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Abstract. In this paper, we study the regularity criterion of weak solutions to the three-dimensional (3D) MHD equations.
It is proved that the solution (u, b) becomes regular provided that one velocity and one current density component of the
solution satisfy

u3 ∈ L
30α

7α−45
(
0, T ; Lα,∞ (

R
3
))

with
45

7
≤ α ≤ ∞, (0.1)

and

j3 ∈ L
2β

2β−3
(
0, T ; Lβ,∞ (

R
3
))

with
3

2
≤ β ≤ ∞, (0.2)

which generalize some known results.
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1. Introduction

This paper deals with the well-known problem of the regularity of the solutions for the 3D magneto-
hydrodynamical (MHD) system

⎧
⎪⎪⎨

⎪⎪⎩

∂tu + u · ∇u − (b · ∇) b − Δu + ∇π = 0,
∂tb + u · ∇b − b · ∇u − Δb = 0,
∇ · u = ∇ · b = 0,
u(x, 0) = u0(x), b(x, 0) = b0(x),

(1.1)

where u = (u1, u2, u3) is the velocity field, b = (b1, b2, b3) is the magnetic field and π is the scalar pressure,
while u0 and b0 are the corresponding initial data satisfying ∇·u0 = ∇·b0 = 0 in the sense of distribution.

Since Duvaut-Lions [9] and Sermange-Temam [25] constructed the so-called well-known weak solution
(u, b)(x, t) of the incompressible MHD equation for arbitrary (u0, b0) ∈ L2(R3) with ∇·u0(x) = ∇·b0(x) =
0 in last century, the problem on the uniqueness and regularity of the weak solutions is one of the most
challenging problems of the mathematical community. Hence, many researchers have developed different
regularity criteria for the 3D MHD equations under assumption of certain growth conditions on the
velocity or on the magnetic field (see, e.g., [3–5,7,8,10,14–16,27–30,37,38] and the references therein).

Recent years, the problem of so-called regularity criteria via one components was investigated for
the MHD equations by some researchers (see [1,11–13,17–21,23,32,33,36] and the references therein).
In particular, in [31], Yamazaki established the following regularity criterion by involving one velocity
and one current density component, which shows that a weak solution (u, b) is smooth on a time interval
(0, T ] if

u3 ∈ Lp(0, T ;Lq(R3)) with
2
p

+
3
q

≤ 1
3

+
1
2q

,
15
2

< q ≤ ∞, (1.2)

0123456789().: V,-vol  

http://crossmark.crossref.org/dialog/?doi=10.1007/s00033-020-01318-4&domain=pdf
http://orcid.org/0000-0001-6611-6370


   95 Page 2 of 11 R. P. Agarwal, S. Gala and M. A. Ragusa ZAMP

and
j3 ∈ Lp′

(0, T ;Lq′
(R3)) with

2
p′ +

3
q′ ≤ 2,

3
2

< q′ ≤ ∞,

where j3 is the third component of the current density j = ∇×b = (j1, j2, j3). Later, Zhang [34] improved
the regularity criterion (1.2) to the following conditions

u3 ∈ Lp(0, T ;Lq(R3)) with
2
p

+
3
q

=
4
9

− 1
3q

,
15
2

≤ q ≤ ∞, (1.3)

and
j3 ∈ Lp′

(0, T ;Lq′
(R3)) with

2
p′ +

3
q′ ≤ 2,

3
2

< q′ ≤ ∞.

Very recently, this result (1.3) is further refined by Zhang [35] to prove the regularity criterion as long as
the following conditions

u3 ∈ Lp(0, T ;Lq(R3)) with
2
p

+
3
q

=
4
9
,

27
4

≤ q ≤ ∞, (1.4)

are satisfied.
Motivated by the papers [31,34,35], the purpose of the present paper is to refine (1.4) and to extend

the above regularity criterion to the Lorentz space Lα,∞ which is larger than Lα . More precisely, our
main result now read as follows.

