeed provided reactions grow super-linearly near the
origin.

Another hopefully interesting aspect of this work comes from Theorems 4.2 and 4.3, where a
whole sequence of solutions is obtained without assuming any symmetry condition or parametric
control on the reactions. In fact, recall that a symmetric source often produces infinitely many
critical points of the energy functional associated with the differential problem. A classical ref-
erence is [33], while [17] contains more recent results; concerning applications, see for instance
[15,21]. Some variational principles (cf., e.g., [2]) yield the same conclusion for parametric prob-
lems, once the parameter belongs to a suitable interval. Theorems 4.2—4.3 below are obtained by
first constructing monotone sequences of sub-super-solution pairs in the C'(€2)?-cone of positive
functions, and then using Theorem 3.8 in each order interval.

The literature on elliptic problems with convection terms looks by now daily increasing; let us
mention the very recent papers [22,29,30] for equations and [1,27] concerning singular systems,
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as well as their bibliographies. The monographs [4,12] represent general references on singular
problems, while cooperative and competitive structures are discussed in [25] and [26], respec-
tively. Dirichlet systems have been thoroughly investigated, mainly via variational techniques
[23], sub-super-solution and truncation methods [5], or fixed point theorems [16]. To the best
of our knowledge, much less attention received Neumann problems; actually, we can only cite
[7,10].

The paper is organized as follows. Section 2 deals with preliminaries. The abstract existence
result concerning (P) is proved in Section 3. The last section contains some meaningful special
cases, obtained after explicitly constructing sub-super-solution pairs.

2. Preliminaries

Let Y, Z be two metric spaces and let S be a multifunction from Y into Z (briefly, S : Y —
27). We say that S is lower semicontinuous when for every y € Y, {y,}, C ¥ converging to y,
and z € S(y) there exists {z,}, € Z with the following properties: z,, — z in Z; z, € S(y;) for
alln e N.

Let Y, Z be two Banach spaces. An operator T : Y — Z is called compact if it maps bounded
sets into relatively compact sets. An analogous definition holds for multifunctions. We denote
by Y < Z the continuous embedding of Y into Z; if the embedding is compact, then we write
Yy <S5z

Henceforth, for 0 <« < 1 < r < 400,  as in the Introduction, and z : 2 — R, the following
notation will be adopted:

1
r

xe

lzllzr (@) = /IZ(X)Irdx i lzllzeo(e) ==esssup |z (x)];
Q

1
Izllwir ) = Uzl + 127 Izl = Izlie@ + 12l

[Vz(x) — Vz(y)|

[Vzlcoe(g) = sup s zllcreg = lzller g +[Vzlcoa -

x#y |x — y|°‘
Moreover,

W (Q) = W ()N L®(Q).

Recall that C1-#(Q) < ! (Q), according to Ascoli-Arzela’s theorem [18, Theorem 1.5.3].
If Z is a real function space on €2 and v, w € Z, then v < w means v(x) < w(x) for almost
every x € 2, while

vti=max{0,v}, [v,w]li={zeZ:v<z<w}, Z,:={ze€Z:0<z}.
Let Z2:= Z x Z and let (v1, v2), (W, wp) € VA4S By definition, one has
(v1, 12) < (w1, w2) <= v <wj and vy < wy.

If || - ||z is anorm on Z, then we put Bz(p) :={z€ Z: |lzllz < p}, p > 0, as well as
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IGz1, 2l 22 i= llzillz + lz2llz Y (21, 22) € Z2.
3. An existence result

Recall that f, g : 2 x (0, +00)? x RN — R satisfy Carathéodory’s conditions. Pick any
w = (w, wy) € C! (Q)2 and consider problem (P) with ‘frozen’ gradients, i.e.,

—Apu=hi(x,u,v) in L,
—Agu=hy(x,u,v) in L,

u,v>0 in €, (Py)
3 3
5 =5, =0 on 0%,

where

hi(x,s,t):= f(x,s,t, Vwi(x), Vwa(x)), -
ho(x,s,t):=g(x,s,t, Vwi(x), Vwa(x)). G-D

The assumption below will be posited.
(H) There exist & > 0, (u, v), (@, ) € W'’ (Q) x W, !(R) such that

(e,8) < (u,v) <, ).

