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Abstract
The existence of positive weak solutions to a singular quasilinear elliptic system in the whole
space is established via suitable a priori estimates and Schauder’s fixed point theorem.
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1 Introduction

In this paper, we consider the following system of quasilinear elliptic equations:
⎧
⎨

⎩

−�p1u = a1(x) f (u, v) in R
N ,

−�p2v = a2(x)g(u, v) in R
N ,

u, v > 0 in R
N ,

(P)

where N ≥ 3, 1 < pi < N , while �pi denotes the pi -Laplace differential operator. Nonlin-
earities f , g : R+ × R

+ → R
+ are continuous and fulfill the condition

(H f ,g) There exist mi , Mi > 0, i = 1, 2, such that

m1s
α1 ≤ f (s, t) ≤ M1s

α1(1 + tβ1),

m2t
β2 ≤ g(s, t) ≤ M2(1 + sα2)tβ2
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for all s, t ∈ R
+, with −1 < α1, β2 < 0 < α2, β1,

α1 + α2 < p1 − 1, β1 + β2 < p2 − 1, (1.1)

as well as

β1 <
p∗
2

p∗
1
min{p1 − 1, p∗

1 − p1}, α2 <
p∗
1

p∗
2
min{p2 − 1, p∗

2 − p2}.

Here, p∗
i denotes the critical Sobolev exponent corresponding to pi , namely p∗

i := Npi
N−pi

.

Coefficients ai : RN → R satisfy the assumption

(Ha) ai (x) > 0 a.e. in R
N and ai ∈ L1(RN ) ∩ Lζi (RN ), where

1

ζ1
≤ 1 − p1

p∗
1

− β1

p∗
2

,
1

ζ2
≤ 1 − p2

p∗
2

− α2

p∗
1

.

Let D1,pi (RN ) be the closure of C∞
0 (RN ) with respect to the norm

‖w‖D1,pi (RN ) := ‖∇w‖L pi (RN ).

Recall [12, Theorem 8.3] that

D1,pi (RN ) = {w ∈ L p∗
i (RN ) : |∇w| ∈ L pi (RN )}.

Moreover, if w ∈ D1,pi (RN ), then w vanishes at infinity, i.e., the set {x ∈ R
N : w(x) > k}

has finite measure for all k > 0; see [12, p. 201].
A pair (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) is called a (weak) solution to (P) provided

u, v > 0 a.e. in R
N and

⎧
⎨

⎩

∫

RN |∇u|p1−2∇u∇ϕ dx = ∫

RN a1 f (u, v)ϕ dx,

∫

RN |∇v|p2−2∇v∇ψ dx = ∫

RN a2g(u, v)ψ dx

for every (ϕ, ψ) ∈ D1,p1(RN ) × D1,p2(RN ).
The most interesting aspect of the work probably lies in the fact that both f and g can

exhibit singularities throughRN , which,without loss of generality, are located at zero. Indeed,
−1 < α1, β2 < 0 by (H f ,g). It represents a serious difficulty to overcome and is rarely
handled in the literature.

As far as we know, singular systems in the whole space have been investigated only
for p := q := 2, essentially exploiting the linearity of involved differential operators. In
such a context, [3,4,17] treat the so-called Gierer–Meinhardt system, which arises from
the mathematical modeling of important biochemical processes. Nevertheless, even in the
semilinear case, (P) cannot be reduced to Gierer–Meinhardt’s case once (H f ,g) is assumed.
The situation looks quite different when a bounded domain takes the place of RN : many
singular systems fitting the framework of (P) have been studied, andmeaningful contributions
are already available [1,6–11,13–16].

Here, variational methods do not work, at least in a direct way, because the Euler function
associated with problem (P) is not well defined. A similar comment holds for sub-super-
solution techniques, which are usually employed in the case of bounded domains. Hence, we
were naturally led to apply fixed point results. An a priori estimate in L∞(RN ) × L∞(RN )

for solutions of (P) is first established (cf. Theorem 3.4) by aMoser’s type iteration procedure
and an adequate truncation, which, due to singular terms, require a specific treatment. We
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Singular quasilinear elliptic systems inRN 1583

next perturb (P) by introducing a parameter ε > 0. This produces the family of regularized
systems

⎧
⎨

⎩

−�p1u = a1(x) f (u + ε, v) in R
N ,

−�p2v = a2(x)g(u, v + ε) in R
N ,

u, v > 0 in R
N ,

(Pε)

whose study yields useful information on the original problem. In fact, the previous L∞-
boundedness still holds for solutions to (Pε), regardless of ε. Thus, via Schauder’s fixed point
theorem, we get a solution (uε, vε) lying inside a rectangle given by positive lower bounds,
where ε does not appear, and positive upper bounds, that may instead depend on ε. Finally,
letting ε → 0+ and using the (S)+-property of the negative p-Laplacian in D1,p(RN ) (see
Lemma 3.3) yield a weak solution to (P); cf. Theorem 5.1.

