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AN EXISTENCE THEOREM FOR GENERALIZED QUASI-VARIATIONAL
INEQUALITIES INVOLVING THE GRASSMANNIAN MANIFOLD

WITH AN APPLICATION

MARIA B. DONATO a AND ANTONIO VILLANACCI b∗

ABSTRACT. We present an existence theorem for a class of generalized quasi-variational
problem involving Grassmannian manifolds. This class is directly inspired by a general
equilibrium problem with time, uncertainty and incomplete financial market with real
assets. The problem of the existence of this equilibrium cannot be analyzed using standard
techniques employed in similar models. Then, we show how the concept of equilibrium is
strictly related to the concept of Grassmannian manifolds. Finally, we present a variational
inequality problem, whose solutions are equilibria of the proposed model.

1. Introduction

We present a generalized quasi-variational inequality problem involving Grassmannian
spaces, i.e., the families of given dimension vector subspaces of a (finite dimensional) real
vector space, endowed with both a topological and smooth abstract manifold structure.

The theory of variational inequalities was introduced in the seventies by Fichera (1964)
and Stampacchia (1964), as an innovative and effective method to solve equilibrium prob-
lems arising in mathematical physics. Some years later, Bensoussan et al. (1973) introduced
the quasi-variational inequalities as an important generalization of the variational inequali-
ties. Starting from 1985, this theory was applied to numerous equilibrium problems arising
from the applied world as traffic equilibrium problem, spatial price equilibrium problem,
oligopolistic market equilibrium problem, general equilibrium problem (see Dafermos
(1980), Nagurney (1993) and bibliography therein, De Luca and Maugeri (1989), Maugeri
(1987), Jofré et al. (2007)). Subsequently, the question of how to introduce time in the
variational inequality framework has been investigated (see Daniele et al. (1999), Daniele
(2006) and bibliography therein). Due to its powerful capacity of application, nowadays
variational inequality theory represents an excellent tools in the analysis of unsolved prob-
lems in real-life situations. (see e.g. Barbagallo et al. (2012), Colajanni et al. (2018), Donato
et al. (2018), Donato et al. (2020), Donato et al. (2014), Scrimali and Mirabella (2018)).
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A6-2 M.B. DONATO AND A. VILLANACCI

It is important to stress that a crucial assumption in the variational inequality theory is
the convexity of the main involved sets. On the other hand, Grassmannian manifolds are
clearly not convex,1 a fact that makes mathematically interesting the result we get. Indeed,
using a fixed point theorem involving Grassmannian manifolds presented by Bich and
Cornet (2004), we prove a variational inequality version of that result which is novel in the
literature.

Moreover, a general equilibrium economic model with time, uncertainty and financial
market with real assets is proposed as a framework to apply the above results. The first paper
on that topic is the one by Duffie and Shafer (1985) which are the first authors to introduce
Grassmannian in the above mentioned models. After that path-breaking contribution,
several other proofs of existence have been provided in the literature. While that paper
uses a degree/homotopy argument, Husseini et al. (1990) use a fixed point argument on
Grassmannian manifolds that generalizes a result by Dierker (1974); on the other hand,
Bich and Cornet (2004) provide a more standard fixed point approach (see also Villanacci
et al. (2002)).

The paper is organized as follows. In Section 2, definitions and main results on Grass-
mannian manifolds are presented. In Section 3, the result on variational inequalities dealing
with Grassmannians is presented. Finally, in Section 4 we present the set-up and the main
features of the economic model referred to above.

2. Some results on Grassmannian manifolds

In this section some basic results on Grassmannian manifolds are recalled. To reach
that goal, we use the classical and standard reference of Milnor and Stasheff (1974). Some
results are also taken from Bich and Cornet (2004). Milnor and Stasheff (1974) uses an
atlas different from ours. The proof that our proposed triple is indeed an atlas and that GA,S
satisfies all properties we need in our analysis is not presented in a complete manner in any
published (or unpublished) work we know the existence of.

We proceed as follows. We first present the definition of Grassmannian set GA,S; then we
endow that set with a topology and show that it is a Hausdorff topological space. Then, we
recall the definition of abstract C∞ manifold and show that GA,S satisfies all the requirements
of that definition; finally, we show that GA,S has some “nice” properties which are crucial in
our analysis (in particular, it is a metrizable topological space).