Theorem 1.1. Suppose T > 0, (u0, b0) ∈ L2(R3) and ∇ · u0 = ∇ · b0 = 0 in the sense of distributions.
Assume that (u, b) is a weak solution of the 3D MHD equations ( 1.1) on (0, T ). If u3 and j3 satisfy the
following growth conditions

T∫

0

(
‖u3(τ)‖

30α
7α−45
Lα,∞ + ‖j3(τ)‖

2β
2β−3

Lβ,∞

)
dτ < ∞, (1.5)

where 45
7 ≤ α ≤ ∞ and 3

2 < β ≤ ∞, then the weak solution (u, b) is regular on (0;T ].

Remark 1.1. Theorem 1.1 extends the previous results on Navier–Stokes equations due to the fact that
the MHD equations with b(x, t) = 0 reduce the Navier–Stokes equations. According to the embedding
relation Lα ⊆ Lα,∞, it is easy to see that our result of Theorem 1.1 is an improvement in the recent
works by Yamazaki [31] and Zhang [34,35].

2. Preliminaries

Throughout this paper, we use the following usual notations. Lp(R3) denotes the Lebesgue space associ-
ated with norm

‖f‖Lp =

⎧
⎪⎪⎨

⎪⎪⎩

(
∫

R3

|f(x)|p dx

) 1
p

, for 1 ≤ p < ∞,

ess sup
x∈R3

|f(x)| , for p = ∞.

Hk(R3) denotes the Hilbert space
{
u ∈ L2(R3) :

∥
∥∇ku

∥
∥

L2 < ∞}
. Let (X,M, μ) be a non-atomic mea-

surable space. For a complex- or real-valued μ−measurable function f(x) defined on X, its distributional
function is defined by

f∗(σ) = μ {x ∈ X : f(x) > σ} , for σ > 0,

which is non-increasing and continuous from the right. Furthermore, its non-increasing rearrangement f∗

is defined by
f∗(t) = inf {s > 0 : f∗(s) ≤ t} , for t > 0,



ZAMP A regularity criterion of the 3D MHD equations involving. . . Page 3 of 11    95 

which is also non-increasing and continuous from the right and has the same distributional function as
f(x).

The Lorentz space Lp,q on (X,M, μ) is the collection of all real- or complex-valued μ−measurable
functions f(x) defined on X such that ‖f‖Lp,q < ∞, where

‖f‖Lp,q =

⎧
⎪⎪⎨

⎪⎪⎩

(
q
p

∞∫

0

(t
1
p f∗(t))q dt

t

) 1
q

, if 1 ≤ p < ∞, 1 < q < ∞
sup
t>0

(t
1
p f∗(t)), if 1 ≤ p < ∞, q = ∞.

Moreover,

‖f‖Lp,∞ = sup
t>0

(t
1
p f∗(t)) = sup

σ>0
σ(f∗(σ))

1
p

for any f ∈ Lp,∞. For details, we refer to [2] and [26].
The space definition implies the following continuous embeddings:

Lp(R3) = Lp,p(R3) ↪→ Lp,q(R3) ↪→ Lp,∞(R3), 1 ≤ p ≤ q < ∞.

In order to prove Theorem 1.1, we need the following Hölder inequality in Lorentz spaces (see, e.g., O’Neil
[24] and [22]).

Lemma 2.1. ([24], Theorems 3.4 and 3.5) Let f ∈ Lp2,q2(R3) and g ∈ Lp3,q3(R3) with 1 ≤ p2, p3 ≤ ∞,
1 ≤ q2, q3 ≤ ∞. Then, fg ∈ Lp1,q1(R3) with

1
p1

=
1
p2

+
1
p3

,
1
q1

=
1
q2

+
1
q3

and the Hölder inequality of Lorentz spaces

‖fg‖Lp1,q1 ≤ C ‖f‖Lp2,q2 ‖g‖Lp3,q3 ,

holds true for a positive constant C.

We also recall Gagliardo–Nirenberg inequality in Lorentz spaces which plays an important role in the
proofs of Theorem 1.1.