The rest of this paper is organized as follows: Section 2 deals with preliminary results.
An a priori estimate of solutions to (P) is proven in Sect. 3, while the next one treats system
(Pε). Section 5 contains our existence result for problem (P).

2 Preliminaries

Let 	 ⊆ R
N be a measurable set, let t ∈ R, and let w, z ∈ L p(RN ). We write m(	) for

the Lebesgue measure of 	, while t± := max{±t, 0}, 	(w ≤ t) := {x ∈ 	 : w(x) ≤ t},
‖w‖p := ‖w‖L p(RN ). The meaning of 	(w > t), etc. is analogous. By definition, w ≤ z iff
w(x) ≤ z(x) a.e. in R

N .
Given 1 ≤ q < p, neither L p(RN ) ↪→ Lq(RN ) nor the reverse embedding holds true.

However, the situation looks better for functions belonging to L1(RN ). Indeed (see also [2,
p. 93]),

Proposition 2.1 Suppose p > 1 and w ∈ L1(RN ) ∩ L p(RN ). Then w ∈ Lq(RN ) whatever
q ∈ ]1, p[.

Proof Thanks to Hölder’s inequality, with exponents p/q and p/(p − q), and Chebyshev’s
inequality, one has

‖w‖qq =
∫

RN (|w|≤1)
|w|qdx +

∫

RN (|w|>1)
|w|qdx

≤
∫

RN (|w|≤1)
|w| dx +

(∫

RN (|w|>1)
|w|pdx

)q/p

[m(RN (|w| > 1))]1−q/p

≤
∫

RN
|w| dx +

(∫

RN
|w|pdx

)q/p (∫

RN
|w|pdx

)1−q/p

= ‖w‖1 + ‖w‖p
p.

This completes the proof. �


The summability properties of ai collected below will be exploited throughout the paper.

Remark 2.1 Let assumption (Ha) be fulfilled. Then, for any i = 1, 2,

(j1) ai ∈ L(p∗
i )′(RN ).
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1584 S. A. Marano et al.

(j2) ai ∈ Lγi (RN ), where γi := 1/(1 − ti ), with

t1 := α1 + 1

p∗
1

+ β1

p∗
2
, t2 := α2

p∗
1

+ β2 + 1

p∗
2

.

(j3) ai ∈ Lδi (RN ), for δi := 1/(1 − si ) and

s1 := α1 + 1

p∗
1

, s2 := β2 + 1

p∗
2

.

(j4) ai ∈ Lξi (RN ), where ξi ∈ ]p∗
i /(p

∗
i − pi ), ζi [.

To verify (j1)–(j4), we simply note that ζi > max{(p∗
i )

′, γi , δi , ξi } and apply Proposition
2.1.

Let us next show that the operator −�p is of type (S)+ in D1,p(RN ).

Proposition 2.2 If 1 < p < N and {un} ⊆ D1,p(RN ) satisfies

un⇀u in D1,p(RN ), (2.1)

lim sup
n→∞

〈−�pun, un − u
〉 ≤ 0, (2.2)

then un → u in D1,p(RN ).

Proof By monotonicity, one has
〈−�pun − (−�pu), un − u

〉 ≥ 0 ∀ n ∈ N,

which evidently entails

lim inf
n→∞

〈−�pun − (−�pu), un − u
〉 ≥ 0.

Via (2.1)–(2.2), we then get

lim sup
n→∞

〈−�pun − (−�pu), un − u
〉 ≤ 0.

Therefore,

lim
n→∞

∫

RN

(|∇un |p−2∇un − |∇u|p−2∇u
)
(∇un − ∇u) dx = 0. (2.3)

Since [18, Lemma A.0.5] yields
∫

RN

(|∇un |p−2∇un − |∇u|p−2∇u
)
(∇un − ∇u) dx

≥

⎧
⎪⎨

⎪⎩

Cp
∫

RN
|∇(un−u)|2

(|∇un |+|∇u|)2−p dx if 1 < p < 2,

Cp
∫

RN |∇(un − u)|p dx otherwise

∀ n ∈ N,

the desired conclusion, namely

lim
n→∞

∫

RN
|∇(un − u)|p dx = 0,
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Singular quasilinear elliptic systems inRN 1585

directly follows from (2.3) once p ≥ 2. If 1 < p < 2, then Hölder’s inequality and (2.1)
lead to
∫