Moreover, if K := C'(2)% N ([u, #] x [v, V]), then:
(i) For appropriate p, C > 0 one has

[fCou,v, V) <p, g, u,v,Vw)|<p
whenever (u, v, w) € [u, u] x [v,v] x D, where
(i1) For every fixed w € D the pair (u, v), (i, v) is a sub-super-solution to problem (Py,), namely

[o | VulP2VuVedx < [ohi(,u, v)¢dx,
JoIVul92Vovyrde < [ ho(,u, vy dx,
3.3)

JoI\ValP?vavedx = [ohi (1, v)edx,
Jo IVUI2VoVydx > [ ho(,u, D)y dx

whenever (u, v) € [u, @] x [v, T, (9, ¥) € W, P ()4 x Wp? ().
Now, given (1, v) € WhP(Q) x WH4(Q), we define
u(x) if ux) <u(x),
Tpu)(x) = ulx) if u(x) <ulx)<ux), xeQ,
ux) if u(x)>ukx),

852



U. Guarnotta and S.A. Marano Journal of Differential Equations 271 (2021) 849-863

v(x) if v(x) <wvx),
T,(v)(x):= 4 v(x) if v(x) <v(x) <v(x), xe.
v(x) if v(x) >v(x).

Lemma 2.89 of [4] ensures that the operators T, : whr(Q) — WP (Q) and 1, : wha(Q) —
W14(Q) are continuous.

Truncating reactions allows to neglect the singular behavior in zero as well as possible super-
critical growths at infinity. Hence, we add a potential term in both sides, which makes the
differential operator strictly monotone, and truncate the right-hand one, thus coming to the prob-
lem

—Apu+ulP2u=ki(x,u,v) in L,

—Agv+ 9720 =ka(x,u,v)  in Q, Pw)
% = 3—3 =0 on 9€2,

where

ki (o, ) =Ry (, Ty (W), Ty (0) + Ty )P 2Ty (u),

, (3.4)
ko(-u, v) :=ha(-, Tp(u), Ty (v)) + [T, (0) 97T, (v).

Solutions of (Py,) will be sought by freezing reactions again. Accordingly, bear in mind (3.2),
and, for every fixed (u, v, w) € wlr(©) x Wh4(Q) x D, consider the variational problem

—Aph 4+ |01P720 = ki (x, u(x), v(x)) in Q,
—Ag D+ 01772 =ka(x, u(x), v(x))  in Q, Pluvw)
== on 9.

Remark 3.1. Hypothesis (H) (i) evidently forces

ki1 u,v), ka(-,u,v) € L2(Q).

So, through Moser’s iteration technique [11, Theorem 6.2.6], we see that any solution (iz, 0) of
(P(uv,w)) turns out essentially bounded. Lieberman’s regularity theory up to the boundary [19]
(see also [24, Theorem 8.10]), yields @ € (0, 1) and R > 0 (depending only on p, g, €2, p) such
that

(12’ ﬁ) € Bcl,a(ﬁ)Z(R) g Bc1(§)2(R)

Lemma 3.2. Let (H) (i) be satisfied and let (u, v, w) € WHP(Q) x WH4(Q) x D. Then problem
(Puv.w)) possesses a unique solution (i, D) € Beiaggy (R).
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Proof. The energy functionals associated with equations in (P(U,V,W)), i.e.,

W1(@) = N2l 0 —/kl(uu,v)zdx, ze WhP(Q),

Q
\112(2) = ||Z||%V1q(9) _/kz('7 u, U)de, FAIS Wl’q(Q)v
Q

are weakly lower semi-continuous, strictly convex, and coercive, because p,q > 1. By
Weierstrass-Tonelli’s theorem, they have a unique global minimizer, say & € W7 (Q) for ¥,

and 0 € W4() for W,. Obviously, (i1, D) is a weak solution to (P(uv.w))- In fact, the nonlinear
Green’s formula [6, Theorem 3] entails g—ﬁ = g—z =0 on 0%2. Now the conclusion stems from

