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Abstract

We give a correct formulation of Theorems 4.2-4.3 in [1].
© 2020 Elsevier Inc. All rights reserved.
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Notation is the same as that adopted in [1]. Due to a technical mistake, the proofs of [I,
Theorems 4.2-4.3] are incorrect. However, their conclusions still hold true provided a further
condition (see (S1)—(S2) below) on the sign of nonlinearities is assumed. For the reader’s conve-
nience, here, we give the amended version of the whole Section 4.

4. Infinitely many solutions
4.1. The sub-linear case

We make the hypotheses below.
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(F’l) There exist ¢y < 0 < By, y1,81 € [0, p — 1), and a1, b1, ¢ € L*°(2) such that

|f s, 1,6 E)| <ar(0)s® P + i) (& + &7 + c1(x)

forall (x,s,1,&1,&) € Q x (0, +00)% x RN,
(G/l) There exist 8y < 0 < a2, ¥2,82 € [0,9 — 1), and ap, by, ¢ € L°°(2) such that

lg(x, 5,1, &1, E2)| < aa(x)s®2tP + by (x) (&1 + 1621%2) + c2(x)
for all (x,s,1,&1,6) € Q x (0, +00)% x RN,

(S1) There exist {ftn}n, {inlp. tkntn. thntn. {Cu}n S (0, +00), with C,, — +00, satisfying h, <
kn < hpy1, hyp <ky < hpy, and

F O kn,t,81,8) <0< f(x,hy, 1,61, 8),

. . (S
g(x,s,kn,81,862) <0=<g(x,s,hy, &, &)
for all (x, 5,1, &1, &) € Q X [hn, k] X [An, kn] x Bgn(Cy)?, n € N. Further,
ar 781
. n kn 1-p
llaill oo (@) limsup ——— <y 7,
n—o0 C}‘;’ y
wy 2B (8"
Zhnz 1—q

. n
lazllLoe () limsup —— <1, °,
qg—1
n—>oo  (Cy

where 11, 2 > 1 stem from estimates (3.20).
Remark 4.1. One can take y1, 81 € [0, p — 1] provided

a1 7B

n n
-1

Cr

. 1—
llai || L) limsup +20bille <n; 7,
n—>o

which implies the first inequality in (S”). A similar comment applies to 2, 85.

Theorem 4.2. Let (F/l), (G’l), and (S1) be satisfied. Then problem (P) admits a sequence of
solutions {(uy,,vy)}n C CL(©)? such t_hat (uy, vn) < (Up+1, Unt1) for all n € N. Moreover,

lim u, = lim v, = +o00 uniformly in Q once hy, h, - +00.
n— oo n— oo

Proof. Define

Ky := C' (@) N (U, k] X [, Kn ),
as well as

Dy:={weKy: [Vwl~gp < Cnl.

2
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If (u, v, w) € [hy, kn] X [hn, kn] x Dy, then through (F)) and (S”) we obtain

|f('7u1vvvw)|
< llayl| ooy h kLT + 11b1 | oo @) (CY 4+ C21) + et | Lo (@)

C [7—1
”l

for any n € N large enough. Likewise, (G}) and (S”) yield

“4.1)

lg(,u, v, Vw)|
< Nlaall Lok B2 + ||ba || oo @) (CF 4+ C22) + lleall Lo ()

g—1
(%)
n2
Hence, from (3.20), with K := K, it follows I'(D,) € D,,, where I" is given by (3.15). Let us

point out that condition (3.21) was used in Theorem 3.8 only to achieve I'(D) € D. Accordingly,
here, it is unnecessary. Observe next that, thanks to (S'),