RN
|∇(un − u)|p dx =

∫

RN

|∇(un − u)|p
(|∇un | + |∇u|) p(2−p)

2

(|∇un | + |∇u|) p(2−p)
2 dx

≤
(∫

RN

|∇(un − u)|2
(|∇un | + |∇u|)2−p

dx

) p
2

(∫

RN
(|∇un | + |∇u|)pdx

) 2−p
2

≤ C

(∫

RN

|∇(un − u)|2
(|∇un | + |∇u|)2−p

dx

) p
2

, n ∈ N,

with appropriate C > 0. Now, the argument goes on as before. �


3 Boundedness of solutions

The main result of this section, Theorem 3.4 below, provides an L∞(RN )—a priori estimate
for weak solutions to (P). Its proof will be performed into three steps.

Lemma 3.1 (L p∗
i (RN )—uniform boundedness) There exists ρ > 0 such that

max
{
‖u‖p∗

1
, ‖v‖p∗

2

}
≤ ρ (3.1)

for every (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) solving problem (P).

Proof Multiply both equations in (P) by u and v, respectively, integrate over RN , and use
(H f ,g) to arrive at

‖∇u‖p1
p1 =

∫

RN
a1 f (u, v)u dx ≤ M1

∫

RN
a1u

α1+1(1 + vβ1) dx,

‖∇v‖p2
p2 =

∫

RN
a2g(u, v)v dx ≤ M2

∫

RN
a2(1 + uα2)vβ2+1 dx .

Through the embedding D1,pi (RN ) ↪→ L p∗
i (RN ), besides Hölder’s inequality, we obtain

‖∇u‖p1
p1 ≤ M1

(
‖a1‖δ1‖u‖α1+1

p∗
1

+ ‖a1‖γ1‖u‖α1+1
p∗
1

‖v‖β1
p∗
2

)

≤ C1‖∇u‖α1+1
p1

(
‖a1‖δ1 + ‖a1‖γ1‖∇v‖β1

p2

)
;

cf. also Remark 2.1. Likewise,

‖∇v‖p2
p2 ≤ C2‖∇v‖β2+1

p2

(
‖a2‖δ2 + ‖a2‖γ2‖∇u‖α2

p1

)
.

Thus, a fortiori,

‖∇u‖p1−1−α1
p1 ≤ C1

(
‖a1‖δ1 + ‖a1‖γ1‖∇v‖β1

p2

)
,

‖∇v‖p2−1−β2
p2 ≤ C2

(
‖a2‖δ2 + ‖a2‖γ2‖∇u‖α2

p1

)
, (3.2)

which imply

‖∇u‖p1−1−α1
p1 + ‖∇v‖p2−1−β2

p2

≤ C1

(
‖a1‖δ1 + ‖a1‖γ1‖∇v‖β1

p2

)
+ C2

(
‖a2‖δ2 + ‖a2‖γ2‖∇u‖α2

p1

)
.
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Rewriting this inequality as

‖∇u‖α2
p1

(
‖∇u‖p1−1−α1−α2

p1 − C2‖a2‖γ2

)
+ ‖∇v‖β1

p2

(
‖∇v‖p2−1−β1−β2

p2 − C1‖a1‖γ1

)

≤ C1‖a1‖δ1 + C2‖a2‖δ2 ,

(3.3)
four situations may occur. If

‖∇u‖p1−1−α1−α2
p1 ≤ C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2

p2 ≤ C1‖a1‖γ1

then (3.1) follows from (j2) of Remark 2.1, conditions (1.1), and the embedding
D1,pi (RN ) ↪→ L p∗

i (RN ). Assume next that

‖∇u‖p1−1−α1−α2
p1 > C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2

p2 > C1‖a1‖γ1 . (3.4)

Thanks to (3.3), one has

‖∇u‖α2
p1(‖∇u‖p1−1−α1−α2

p1 − C2‖a2‖γ2) ≤ C1‖a1‖δ1 + C2‖a2‖δ2 ,

whence, on account of (3.4),

‖∇u‖p1−1−α1−α2
p1 ≤ C1‖a1‖δ1 + C2‖a2‖δ2

‖∇u‖α2
p1

+ C2‖a2‖γ2

≤ C1‖a1‖δ1 + C2‖a2‖δ2

‖a2‖
α2

p1−1−α1−α2
γ2

+ C2‖a2‖γ2 .