Lemma 2.2. Let f ∈ Lp,q(R3) with 1 ≤ p, q, p4, q4, p5, q5 ≤ ∞. Then, the Gagliardo–Nirenberg inequality
of Lorentz spaces

‖f‖Lp,q ≤ C ‖f‖θ
Lp4,q4 ‖f‖1−θ

Lp5,q5

holds for a positive constant C and

1
p

=
θ

p4
+

1 − θ

p5
,

1
q

=
θ

q4
+

1 − θ

q5
, θ ∈ (0, 1).

3. Proof of main result

In this section, under the assumptions of Theorem 1.1, we prove our main result. Before proving our
result, we recall the following multiplicative Sobolev imbedding inequality in the whole space R

3 (see, for
example, [6]) :

‖f‖L6 ≤ C ‖∇hf‖ 2
3
L2 ‖∂3f‖ 1

3
L2 , (3.1)

where ∇h = (∂x1 , ∂x2) is the horizontal gradient operator. We are now given the proof of our main
theorem.
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Proof. To prove our result, it suffices to show that for any fixed T > T ∗, there holds

sup
0≤t≤T ∗

‖∇u(t)‖2
L2 + ‖∇b(t)‖2

L2 ≤ CT ,

where T ∗, which denotes the maximal existence time of a strong solution and CT is an absolute constant
which only depends on T, u0 and b0.

The method of our proof is the standard energy estimates as in [31]. We will base on two major parts.
The first one establishes the bounds of (‖∇hu‖2

L2 + ‖∇hb‖2
L2), while the second gives the bounds of the

H1−norm of velocity u and magnetic field b in terms of the results of part one.
For this purpose, we multiply the first and second equations of (1.1) by −Δhu and −Δhb, respectively,

and integrate them over R
3 with respect to the spatial variable. Then, integration by parts gives the

following identity:
1
2

d
dt

(‖∇hu‖2
L2 + ‖∇hb‖2

L2) + ‖∇∇hu‖2
L2 + ‖∇∇hb‖2

L2

=
∫

R3

(u · ∇)u · Δhudx −
∫

R3

(b · ∇)b · Δhudx

+
∫

R3

(u · ∇)b · Δhbdx −
∫

R3

(b · ∇)u · Δhbdx

= RHS,

where Δh = ∂2
x1

+ ∂2
x2

is the horizontal Laplacian. For simplicity of exposition, we denote

L2(t) = sup
τ∈[Γ,t]

(‖∇hu(τ)‖2
L2 + ‖∇hb(τ)‖2

L2) +

t∫

Γ

(‖∇∇hu(τ)‖2
L2 + ‖∇∇hb(τ)‖2

L2)dτ,

J 2(t) = sup
τ∈[Γ,t]

(‖∇u(τ)‖2
L2 + ‖∇b(τ)‖2

L2) +

t∫

Γ

(‖Δu(τ)‖2
L2 + ‖Δb(τ)‖2

L2)dτ,

for t ∈ [Γ, T ∗). We choose ε, η > 0 to be precisely determined subsequently and then select Γ < T ∗

sufficiently close to T ∗ such that for all Γ ≤ t < T ∗,
t∫

Γ

(‖∇u(τ)‖2
L2 + ‖∇b(τ)‖2

L2)dτ ≤ ε 	 1 and

t∫

Γ

‖j3(τ)‖
2β

2β−3

Lβ dτ ≤ η 	 1. (3.2)

Applying the divergence-free condition, ∇ · u = ∇ · b = 0, we find that RHS can be estimated as

RHS ≤
∫

R3

|u3| |∇u| |∇∇hu| dx +
∫

R3

|u3| |∇b| |∇∇hb| dx +
∫

R3

|b3| |∇u| |∇∇hb| dx

+
∫

R3

|b3| |∇b| |∇∇hu| dx +
∫

R3

|∇hu| |∇hb| |j3| dx

= L1 + L2 + L3 + L4 + L5, (3.3)

where the last inequality was proved in [31] (see, Proposition 3.1 in [31] for details).
With the use of Lemma 2.1, (3.1), and the Young inequality, we derive the estimate of the first term

L1 of (3.3) as follows :