Remark 3.1. O

Next, pick w € D. For every (u, v) € BC1(§)2(R) we set

O (u, v) := (i, D), (3.5)

where (i, D) is as in Lemma 3.2. Since

Cc
Bcl.a(§)2(R) — Bcl(§)2(R)’ (36)

the operator @ : B @2 (R) = B @2 (R) defined by (3.5) is compact. It will play a basic role
to prove the following

Lemma 3.3. If (H) holds and w € D, then (Py,) admits solutions in K.

Proof. We claim that ® is continuous. In fact, let {(u,, v,)}, C BCI@)Z(R) satisty (uy,, v,) —
(u,v) in C'(Q)? and let (i, D) := ®(uy,, v,), n € N. The compactness of ® forces (i, 0,) —
(i1, 0) in C1(Q)2, where a sub-sequence is considered when necessary. On the other hand, each
(i1, Uy) solves (ﬁ(un,vn,w)), whence (i1, ) turns out a solution to (ls(u,w,)), as we easily see once
n — oo in (ls(un,vn,w)). By uniqueness one has (i, 0) = ®(u, v), thus showing the continuity
of ®.

Now, Schauder’s fixed point theorem gives (u, v) € BC1(§)2(R) such that (u, v) = ®(u, v),
namely (u, v) solves (Py,). Testing with ((x — u)™, (v — v)*) produces
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/|Vu|P*2WV(E—u)+dx+/|u|P*2u(£—u)+dx
Q Q

= /kl(-, u,v)(u —u)tdx,

Q

(3.7)
/ [Vu]92VuV (v — v)Tdx +/ [v]? V(v — v) Tdx
Q Q
:/kz(-, u,v)(v —v)Tdx.
Q
Through (H) (i), written for (7}, (1), T, (v)) in place of (u, v), we get
/ |Vu|P~2VuV (u — u)*dx + / P~ 2u(u —u)*dx
Q Q
< /kmx,g, 0) (@ — ) dx,
¢ (3.8)

/IVqu_zvyV(y— v)Tdx + / |7 ?v( — v)Tdx
Q Q

s/kz(x,u,y)(y—vﬁdx.
Q

Subtracting (3.7) from (3.8) leads to
/ (IVul?~ 2V — [VulP~ Vi)V (u — u)*dx
Q
- / (lul? 2w — ulP"2u) (u — u) Tdx <0,
Q
f (IV|?™2Vy — |[Vu][72Vu)V(u — v) Tdx
Q

- / (vl — w9 2v) (v — v) Tdx < 0.
Q

By strict monotonicity of the operator z > —A,z + |z|”2z (cf., e.g., [31, Lemma A.0.5]), this
entails both (1 —u)T™ =0and (v —v)™ =01in Q. So, (u,v) < (1, v). An analogous argument
yields (u, v) < (u, v). The proof ends bearing in mind (3.4). O
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Define, for every w € D,
S(w) :={(u,v) € K : (u, v) is a solution to (Py,)}.
The above lemma ensures that the multifunction S : D — 2X takes nonempty values. Moreover,
Lemma 3.4. Let (H) be fulfilled. Then S is compact.

Proof. Since (u,v) € K, problem (Py,) coincides with (Py,) for any w € D. Thus, the compact-
ness of S is a consequence of Remark 3.1 and (3.6). O

Lemma 3.5. Under (H), the multifunction S is lower semicontinuous.