A similar inequality holds true for v. So, (3.1) is achieved reasoning as before. Finally, if

‖∇u‖p1−1−α1−α2
p1 ≤ C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2

p2 > C1‖a1‖γ1 (3.5)

then (3.2) and (3.5) entail

‖∇v‖p2−1−β2
p2 ≤ C2

[
‖a2‖δ2 + ‖a2‖γ2

(
C2‖a2‖γ2

) α2
p1−1−α1−α2

]
.

By (1.1) again, we thus get

max{‖∇u‖p1 , ‖∇v‖p2} ≤ C3,

where C3 > 0. This yields (3.1), because D1,pi (RN ) ↪→ L p∗
i (RN ). The last case, i.e.,

‖∇u‖p1−1−α1−α2
p1 > C2‖a2‖γ2 , ‖∇v‖p2−1−β1−β2

p2 ≤ C1‖a1‖γ1

is analogous. �

To shorten notation, write

D1,pi (RN )+ := {w ∈ D1,pi (RN ) : w ≥ 0 a.e. in R
N }.

Lemma 3.2 (Truncation) Let (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) be a weak solution of (P).
Then

∫

RN (u>1)
|∇u|p1−2∇u∇ϕ dx ≤ M1

∫

RN (u>1)
a1(1 + vβ1)ϕ dx, (3.6)

∫

RN (v>1)
|∇v|p2−2∇v∇ψ dx ≤ M2

∫

RN (v>1)
a2(1 + uα2)ψ dx (3.7)

for all (ϕ, ψ) ∈ D1,p1(RN )+ × D1,p2(RN )+.
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Singular quasilinear elliptic systems inRN 1587

Proof Pick a C1 cutoff function η : R → [0, 1] such that

η(t) =
{
0 if t ≤ 0,
1 if t ≥ 1,

η′(t) ≥ 0 ∀ t ∈ [0, 1],

and, given δ > 0, define ηδ(t) := η
( t−1

δ

)
. If w ∈ D1,pi (RN ), then

ηδ ◦ w ∈ D1,pi (RN ), ∇(ηδ ◦ w) = (η′
δ ◦ w)∇w, (3.8)

as a standard verification shows.
Now, fix (ϕ, ψ) ∈ D1,p1(RN )+ × D1,p2(RN )+. Multiply the first equation in (P) by

(ηδ ◦ u)ϕ, integrate over RN and use (H f ,g) to achieve

∫

RN
|∇u|p1−2∇u∇((ηδ ◦ u)ϕ) dx ≤ M1

∫

RN
a1u

α1(1 + vβ1)(ηδ ◦ u)ϕ dx .

By (3.8), we have
∫

RN
|∇u|p1−2∇u∇((ηδ ◦ u)ϕ) dx

=
∫

RN
|∇u|p1(η′

δ ◦ u)ϕ dx +
∫

RN
(ηδ ◦ u)|∇u|p1−2∇u∇ϕ dx,

while η′
δ ◦ u ≥ 0 in R

N . Therefore,

∫

RN
(ηδ ◦ u)|∇u|p1−2∇u∇ϕ dx ≤ M1

∫

RN
a1u

α1(1 + vβ1)(ηδ ◦ u)ϕ dx .

Letting δ → 0+ produces (3.6). The proof of (3.7) is similar. �


Lemma 3.3 (Moser’s iteration) There exists R > 0 such that

max{‖u‖L∞(	1), ‖v‖L∞(	2)} ≤ R, (3.9)

where

	1 := R
N (u > 1) and 	2 := R

N (v > 1),

for every (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) solving problem (P).

Proof Given w ∈ L p(	1), we shall write ‖w‖p in place of ‖w‖L p(	1) when no confusion
can arise. Observe that m(	1) < +∞ and define, provided M > 1,

uM (x) := min{u(x), M}, x ∈ R
N .

Choosing ϕ := uκ p1+1
M , with κ ≥ 0, in (3.6) gives

(κ p1 + 1)
∫

	1(u≤M)

uκ p1
M |∇u|p1−2∇u∇uM dx

≤ M1

∫

	1

a1(1 + vβ1)uκ p1+1
M dx . (3.10)
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1588 S. A. Marano et al.