L1 ≤ C ‖u3‖Lα,∞ ‖∇u‖
L

2α
α−2 ,2 ‖∇∇hu‖L2

≤ C ‖u3‖Lα,∞ ‖∇u‖1− 3
α

L2 ‖∇u‖ 3
α

L6 ‖∇∇hu‖L2
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≤ C ‖u3‖Lα,∞ ‖∇u‖1− 3
α

L2 ‖Δu‖ 1
α

L2 ‖∇∇hu‖1+ 2
α

L2

≤ C ‖u3‖
2α

α−2
Lα,∞ ‖∇u‖2− 2

α−2

L2 ‖Δu‖
2

α−2

L2 +
1
8

‖∇∇hu‖2
L2 ,

where we have used the following Gagliardo–Nirenberg inequality in Lorentz spaces:

‖∇u‖
L

2α
α−2 ,2 ≤ C ‖∇u‖1− 3

α

L2 ‖∇u‖ 3
α

L6 .

Similarly, employing the Hölder inequality and the Gagliardo–Nirenberg inequality gives that for L1,

L2 ≤ C ‖u3‖
2α

α−2
Lα,∞ ‖∇b‖2− 2

α−2

L2 ‖Δb‖
2

α−2

L2 +
1
8

‖∇∇hb‖2
L2 .

We now estimate L3,

L3 ≤ ‖b3‖L10 ‖∇u‖
L

5
2

‖∇∇hb‖L2 ≤ C ‖b3‖L10 ‖∇u‖ 7
10
L2 ‖∇u‖ 3

10
L6 ‖∇∇hb‖L2

≤ C ‖b3‖
L

10
3

‖∇u‖ 7
10
L2 ‖∇∇hu‖ 1

5
L2 ‖Δu‖ 1

10
L2 ‖∇∇hb‖L2

≤ C ‖b3‖
5
2
L10 ‖∇u‖ 7

4
L2 ‖Δu‖ 1

4
L2 +

1
8
(‖∇∇hb‖2

L2 + ‖∇∇hu‖2
L2),

where we have used the fact‖∇u‖
L

5
2

≤ C ‖∇u‖ 7
10
L2 ‖∇u‖ 3

10
L6 .

Likewise,

L4 ≤ C ‖b3‖
5
2
L10 ‖∇b‖ 7

4
L2 ‖Δb‖ 1

4
L2 +

1
8
(‖∇∇hb‖2

L2 + ‖∇∇hu‖2
L2).

For L5, by applying the Hölder inequality, the Gagliardo–Nirenberg inequality and the Young inequality,
one shows that

L5 =
∫

R3

|∇hu| |∇hb| |j3| dx ≤ 1
2

∫

R3

(
|∇hu|2 + |∇hb|2

)
|j3| dx

≤ C ‖j3‖Lβ,∞ (‖∇hu‖
L

2β
β−2 ,2 ‖∇hu‖L2 + ‖∇hu‖

L
2β

β−2 ,2 ‖∇hb‖L2)

≤ C ‖j3‖Lβ,∞ (‖∇hu‖2− 3
β

L2 ‖∇∇hu‖ 3
s

L2 + ‖∇hb‖2− 3
β

L2 ‖∇∇hb‖ 3
s

L2)

≤ C ‖j3‖
2β

2β−3

Lβ,∞ (‖∇hu‖2
L2 + ‖∇hb‖2

L2) +
1
8
(‖∇∇hb‖2

L2 + ‖∇∇hu‖2
L2).