Proof. Although the reasoning is similar to that in [14, Lemma 3.7], we will sketch it, because
here super-solutions play a role. Pick {w,}, € D satisfying

lim w, =w in C'(Q)? (3.9)
n—oo
and choose any
®,v°) € S(w). (3.10)
Consider the family of two-index problems, say m,n € N,

—Apul + UM P2y =" (x)  in Q,

) .
3_%‘10”:;—; [V vt =5t (x)  in L, (PM™)
FE = ;;‘ =0 on 9%,

where

) = f,u oo, vt (), Vo, (0) + @ )P
ST (x) = g (v, w1 (), v (x), Ve () + oy

0 .0 0 .0
(U, v,) =", v"),

for all m,n. We construct a double sequence {(u}',v;)}nm,, by fixing n € N and using
Weierstrass-Tonelli’s theorem to solve (P})') inductively on m. In fact, (P,) coincides with (Py,)
since (uZ’_l, v,’f’_l) € K, thus the argument exploited in the proof of Lemma 3.2 works. Observe
next that

@y, vy € BCLa(ﬁ)z(R) NK VmeN;
cf. Lemma 3.3. Hence, from (3.6) it follows
lim (™, v™) = (uy, vy) in CH(Q)? (3.11)
m—0oQ0
up to sub-sequences. Letting m — oo in (P})') we readily obtain
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(Up, vy) € S(wy), neN. (3.12)
Keep now m € N fixed and reason similarly, to arrive at

lim @™, v™) = @™, v™) in C'(Q)% (3.13)

n—oo

One actually has
™, ™) = 1% for all m. (3.14)
In fact, through (P}"), (3.9), and (3.13), we deduce that (1™, v™) solves the problem

—Apu™ + [P =™ (x)  in Q,
—Agv" + [W"9-2y" =™ (x)  in Q,
% = % =0 on BQ,

where

P ) = f,u™ o), v (), Ve o)) + @ a0)P
s (x) = g (o, u™ ), v ), V() + )T

which possesses a unique solution. Recalling (3.10), an induction procedure on m yields (3.14).
Finally, the double limit lemma, when combined with (3.11), (3.13), and (3.14), entails

lim (up,vy) = lim lim (), v)) = lim (", v™)= ?,0%).
—00 m— 00

n n—>oom—0o0

On account of (3.9), (3.10), and (3.12), this completes the proof. O

Via a standard argument (cf., e.g., [14, Lemmas 3.8-3.9]), chiefly based on Lemma 3.4, we
can verify the following

Lemma 3.6. Suppose (H) to be satisfied. Then, for every w € D, the set S(w) admits minimum.
So, it makes sense to define
I'w):=minS(w), weD. (3.15)
Obviously, I' : D — K turns out a selection of S. Moreover,
Lemma 3.7. Let (H) be fulfilled. Then the map T is compact and continuous.

Proof. Compactness directly stems from Lemma 3.4, once we realize that I'(A) © S(A) for any
A C D. Pick {wy}, € D with w, — w in C'(Q)2. Along a sub-sequence if necessary, one has

Tim [T (w,) = @, v e g =0 (3.16)
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for some (u*,v*) € C'(Q)?, because I' is compact. We claim that (u*, v*) = I'(w). In fact,
letting n — oo in (Py,) provides

@w*, v*) e S(w). 3.17)

Thanks to Lemma 3.5, there exists {(u,, v,;)}, € D such that

(Up,vy) €S(w,) VneN, (3.18)

m [, 0a) = TW)ll 1 gy = 0. (3.19)
The minimality of I', together with (3.17), (3.16), (3.18), and (3.19), yield
F(w) < @*,v*) = lim T(w,) < lim (4, v,) = T'(w),
n—o0 n—oQ

whence I'(w,,) — I'(w), as desired. O
By [9, Theorem 3.1], any solution (u, v) € K to (Py,) satisfies the gradient estimates

1

IVullpeo) < nill fC,u,v, Vw)llf;f(m,
(3.20)

1
IVolle@) < mllgC.u v, Vil -

where 11, 72 > 0 denote suitable constants. Evidently, there is no loss of generality in assuming

n.n2 =1
Our main result requires a further condition on the reaction terms, which however complies
with various meaningful cases; see Theorems 4.2—4.3 below. Hereafter, we suppose that

p—1 qg—1
pfmin{<£> R <£) }, (3.21)
m n2

where p, C come from (H), while 7y, n2 are as in (3.20).