Through the Sobolev embedding theorem, one has

(κ p1 + 1)
∫

	1(u≤M)

uκ p1
M |∇u|p1−2∇u∇uM dx

= (κ p1 + 1)
∫

	1(u≤M)

(|∇u|uκ)p1dx = κ p1 + 1

(κ + 1)p1

∫

	1(u≤M)

|∇uκ+1|p1dx

= κ p1 + 1

(κ + 1)p1

∫

	1

|∇uκ+1
M |p1dx ≥ C1

κ p1 + 1

(κ + 1)p1
‖uκ+1

M ‖p1
p∗
1

for appropriate C1 > 0. By Remark 2.1, Hölder’s inequality entails
∫

	1

a1(1 + vβ1)uκ p1+1
M dx ≤

∫

	1

a1(1 + vβ1)uκ p1+1dx

≤
(
‖a1‖ξ1 + ‖a1‖ζ1‖v‖β1

p∗
2

)
‖u‖κ p1+1

(κ p1+1)ξ ′
1
.

Hence, (3.10) becomes

κ p1 + 1

(κ + 1)p1
‖uκ+1

M ‖p1
p∗
1

≤ C2

(
‖a1‖ξ1 + ‖a1‖ζ1‖v‖β1

p∗
2

)
‖u‖κ p1+1

(κ p1+1)ξ ′
1
.

Since u(x) = lim
M→∞uM (x) a.e. in R

N , using the Fatou lemma we get

κ p1 + 1

(κ + 1)p1
‖u‖(κ+1)p1

(κ+1)p∗
1

≤ C2

(
‖a1‖ξ1 + ‖a1‖ζ1‖v‖β1

p∗
2

)
‖u‖κ p1+1

(κ p1+1)ξ ′
1
,

namely

‖u‖(κ+1)p∗
1

≤ Cη(κ)
3 σ(κ)

(
1 + ‖v‖β1

p∗
2

)η(κ) ‖u‖
κ p1+1

(κ+1)p1
(κ p1+1)ξ ′

1
, (3.11)

where C3 > 0, while

η(κ) := 1

(κ + 1)p1
, σ (κ) :=

[
κ + 1

(κ p1 + 1)1/p1

] 1
κ+1

.

Let us next verify that

(κ + 1)p∗
1 > (κ p1 + 1)ξ ′

1 ∀ κ ∈ R
+
0 ,

which clearly means
1

ξ1
< 1 − κ p1 + 1

(κ + 1)p∗
1
, κ ∈ R

+
0 . (3.12)

Indeed, the function κ �→ κ p1+1
(κ+1)p∗

1
is increasing onR+

0 and tends to p1
p∗
1
as k → ∞. So, (3.12)

holds true, because 1
ξ1

< 1 − p1
p∗
1
; see Remark 2.1. Now, Moser’s iteration can start. If there

exists a sequence {κn} ⊆ R
+
0 fulfilling

lim
n→∞ κn = +∞, ‖u‖(κn+1)p∗

1
≤ 1 ∀ n ∈ N

then ‖u‖L∞(	1) ≤ 1. Otherwise, with appropriate κ0 > 0, one has

‖u‖(κ+1)p∗
1

> 1 for any κ > κ0, besides ‖u‖(κ0+1)p∗
1

≤ 1. (3.13)
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Inequality (3.12) evidently forces κ0 p1+1
(κ0+1)p∗

1
< 1

ξ ′
1
. Pick κ1 > κ0 such that (κ1 p1 + 1)ξ ′

1 =
(κ0 + 1)p∗

1 , set κ := κ1 in (3.11), and use (3.13) to arrive at

‖u‖(κ1+1)p∗
1

≤ Cη(κ1)
3 σ(κ1)

(
1 + ‖v‖β1

p∗
2

)η(κ1) ‖u‖
κ1 p1+1

(κ1+1)p1
(κ0+1)p∗

1

≤ Cη(κ1)
3 σ(κ1)

(
1 + ‖v‖β1

p∗
2

)η(κ1)

. (3.14)

Choose next κ2 > κ0 satisfying (κ2 p1+1)ξ ′
1 = (κ1+1)p∗

1 . From (3.11), written for κ := κ2,
as well as (3.13)–(3.14), it follows

‖u‖(κ2+1)p∗
1

≤ Cη(κ2)
3 σ(κ2)

(
1 + ‖v‖β1

p∗
2

)
)η(κ2)‖u‖

κ2 p1+1
(κ2+1)p1
(κ1+1)p∗

1

≤ Cη(κ2)
3 σ(κ2)

(
1 + ‖v‖β1

p∗
2

)η(κ2) ‖u‖(κ1+1)p∗
1

≤ Cη(κ2)+η(κ1)
3 σ(κ2)σ (κ1)

(
1 + ‖v‖β1

p∗
2

)η(κ2)+η(κ1)

.