Inserting all the estimates into (3.3), Gronwall’s type argument using

1 ≤ sup
λ∈[Γ,τ ]

exp

⎛

⎝c

τ∫

λ

‖j3(ϕ)‖
2β

2β−3

Lβ,∞ dϕ

⎞

⎠ � exp

⎛

⎝c

T ∗∫

0

‖j3(ϕ)‖
2β

2β−3

Lβ,∞ dϕ

⎞

⎠ � 1,

due to (1.5) leads to, for every τ ∈ [Γ, t]

L2(t) ≤ C + C

t∫

Γ

‖u3‖
2α

α−2
Lα,∞

(
‖∇u‖2− 2

α−2

L2 ‖Δu‖
2

α−2

L2 + ‖∇b‖2− 2
α−2

L2 ‖Δb‖
2

α−2

L2

)
dτ

+C

t∫

Γ

‖b3‖
5
2
L10

(
‖∇u‖ 7

4
L2 ‖Δu‖ 1

4
L2 + ‖∇b‖ 7

4
L2 ‖Δb‖ 1

4
L2

)
dτ

+C

t∫

Γ

‖j3‖
2β

2β−3

Lβ,∞

(
‖∇hu‖2

L2 + ‖∇hb‖2
L2

)
dτ

= C + I1(t) + I2(t) + I3(t). (3.4)
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Next, we analyze the right-hand side of (3.4) one by one. First, due to (3.2) and the definition of J 2, we
have

I1(t) ≤ C

(

sup
τ∈[Γ,t]

‖∇u(τ)‖
3
2− 2

α−2

L2

) t∫

Γ

‖u3(τ)‖
2α

α−2
Lα,∞ ‖∇u(τ)‖ 1

2
L2 ‖Δu(τ)‖

2
α−2

L2 dτ

+C

(

sup
τ∈[Γ,t]

‖∇b(τ)‖
3
2− 2

α−2

L2

) t∫

Γ

‖u3(τ)‖
2α

α−2
Lα,∞ ‖∇b(τ)‖ 1

2
L2 ‖Δb(τ)‖

2
α−2

L2 dτ

≤ CJ 3
2− 2

α−2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα,∞ dτ

⎞

⎠

3
4− 1

α−2
⎛

⎝
t∫

Γ

‖∇u(τ)‖2
L2 dτ

⎞

⎠

1
4

⎛

⎝
t∫

Γ

‖Δu(τ)‖2
L2 dτ

⎞

⎠

1
α−2

+CJ 3
2− 2

α−2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα,∞ dτ

⎞

⎠

3
4− 1

α−2
⎛

⎝
t∫

Γ

‖∇b(τ)‖2
L2 dτ

⎞

⎠

1
4

⎛

⎝
t∫

Γ

‖Δb(τ)‖2
L2 dτ

⎞

⎠

1
α−2

≤ CJ 3
2− 2

α−2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα,∞ dτ

⎞

⎠

3
4− 1

α−2

ε
1
4 J 2

α−2 (t)

= Cε
1
4 J 3

2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα,∞ dτ

⎞

⎠

3
4− 1

α−2

.

Now, we estimate the term I2(t) as

I2(t) ≤ C

(

sup
τ∈[Γ,t]

‖b3(τ)‖ 5
2
L10

) t∫

Γ

‖∇u(τ)‖ 7
4
L2 ‖Δu(τ)‖ 1

4
L2 dτ

+

(

sup
τ∈[Γ,t]

‖b3(τ)‖ 5
2
L10

) t∫

Γ

‖∇b(τ)‖ 7
4
L2 ‖Δb(τ)‖ 1

4
L2 dτ

≤
(

sup
τ∈[Γ,t]

‖b3(τ)‖ 5
2
L10

) ⎛

⎝
t∫

Γ

‖∇u(τ)‖2
L2 dτ

⎞

⎠

7
8

⎛

⎝
t∫

Γ

‖Δu(τ)‖2
L2 dτ

⎞

⎠

1
8

+

(

sup
τ∈[Γ,t]

‖b3(τ)‖ 5
2
L10

) ⎛

⎝
t∫

Γ

‖∇b(τ)‖2
L2 dτ

⎞

⎠

7
8

⎛

⎝
t∫

Γ

‖Δb(τ)‖2
L2 dτ

⎞

⎠

1
8

≤ C

(

sup
τ∈[Γ,t]

‖b3(τ)‖ 5
2
L10

)

ε
7
8 J 1

4 (t).