Definition 1. Given A,S ∈ N with A ≤ S, we denote by GA,S the set of all A dimensional
vector subspaces of RS. GA,s is called a Grassmannian set.

Definition 2. An A-frame in RS is a collection of A linearly independent vectors in RS. We
denote by VA

(︁
RS
)︁

the family of all A-frames. VA
(︁
RS
)︁

is called Stiefel manifold.

We can identify VA
(︁
RS
)︁

with the family M∗(S,A) of full rank S×A matrices.

Proposition 3. VA
(︁
RS
)︁

is C ∞ diffeomorphic to an open subset of RSA (with the Euclidean
topology).

1Indeed, it is enough to observe that “a convex combination of the horizontal and vertical axis in the plane is
equal to the plane itself".
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Proof. Given M ∈M(S,A), let F be the family of all square submatrices of M. Define
F : M(S,A)→R such that F(M) = ∑M∗∈F |detM∗|. Then F is continuous and M∗(S,A) =
F−1 (R\{0}) is therefore open. □

We now endow GA,S with a topology using the Euclidean topology of VA
(︁
RS
)︁
.

Definition 4. Given the function q : VA
(︁
RS
)︁
→ GA,S such that

q(x1, ...,xA) := span(x1, ...,xA) ,

we say that a set U ⊆ GA,S is open if and only if q−1 (U) is open in VA
(︁
RS
)︁
. Let T be the

family of so defined open sets in GA,S.

Proposition 5. (GA,S,T ) is a topological space.

Proof. Clearly ∅= q−1 (∅) and VA
(︁
RS
)︁
= q−1 (GA,S). Furthermore, take a family{︁

Sγ : γ ∈ Γ
}︁

of GA,S - open sets. Then, for any γ ∈ Γ, q−1
(︁
Sγ

)︁
is VA

(︁
RS
)︁

- open. We get our
desired result observing that q−1

(︁
∪γ∈ΓSγ

)︁
= ∪γ∈Γq−1

(︁
Sγ

)︁
is open and q−1

(︁
∩γ∈ΓSγ

)︁
=

∩γ∈Γq−1
(︁
Sγ

)︁
is open if |Γ| ∈ N. □

Remark 6. By definition 4, q is a continuous function. Moreover, it is easy to show that q
is onto: for any L ∈ GA,S, take a basis B of L; then, q(B) = L.

We can also give the following alternative description of GA,S.

Definition 7. We denote by V 0
A

(︁
RS
)︁

the family of all orthonormal A-frames.

We can then endow GA,S with a topology using V 0
A

(︁
RS
)︁
.

Definition 8. Given the function q0 : V 0
A

(︁
RS
)︁
→ GA,S such that

q0(x0
1, ...,x

0
A) := span

(︁
x0

1, ...,x
0
A
)︁
,

we say that a set U ⊆ GA,S is open if and only if q−1
0 (U) is open in V 0

A

(︁
RS
)︁
. Let T0 be the

family of so defined open sets in GA,S.

We now want to show that T = T0. To accomplish that goal we need some preliminary
results.

Definition 9. Define the inclusion map from V 0
A

(︁
RS
)︁

to VA
(︁
RS
)︁

as
in : V 0

A

(︁
RS
)︁
→VA

(︁
RS
)︁

such that in(x0
1, ...,x

0
A) = (x0

1, ...,x
0
A)

and the Gram-Schmidt function
g : VA

(︁
RS
)︁
→V 0

A

(︁
RS
)︁

such that g(x1, ...,xA) = (x0
1, ...,x

0
A),

where
(︁
x0

1, ...,x
0
A

)︁
is obtained using the Gram-Schmidt orthonormalization process.

Remark 10. From standard linear algebra (see for example Section 6.6, page 212 of
Lipschutz (1991),), the function g is continuous. Moreover, (x1, ...,xA) ∈ VA

(︁
RS
)︁

and
(x0

1, ...,x
0
A) ∈V 0

A

(︁
RS
)︁

are a basis of the same vector space.
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A6-4 M.B. DONATO AND A. VILLANACCI

Proposition 11. The following diagram commutes2.