By induction, we construct a sequence {κn} ⊆ (κ0,+∞) enjoying the properties below:

(κn p1 + 1)ξ ′
1 = (κn−1 + 1)p∗

1 , n ∈ N; (3.15)

‖u‖(kn+1)p∗
1

≤ C
∑n

i=1 η(κi )

3

n∏

i=1

σ(κi )
(
1 + ‖v‖β1

p∗
2

)∑n
i=1 η(κi )

(3.16)

for all n ∈ N. A simple computation based on (3.15) yields

κn + 1 = (κ0 + 1)

(
p∗
1

p1ξ ′
1

)n

+ 1

p′
1

n−1∑

i=0

(
p∗
1

p1ξ ′
1

)i

,

where
p∗
1

p1ξ ′
1

> 1 due to (j4) of Remark 2.1. Hence,

κn + 1 � C∗
(

p∗
1

p1ξ ′
1

)n

as n → ∞, (3.17)

with appropriate C∗ > 0. Further, if C4 > 0 satisfies

1 <

[
t + 1

(tp1 + 1)1/p1

] 1√
t+1 ≤ C4 , t ∈ R

+
0 ,

(cf. [5, p. 116]), then

n∏

i=1

σ(κi ) =
n∏

i=1

[
κi + 1

(κi p1 + 1)1/p1

] 1
κi+1

=
n∏

i=1

{[
κi + 1

(κi p1 + 1)1/p1

] 1√
κi+1

} 1√
κi+1

≤ C

∑n
i=1

1√
κi+1

4 .

Consequently, (3.16) becomes

‖u‖(kn+1)p∗
1

≤ C
∑n

i=1 η(κi )

3 C

∑n
i=1

1√
κi+1

4

(
1 + ‖v‖β1

p∗
2

)∑n
i=1 η(κi )

.
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Since, by (3.17), both κn+1 → +∞ and 1
κn+1 � 1

C∗
(
p1ξ ′

1
p∗
1

)n
, while (3.1) entails ‖v‖p∗

2
≤ ρ,

there exists a constant C5 > 0 such that

‖u‖(κn+1)p∗
1

≤ C5 ∀ n ∈ N,

whence ‖u‖L∞(	1) ≤ C5. Thus, in either case, ‖u‖L∞(	1) ≤ R, with R := max{1,C5}. A
similar argument applies to v. �


Using (3.9), besides the definition of sets 	i , we immediately infer the following

Theorem 3.4 Under assumptions (H f ,g) and (Ha), one has

max{‖u‖∞, ‖v‖∞} ≤ R (3.18)

for every weak solution (u, v) ∈ D1,p1(RN ) × D1,p2(RN ) to problem (P). Here, R is given
by Lemma 3.3.

4 The regularized system

Assertion (j1) of Remark 2.1 ensures that ai ∈ L(p∗
i )′(RN ). Therefore, thanks to Minty–

Browder’s theorem [2, Theorem V.16], the equation

− �pi wi = ai (x) in R
N (4.1)

possesses a unique solution wi ∈ D1,pi (RN ), i = 1, 2. Moreover,

• wi > 0, and

• wi ∈ L∞(RN ).

Indeed, testing (4.1) with ϕ := w−
i yields wi ≥ 0, because ai > 0 by (Ha). Through the

strong maximum principle, we obtain

ess infBr (x)wi > 0 for any r > 0, x ∈ R
N .

Hence, wi > 0. Moser’s iteration technique then produces wi ∈ L∞(RN ).
Next, fix ε ∈ ]0, 1[ and define

(u, v) =
(

[m1(R + 1)α1 ] 1
p1−1 w1, [m2(R + 1)β2 ] 1

p2−1 w2

)

,

(uε, vε) =
(

[M1ε
α1(1 + Rβ1)] 1

p1−1 w1, [M2ε
β2(1 + Rα2)] 1

p2−1 w2

)

, (4.2)

where R > 0 comes from Lemma 3.3, as well as

Kε :=
{
(z1, z2) ∈ L p∗

1 (RN ) × L p∗
2 (RN ) : u ≤ z1 ≤ uε , v ≤ z2 ≤ vε

}
.