TheOIEm 3.8.If (H) and (3.21) hold, then problem (P) possesses a solution belonging to
C(Q)’NK.

Proof. Let I be given by (3.15). Condition (3.21) and (3.20) guarantee that I'(D) € D. Thus,
on account of Lemma 3.7, Schauder’s fixed point theorem can be applied, which entails (u, v) =
I'(u, v) for some (u, v) € D. Through (3.1) and Remark 3.1 we easily verify that (u, v) satisfies
the conclusion. O
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4. Infinitely many solutions
Lete, € C 1’“(§)+, r = p, q, be the unique solution to the problem

—Aye,=1  in Q,
e, =0 on 0%2,

let L, := |le;llL=(@), and let A, > L,. The following sequences of sub-super-solution pairs,
which depend on a positive constant C,,, will be employed:

(W,,v,):= (Cn(Ap_ep)a Cn(Aq_eq))a neN;

B “.1)
(Wn, Vp) == (Cu(Ap +ep), Ci(Ag +e4)), neN.
By the Boundary Point Lemma [32, Theorem 5.5.1] one has
ou, 0v, 0 0
max ﬂ, Un < 0 < max = , Ln on 92, 4.2)
dv ~ dv v~ dv
while the choice of A, (recall also that e, > 0) produces
(Cn(Ap —Lp), Cun(Ag — Lg)) < (u,, v,) < (U, Up). 4.3)

4.1. The sub-linear case
We make the hypotheses below.

(F1) There exist o1 < 0 < B satisfying o1 + 1 <p — 1, 1,61 €[0, p — 1), and a1, by, c1 €
L°°(2) such that

|f(x, 5,1, &1, 8)] < a1(x)s® P+ b1 )& 1 + 161 4 ¢ (x)

for all (x,s, 1, &, &) € Q x (0, +00)? x R?V,
(G1) There exist B2 < 0 < ap satisfying oo + 2 <q — 1, 2,62 €[0,g — 1), and as, by, c3 €
L°°(2) such that

lg(x, 5,1, &1, 8)| < arx(x)stP + by(x) (161 + |&21%2) + 2 (x)
for all (x,s,1, &1, &) € Q x (0, +00)% x R?V,

Incidentally, similar conditions already appear in [3].

(p=1)

Remark 4.1. One can take y1, 41 € [0, p — 1] provided ||b1]l (@) < %77; , with i given

by (3.20). An analogous comment applies to y», &5.

Theorem 4.2. Let { (F1)—(G1) be satisfied. Then problem (P) admits a sequence of solutions
{(un, vy} C CI(Q)2 such that (uy, v,) < (Up+1, Vp+1) foralln € N and lim u, = lim v, =
n—>oo n—0oo

+00 uniformly in Q.
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Proof. Define
Ky :=C' (@ N ([, #al X [v,, V4l
as well as
Dy = {we Ky : [Vl gy < Cals
where C,, > 0 comes from (4.1). If (4, v, w) € K,; X Dy, then through (F{) we obtain

|f('au7 v, Vw)'
< llai || oo @u® T 4 |15y || Loo () (CF! + C21) + |let | (@)

< llayll o @ CEPIUA Y — L) (Ag + Lo)P! (4.4)

C,\"!
+ b1l (Ch' + Co) + lletlloe@) < (H) ’
once C,, > C*, with C* > 0 large enough. Likewise, (G) yields

q—1
lgC,u, v, Vw)| < <ﬁ) . 4.5)
n2

Hence, assumption (3.21) of Theorem 3.8 holds for K := K,,, D := D,,, C := C,. Observe next
that

p—1 p—1
—Apu, =—CP N < Z < f(u v, Vw) < <cl ' =—Au
PZn — n — P*l — s Ay Uy — p71 — n - p“n
m m

thanks to (4.1), the inequality n; > 1, and (4.4). Similarly, from (4.5) it follows