“4.2)

f('! kﬂ? v, Vw) S O S f('v hnv v, Vw)7
g(" u, lgny vw) E O E g(" u, }Alna Vw)7
which easily force (3.3). So, hypothesis (H) of Theorem 3.8 is fulfilled. Thus, for every n € N,

problem (P) possesses a solution (uy,, v,) GAKn. Since k;,, < h,4+1 and 12,1 < fan, we evidently

have (u,,, v;) < (Up+1, Un+1). Finally, if b, h, — +oothen lim u, = lim v, = 400 uniformly
n— o0 n—o0

inQ. O
4.2. The super-linear case
The conditions below will be posited.
(F ) There exist «; <0 < B1, 1,61 € (p — 1, +00), and ay, by € L°°(R2) such that

|f(x, 5,1, &1,8)] <ar(x)s* P + b () (& " + &%)

forall (x,s,1,&1,6) € Q x (0, +00)% x RV,
(G}) There exist B2 <0 < ay, y2,82 € (¢ — 1, +00), and ay, by € L>(R2) such that

lg(x, 5,1, &1, E2)| < ax(x)s®2tP2 + by (x) (&1 + |62/%2)

forall (x,s,1,&1,8) € 2 x (0, 400)* x R?V.

(S2) There ex1st {hu}n, {h },,, {kn}n, {k s {Cntn € (0, +00), with C,, — 0, satisfying k41 <
h, < kg, k"irl < hy < ky and such that (S')~(S") are true for all (x,s,1,&;,&) € Q x
[y kn) X [, kn] x Bry (Cp)?, n e N.
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Remark 4.1 can be adapted to (F,)—(G)).

Theorem 4.3. Under assumptions (F’z), (G/z), and (S3), problem (P) has a sequence of solutions
{(uy, v)}n < CL(Q)? such that (Un+1, Vnt1) < (up, vy) for every n € N. Moreover, lim u, =
n—od

lim v, = 0 uniformly in Q once ky, kn — 0.
n—>0oo

Proof. The argument is patterned after that of Theorem 4.2, because (4.1)—(4.2), written for
c1 =c¢2 =0, hold whenever n € N is sufficiently large. 0O

Remark 4.4. Conditions (F{) and (G{), i =1, 2, above have been formulated on the whole € x
(O, —l—oo)2 x RZN just to avoid cumbersome statements. In fact, consider, e.g., Theorem 4.3 and

~

suppose k;, k, — 0. Since C,, is arbitrarily small for n large, it suffices to request (F,) in € x
(0, 81> x Brw (8) with appropriate § > 0, and the same arguments work. So, we can actually treat
reactions f, g having any behavior far from the origin. A ‘dual’ comment holds for Theorem 4.2.

Example 4.5. Define, provided (x, 5,1, &1, £&) € 2 x (0, +00)? x RV,

1 1
f(x,s,t,&,&)=sins + Ecost, g(x,s,t,&1,86) = 3 sins + cost.

Inequalities (S”) are true because ¢; =0, i = 1, 2. Choosing h, = % +2nn, k, = %n + 27mn,
fln =2mn, l@n =m +27n, and C, = n, easily entails (S’). Hence, f and g comply with (S;).

An example of nonlinearities, with both singular and convective terms, that fulfill (S,) is the
following.

Example 4.6. Set, for every (x, s, t, &1, &) € Q x (0, —|—o<>)2 x RN,

1
s, 1,81, 62) = sin = (s21tPr — & |7 — |&2)*).,
_ 1 afr _ V2 _ 8
g(x,s,1,&,8) = cos - (s@21 131 1£21°)
where
min{y,81} >a;+p1>p—1, min{y,,8}>ar+pr>qg—1.

To check (S;) one can pick h, = (% +2nn)_1, k, = (—% +2nn)_1, hy = Q@ + 27n)~1,
12,, = (T + 27n)~ !, and C, = L

n

Let us finally point out a simple consequence of Theorem 4.2.

Corollary 4.7. Suppose h : R — R is continuous periodic and a € L°°(RQ) satisfies infgr h <
o < supp h. Then the problem
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9
—Apu=h() —a(x) in Q u=0in L 8—”:0 on 992
V

admits infinitely many solutions in C'(S).
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