Obviously, Kε is bounded, convex, closed in L p∗
1 (RN ) × L p∗

2 (RN ). Given (z1, z2) ∈ Kε,
write

z̃i := min{zi , R}, i = 1, 2. (4.3)

Since, on account of (4.3), hypothesis (H f ,g) entails

a1m1(R + 1)α1 ≤ a1 f (z̃1 + ε, z̃2) ≤ a1M1ε
α1(1 + Rβ1),

a2m2(R + 1)β2 ≤ a2g(z̃1, z̃2 + ε) ≤ a2M2(1 + Rα2)εβ2 , (4.4)
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while, recalling Remark 2.1, ai ∈ L(p∗
i )′(RN ), the functions

x �→ a1(x) f (z̃1(x) + ε, z̃2(x)), x �→ a2(x)g(z̃1(x), z̃2(x) + ε)

belong to D−1,p′
1(RN ) and D−1,p′

2(RN ), respectively. Consequently, by Minty–Browder’s
theorem again, there exists a unique weak solution (uε, vε) of the problem

⎧
⎨

⎩

−�p1u = a1(x) f (z̃1(x) + ε, z̃2(x)) in R
N ,

−�p2v = a2(x)g(z̃1(x), z̃2(x) + ε) in R
N ,

uε, vε > 0 in R
N .

(4.5)

Let T : Kε → L p∗
1 (RN ) × L p∗

2 (RN ) be defined by T (z1, z2) = (uε, vε) for every
(z1, z2) ∈ Kε.

Lemma 4.1 One has u ≤ uε ≤ uε and v ≤ vε ≤ vε . So, in particular, T (Kε) ⊆ Kε.

Proof Via (4.2), (4.1), (4.5), and (4.4), we get

〈−�p1u − (−�p1uε), (u − uε)
+〉

= 〈−�p1 [m1(R + 1)α1 ] 1
p1−1 w1 − (−�p1uε), (u − uε)

+〉
=

∫

RN
a1

(
(m1(R + 1)α1 − f (z̃1 + ε, z̃2)

)
(u − uε)

+dx ≤ 0,

while Lemma A.0.5 of [18] furnishes

〈−�p1u − (−�p1uε), (u − uε)
+〉

=
∫

RN

(|∇u|p1−2∇u − |∇uε|p1−2∇uε

) ∇(u − uε)
+dx ≥ 0.

Now, arguing as in the proof of Proposition 2.2, one has (u − uε)
+ = 0, i.e., u ≤ uε. The

remaining inequalities can be verified similarly. �


Lemma 4.2 The operator T is continuous and compact.

Proof Pick a sequence {(z1,n, z2,n)} ⊆ Kε such that

(z1,n, z2,n) → (z1, z2) in L p∗
1 (RN ) × L p∗

2 (RN ).

If (un, vn) := T (z1,n, z2,n) and (u, v) := T (z1, z2), then

∫

RN
|∇un |p1−2∇un∇ϕ dx =

∫

RN
a1 f (z̃1,n + ε, z̃2,n)ϕ dx, (4.6)

∫

RN
|∇vn |p2−2∇vn∇ψ dx =

∫

RN
a2g(z̃1,n, z̃2,n + ε)ψ dx, (4.7)

∫

RN
|∇u|p1−2∇u∇ϕ dx =

∫

RN
a1 f (z̃1 + ε, z̃2)ϕ dx,

∫

RN
|∇v|p2−2∇v∇ψ dx =

∫

RN
a2g(z̃1, z̃2 + ε)ψ dx
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for every (ϕ, ψ) ∈ D1,p1(RN ) × D1,p2(RN ). Set ϕ := un in (4.6). From (4.4), it follows
after using Hölder’s inequality,

‖∇un‖p1
p1 =

∫

RN
a1 f (z̃1,n + ε, z̃2,n)un dx

≤ M1

∫

RN
a1ε

α1(1 + Rβ1)un dx ≤ Cε

∫

RN
a1un dx

≤ Cε‖a1‖(p∗
1 )

′ ‖un‖p∗
1

≤ Cε‖a1‖(p∗
1 )

′ ‖∇un‖p1 ∀ n ∈ N,

where Cε := M1ε
α1(1 + Rβ1). This actually means that {un} is bounded in D1,p1(RN ),

because p1 > 1. By (4.7), an analogous conclusion holds for {vn}. Along subsequences if
necessary, we may thus assume

(un, vn)⇀(u, v) in D1,p1(RN ) × D1,p2(RN ). (4.8)

So, {(un, vn)} converges strongly in Lq1(Br1)×Lq2(Br2) for any ri > 0 and any 1 ≤ qi ≤ p∗
i ,

whence, up to subsequences again,

(un, vn) → (u, v) a.e. in R
N . (4.9)

Now, combining Lemma 4.1 with Lebesgue’s dominated convergence theorem, we obtain