For I3(t), applying Hölder’s and Young’s inequalities, we get

I3(t) ≤ C sup
τ∈[Γ,t]

(‖∇hu(τ)‖2
L2 + ‖∇hb(τ)‖2

L2)

t∫

Γ

‖j3(τ)‖
2β

2β−3

Lβ,∞ dτ

≤ CηL2(t).
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Therefore, combining the estimates of I1(t), I2(t) and I3(t) together with (3.4) and taking η small enough,
it is easy to see that for all Γ ≤ t < T ∗ :

L2(t) ≤ C + Cε
1
4 J 3

2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα,∞ dτ

⎞

⎠

3α−10
4(α−2)

+ C

(

sup
τ∈[Γ,t]

‖b3(τ)‖ 5
2
L10

)

ε
7
8 J 1

4 (t) (3.5)

Now, we will establish the bounds of L10-norm of the magnetic field b3. In order to do it, we recall
the third equation of the magnetic field:

∂tb3 − Δb3 + (u · ∇)b3 = (b · ∇)u3,

and multiply this equation by |b3|8 b3, integrating by parts, using incompressibility conditions to obtain

1
10

d

dt

∫

R3

|b3|10 dx +
9
25

∫

R3

∣
∣∇(b5

3)
∣
∣2 dx =

∫

R3

(b · ∇u3)(|b3|8 b3)dx

= −9
∫

R3

b · |b3|4 (|b3|4 ∇b3)u3dx

≤ 9
5

∫

R3

|b| (|b3|5) 4
5 |u3|

∣
∣∇(b5

3)
∣
∣ dx = I. (3.6)

Using the Hölder, Young inequalities and interpolation, the estimates of I are given by

I ≤ 9
5

‖b‖L6

∥
∥
∥
∥u3

(
|b3|5

) 4
5

∥
∥
∥
∥

L3

∥
∥∇(b5

3)
∥
∥

L2

≤ C ‖∇hb‖ 2
3
L2 ‖∇b‖ 1

3
L2 ‖u3‖Lα,∞

∥
∥
∥
∥
(
|b3|5

) 4
5

∥
∥
∥
∥

L
3α

α−3 ,3

∥
∥∇(b5

3)
∥
∥

L2

≤ C ‖∇hb‖ 2
3
L2 ‖∇b‖ 1

3
L2 ‖u3‖Lα,∞

∥
∥
∥
∥
(
|b3|5

) 4
5

∥
∥
∥
∥

L
3α

α−3 ,2

∥
∥∇(b5

3)
∥
∥

L2

≤ C ‖∇hb‖ 2
3
L2 ‖∇b‖ 1

3
L2 ‖u3‖Lα,∞

(∥
∥b5

3

∥
∥

3(α−5)
4α

L2

∥
∥∇(b5

3)
∥
∥

15+α
4α

L2

) 4
5 ∥

∥∇(b5
3)

∥
∥

L2

≤ C ‖∇hb‖
20α

3(4α−15)

L2 ‖∇b‖
10α

3(4α−15)

L2 ‖u3‖
10α

4α−15
Lα

∥
∥b5

3

∥
∥

6(α−5)
4α−15

L2 +
9
5

∥
∥∇(b5

3)
∥
∥2

L2

Putting I in (3.6), we get

d

dt

∫

R3

|b3|10 dx ≤ C ‖∇hb‖
20α

3(4α−15)

L2 ‖∇b‖
10α

3(4α−15)

L2 ‖u3‖
10α

4α−15
Lα ‖b3‖

30(α−5)
4α−15

L10 .

Dividing by ‖b3‖
30(α−5)
4α−15

L10 , we arrive at

d

dt
‖b3‖

10α
4α−15

L10 ≤ C ‖∇hb‖
20α

3(7α−15)

L2 ‖∇b‖
10α

3(4α−15)

L2 ‖u3‖
10α

4α−15
Lα .