_Aqyn S g(’ u,v, VlU) S _Aqvn

Now, integrating by parts and using (4.2) we easily achieve (3.3). So, also due to (4.3), hypoth-
esis (H) in Theorem 3.8 is fulfilled. Thus, for every n € N, problem (P) possesses a solution
(up,vy) € K,. If C; > C* and

Ap+L, Ajg+ Ly
Ap—Lp Ag—Lq

C,,+1>max{ }Cn, neN,

then u, <u, | as well as v, < v, ., which entails (4, vy) < (Un+1, Vn+1). The proof ends by

noting that C, — 400, whence lim u, = lim v, = +oo uniformly in Q. O
n—o0 n—o00
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4.2. The super-linear case
The conditions below will be posited.

(F2) There exist o1 < 0 < B satisfying o1 + 81 >p — 1, y1,81 € (p — 1,4+00), and ay, by €
L°°(2) such that

|f(x, 8,1, 61, 8)] < ar(x)s P + by () (&1 + &)%)

for all (x,s,1, &1, &) € Q x (0, +00)% x R?V,
(G2) There exist B2 < 0 < ap satisfyingar + B2 >q — 1, 2,60 € (¢ — 1, +00), and as, by €
L°° () such that

lg(x, 5,1, &1, 82)| < a2 (x)s*2tP2 + by (x) (16117 + |£21%)
for all (x,s,1,&1, &) € Q x (0, +00)% x R2V,
Remark 4.1 can be adapted to (F2)—(G).

Theorem 4.3. Unier assumptions (F2)—(Gjy), problem (P) has a sequence of solutions
{(uy, v)}n C CY(Q)? such that (Un+1, Unt1) < (Up,vy) for every n € N and lim u, =
n—>0oo

lim v, = 0 uniformly in Q.
n—oQ

Proof. The argument is patterned after that of Theorem 4.2, because (4.4), written for c¢; =0,
and (4.5) hold whenever C,, < Cy, with C sufficiently small. So, if C; < C, and

Ap—Lp Ag—Lyg
Ap+Lp Ng+Lyg

Cn+1<rnin{ }C,,, neN,

then the conclusion follows at once. O

Remark 4.4. Conditions (F;) and (G;), i = 1, 2, above have been formulated on the whole Q x
(0, +00)? x R?V just for the sake of simplicity. In fact, consider, e.g., Theorem 4.3. Since Cs is
small enough, it suffices to request (F») in (0, 8% x Brwn (8)2, because

8
<
max{A, + Ly, Ay + Ly, 1}

= max{u, vy, |[Vwil, [Vwz|} <8

Cy

for any (w1, wp) € Dy, n € N, and the same arguments work. So, we can actually treat reac-
tions f, g with arbitrary behavior, provided they exhibit a super-linear growth near the origin.
Evidently, a ‘dual’ comment holds for Theorem 4.2.

Let us finally make two examples of nonlinearities f, g fulfilling (F1)—(G1) and (F2)—(G2),
respectively, settled according to Remark 4.4.
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Example 4.5. Define, for every (x, 5,1, &1, &) € Q x [1, +00)2 x R?V,

fosnéne) =a@er (1l +lal ),

Sq

g0, 1.81.62) == (%) (72 - |§1|95—‘|sz|91—1),

where o1, 0y € L®(R2). A simple computation shows that (F;)—(G) are true provided a) = c¢] =
c2=0,by=e01,ay =02, by = %02, y =8 = pT_l’azzq,ﬁzz—z’ and y» =8, = %

Example 4.6. Set, for every (x, s, t, &1, &) € Q x (0, 1]2 X BRN(%)Z,

f(x,s,t,81,8) :=01(x) |:_ sin (l) + tp*(es — 1)+ &P +&al” _ 11| ’
s

N

g(x.5,1,61,82) 1= B ()11 (logr +4447),

where 01,0, € L°(Q). It is not difficult to see that (F)—(G;) hold with a; = ey, b; = 26,
ary=2e0),br=0,01 =p+1,p1=—1,y1=8 =p,ar=q,and fp = —1.
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