(un, vn) → (u, v) in L p∗
1 (RN ) × L p∗

2 (RN ), (4.10)

as desired. Let us finally verify that T (Kε) is relatively compact. If (un, vn) := T (z1,n, z2,n),
n ∈ N, then (4.6)–(4.7) can be written. Hence, the previous argument yields a pair (u, v) ∈
L p∗

1 (RN ) × L p∗
2 (RN ) fulfilling (4.10), possibly along a subsequence. This completes the

proof. �

Thanks to Lemmas 4.1–4.2, Schauder’s fixed point theorem applies, and there exists

(uε, vε) ∈ Kε such that (uε, vε) = T (uε, vε). Through Theorem 3.4, we next arrive at

Theorem 4.3 Under hypotheses (H f ,g) and (Ha), for every ε > 0 small, problem (Pε) admits
a solution (uε, vε) ∈ D1,p1(RN ) × D1,p2(RN ) complying with (3.18).

5 Existence of solutions

We are now ready to establish the main result of this paper.

Theorem 5.1 Let (H f ,g) and (Ha) be satisfied. Then, (P) has a weak solution (u, v) ∈
D1,p1(RN ) × D1,p2(RN ), which is essentially bounded.

Proof Pick ε := 1
n , with n ∈ N big enough. Theorem 4.3 gives a pair (un, vn), where

un := u 1
n
and vn := v 1

n
, such that

∫

RN
|∇un |p1−2∇un∇ϕ dx =

∫

RN
a1 f

(

un + 1

n
, vn

)

ϕ dx,

∫

RN
|∇vn |p2−2∇vn∇ψ dx =

∫

RN
a2g

(

un, vn + 1

n

)

ψ dx (5.1)

for every (ϕ, ψ) ∈ D1,p1(RN ) × D1,p2(RN ), as well as (cf. Lemma 4.1)

0 < u ≤ un ≤ R, 0 < v ≤ vn ≤ R. (5.2)
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Thanks to (H f ,g), (5.2), and (Ha), choosing ϕ := un , ψ := vn in (5.1) easily entails

‖∇un‖p1
p1 ≤ M1

∫

RN
a1u

α1+1
n (1 + vβ1

n )dx ≤ M1R
α1+1(1 + Rβ1)‖a1‖1 ,

‖∇vn‖p2
p2 ≤ M2

∫

RN
a2(1 + uα2

n )vβ2+1
n dx ≤ M2(1 + Rα2)Rβ2+1‖a2‖1,

whence both {un} ⊆ D1,p1(RN ) and {vn} ⊆ D1,p2(RN ) are bounded. Along subsequences
if necessary, we thus have (4.8)–(4.9). Let us next show that

(un, vn) → (u, v) strongly in D1,p1(RN ) × D1,p2(RN ). (5.3)

Testing the first equation in (5.1) with ϕ := un − u yields
∫

RN
|∇un |p1−2∇un∇(un − u)dx =

∫

RN
a1 f

(

un + 1

n
, vn

)

(un − u)dx . (5.4)

The right-hand side of (5.4) goes to zero as n → ∞. Indeed, by (H f ,g), (5.2), and (Ha)

again, ∣
∣
∣
∣a1 f

(

un + 1

n
, vn

)

(un − u)

∣
∣
∣
∣ ≤ 2M1R

α1+1(1 + Rβ1)a1 ∀ n ∈ N,

so that, recalling (4.9), Lebesgue’s dominated convergence theorem applies. Through (5.4),
we obtain lim

n→∞〈−�p1un, un − u〉 = 0. Likewise, 〈−�p2vn, vn − v〉 → 0 as n → ∞, and

(5.3) directly follows from Proposition 2.2. On account of (5.1), besides (5.3), the final step
is to verify that

lim
n→∞

∫

RN
a1 f

(

un + 1

n
, vn

)

ϕ dx =
∫

RN
a1 f (u, v)ϕ dx, (5.5)

lim
n→∞

∫

RN
a2g

(

un, vn + 1

n

)

ψ dx =
∫

RN
a2g(u, v)ψ dx (5.6)

for all (ϕ, ψ) ∈ D1,p1(RN ) × D1,p2(RN ). If ϕ ∈ D1,p1(RN ), then (j1) in Remark 2.1 gives
a1ϕ ∈ L1(RN ). Since, as before,

∣
∣
∣
∣a1 f

(

un + 1

n
, vn

)

ϕ

∣
∣
∣
∣ ≤ M1R

α1+1(1 + Rβ1)a1|ϕ|, n ∈ N,

assertion (5.5) stems from Lebesgue’s dominated convergence theorem. The proof of (5.6)
is similar at all. �
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