Integrating over interval [Γ, τ), it follows that

‖b3(τ)‖L10 ≤
⎡

⎣‖b3(Γ)‖
10α

4α−15

L10 + C

τ∫

Γ

‖∇hb(λ)‖
20α

3(4α−15)

L2 ‖∇b(λ)‖
10α

3(4α−15)

L2 ‖u3(λ)‖
10α

4α−15
Lα dλ

⎤

⎦

4α−15
10α

, (3.7)
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for all τ ∈ [Γ, t). It follows from (3.7) and (3.5) that

L2(t) ≤ C + Cε
1
4 J 3

2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα dτ

⎞

⎠

3α−10
4(α−2)

+Cε
7
8 J 1

4 (t) sup
τ∈[Γ,t]

⎡

⎣‖b3(Γ)‖
10α

7α−15

L10 + C

τ∫

Γ

‖∇hb(λ)‖
20α

3(4α−15)

L2 ‖∇b(λ)‖
10α

3(4α−15)

L2 ‖u3(λ)‖
10α

4α−15
Lα dλ

⎤

⎦

4α−15
4α

≤ C + Cε
1
4 J 3

2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα dτ

⎞

⎠

3α−10
4(α−2)

+Cε
7
8 J 1

4 (t)

⎡

⎣‖b3(Γ)‖
10α

4α−15

L10 + C

t∫

Γ

‖∇hb(τ)‖
20α

3(4α−15)

L2 ‖∇b(τ)‖
10α

3(4α−15)

L2 ‖u3(τ)‖
10α

4α−15
Lα dτ

⎤

⎦

4α−15
4α

≤ C + Cε
1
4 J 3

2 (t)

⎛

⎝
t∫

Γ

‖u3(τ)‖
8α

3α−10
Lα dτ

⎞

⎠

3α−10
4(α−2)

+ C ‖b3(Γ)‖ 5
2
L10 ε

7
8 J 1

4 (t)

+Cε
7
8 J 1

4 (t) sup
τ∈[Γ,t]

‖∇hb(τ)‖ 5
3
L2

⎡

⎣
t∫

Γ

‖∇b(τ)‖
10α

3(4α−15)

L2 ‖u3(τ)‖
10α

4α−15
Lα dτ

⎤

⎦

4α−15
4α

≤ C + Cε
1
4 J 3

2 (t)

⎛

⎝
t∫

Γ

1 + ‖u3(τ)‖
30α

7α−45
Lα dτ

⎞

⎠

3α−10
4(α−2)

+ C ‖b3(Γ)‖ 5
2
L10 ε

7
8 J 1

4 (t)

+Cε
7
8 J 1

4 (t)L 5
3 (t)

⎡

⎢
⎣

⎛

⎝
t∫

Γ

‖∇b(τ)‖2
L2 dτ

⎞

⎠

5α
3(4α−15)

⎛

⎝
t∫

Γ

‖u3(τ)‖
30α

7α−45
Lα dτ

⎞

⎠

1− 5α
3(4α−15)

⎤

⎥
⎦

4α−15
4α

≤ C + Cε
1
4 J 3

2 (t) + C ‖b3(Γ)‖ 5
2
L10 ε

7
8 J 1

4 (t) + Cε
7
8 J 1

4 (t)L 5
3 (t)

⎡

⎣ε +

t∫

Γ

‖u3(τ)‖
30α

7α−45
Lα dτ

⎤

⎦

4α−15
4α

≤ C + Cε
1
4 J 3

2 (t) + C ‖b3(Γ)‖ 5
2
L10 ε

7
8 J 1

4 (t) + Cε
7
8 J 1

4 (t)L 5
3 (t)

⎡

⎣1 +

t∫

Γ

‖u3(τ)‖
30α

7α−45
Lα dτ

⎤

⎦

4α−15
4α

≤ C + Cε
1
4 J 3

2 (t) + C ‖b3(Γ)‖ 5
2
L10 ε

7
8 J 1

4 (t) + Cε
21
4 J 3

2 (t) +
5
6
L2(t)

which leads to

L2(t) ≤ C + Cε
1
4 J 3

2 (t) + C ‖b3(Γ)‖ 5
2
L10 ε

7
8 J 1

4 (t) + Cε
21
4 J 3

2 (t). (3.8)

Now, we will establish the bounds of H1-norm of the velocity and magnetic field. In order to do it,
we multiply the first and second equations of (1.1) by −Δu and −Δb, respectively, and integrate them
over R

3 with respect to the spatial variable. Then, integration by parts gives the following identity:

1
2

d

dt
(‖∇u‖2

L2 + ‖∇b‖2
L2) + ‖Δu‖2

L2 + ‖Δb‖2
L2
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= −
3∑

i,j,k=1

∫

R3

∂kui∂iuj∂kujdx +
3∑

i,j,k=1

∫

R3

∂kbi∂ibj∂kujdx −
3∑

i,j,k=1

∫

R3

∂kui∂ibj∂kbjdx

+
3∑

i,j,k=1

∫

R3

∂kbi∂iuj∂kbjdx. (3.9)

Applying the divergence-free condition, ∇·u = ∇·b = 0, by using the Hölder inequality, the interpolation
inequality and (3.1), it follows that

1
2

d
dt

(‖∇u‖2
L2 + ‖∇b‖2

L2) + ‖Δu‖2
L2 + ‖Δb‖2

L2

≤ C

∫

R3

(|∇hu| + |∇hb|)(|∇u|2 + |∇b|2)dx

≤ C(‖∇hu‖L2 + ‖∇hb‖L2)(‖∇u‖2
L4 + ‖∇b‖2

L4)

≤ C(‖∇hu‖L2 + ‖∇hb‖L2)(‖∇u‖ 1
2
L2 ‖∇u‖ 3

2
L6 + ‖∇b‖ 1

2
L2 ‖∇b‖ 3

2
L6)

≤ C(‖∇hu‖L2 + ‖∇hb‖L2)(‖∇u‖ 1
2
L2 ‖∇h∇u‖L2 ‖Δu‖ 1

2
L2 + ‖∇b‖ 1

2
L2 ‖∇h∇b‖L2 ‖Δb‖ 1

2
L2).

Integrating this last inequality in time, we deduce that for all τ ∈ [Γ, t]

J 2(t) ≤ ‖∇u(Γ)‖2
L2 + ‖∇b(Γ)‖2

L2 + C sup
τ∈[Γ,t]

(‖∇hu(τ)‖L2 + ‖∇hb(τ)‖L2)

×
⎛

⎝
t∫

Γ

‖∇u(τ)‖2
L2 dτ

⎞

⎠

1
4

⎛

⎝
t∫

Γ

‖∇∇hu(τ)‖2
L2 dτ

⎞

⎠

1
2

⎛

⎝
t∫

Γ

‖Δu(τ)‖2
L2 dτ

⎞

⎠

1
4

+C sup
τ∈[Γ,t]

(‖∇hu(τ)‖L2 + ‖∇hb(τ)‖L2)

×
⎛

⎝
t∫

Γ

‖∇b(τ)‖2
L2 dτ

⎞

⎠

1
4

⎛

⎝
t∫

Γ

‖∇∇hb(τ)‖2
L2 dτ

⎞

⎠

1
2

⎛

⎝
t∫

Γ

‖Δb(τ)‖2
L2 dτ

⎞

⎠

1
4

≤ ‖∇u(Γ)‖2
L2 + ‖∇b(Γ)‖2

L2 + 2CL(t)ε
1
4 L(t)J 1

2 (t)

= ‖∇u(Γ)‖2
L2 + ‖∇b(Γ)‖2

L2 + Cε
1
4 L2(t)J 1

2 (t). (3.10)

Inserting (3.8) into (3.10) and taking ε small enough, then it is easy to see that for all Γ ≤ t < T ∗, there
holds

J 2(t) ≤ ‖∇u(Γ)‖2
L2 + ‖∇b(Γ)‖2

L2 + Cε
1
4 J 1

2 (t) + Cε
1
2 J 2(t)

+C ‖b3(Γ)‖ 5
2
L10 ε

9
8 J 3

4 (t) + Cε
11
2 J 2(t)

< ∞,

which proves

sup
Γ≤t<T ∗

‖∇u(t)‖2
L2 + ‖∇b(t)‖2

L2 < ∞.

This completes the proof of Theorem 1.1. �
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