V 0
A

(︁
RS
)︁ in−→ VA

(︁
RS
)︁ g−→ V 0

A

(︁
RS
)︁

q0 ↓ q ↓ q0 ↓
GA,S

id−→ GA,S
id−→ GA,S

Proof. The result follows from the definition of q0 := q|V 0
A(RS), the definition of g and

Remark 10. In particular, q = q0 ◦g, which is a consequence of the basic fact that the span
of a basis and the span of the orthonormal basis obtain from it, using Gram-Schmidt, do
coincide (see also Remark 2 page 213 of Lipschutz (1991)). □

Remark 12. By definition 8, q0 is a continuous function. Moreover, q0 is onto, because of
the following simple argument. Since q is onto, for any L ∈ GA,S, there exists (x1, ...,xA) ∈
VA
(︁
RS
)︁

such that span(x1, ...,xA) = L. From Remark 10, there exists
(︁
x0

1, ...,x
0
A

)︁
∈V 0

A

(︁
RS
)︁

such that span
(︁
x0

1, ...,x
0
A

)︁
= span(x1, ...,xA) = L, i.e., q0

(︁
x0

1, ...,x
0
A

)︁
= L, as desired.

Proposition 13. T = T0.

Proof. Indeed, S ∈ T0 ⇔ q−1
0 (S) is open in V 0

A

(︁
RS
)︁
⇔3 q−1(S) = g−1

(︁
q−1

0 (S)
)︁

is open
in VA

(︁
RS
)︁
⇔ S ∈ T . □

Lemma 14. (Checcucci et al. (1968), Proposition 8.1) Let (Y,T ′) be a topological space,
given f : GA,S → (Y,T ′) and q : VA(RS)→ GA,S (continuous function), then f is continuous
⇔ f ◦q is continuous.

Proof.

VA
(︁
RS)︁ q−→ GA,S

f◦q
−−−−−−−−−−→

f−→
(︁
Y,T ′)︁

[⇒] From Remark 6, q is continuous. Then f ◦q is continuous because composition of
continuous functions.

[⇐] We want to show that if A is Y - open, then f−1 (A) is GA,S - open. Indeed, since A
is open and f ◦q is continuous, then ( f ◦q)(A) = q−1

(︁
f−1 (A)

)︁
is open in VA

(︁
RS
)︁
. From

Definition 4, f−1 (A) is GA,S - open, as desired. □

We need some preliminary results.

Proposition 15. (Ostaszewski (1990), page 41) For any real matrix M ∈M(m,n),4

ImMT = (kerM)⊥ .

Proposition 16. If L ∈ GA,S, then L⊥ ∈ GS−A,S.

Proof. The desired result is an immediate consequence of the following basic linear algebra
results (see, for example, Theorem 6, page 436, of Nicholson (1990)). For any L ∈ GA,S,
RS = L⊕L⊥ and RS = dimL+dimL⊥. □

2A commutative diagram is a collection of functions { fi : Ai → Bi : I = 1, ...,n} in which all function compo-
sitions starting from the same set and ending with the same set give the same result.

3It follows from the fact that g is continuous.
4Below, we identify a matrix M ∈M(m,n) with lM ∈ L (Rn,Rm).
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Corollary 17. Given M ∈M(m,n), then

Rn = ImMT ⊕kerM.

Proposition 18. Let M and M′ ∈M∗(S−A,A) be given. Then, kerM = kerM′ if and only
if there exists B ∈M∗(S−A,S−A) such that M′ = BM.

Proof. [⇒] Define L := kerM = kerM′. Then,

L⊥ = (kerM)⊥ =
(︁
kerM′)︁⊥ = ImMT = Im

(︁
M′)︁T

.

Since M,M′ ∈M∗(S−A,S), then MT ,(M′)T ∈M∗(S,S−A) and their S−A columns
are a basis of L⊥. Then, the rows of M and M′ are a basis of L⊥. Defined

M =

⎡⎣ m1
...
mS−A

⎤⎦ and M′ =

⎡⎣ m′
1

...
m′

S−A

⎤⎦ ,
by definition of basis each row mi can be written as a linear combination of the rows(︂

m
′
1, ...,m

′
S−A

)︂
through well chosen, uniquely determined vectors bi ∈ RS−A. In other

words, ⎡⎣ m1
...
mS−A

⎤⎦=

⎡⎣ b1 ·M′

...
bS−A ·M′

⎤⎦ ,
and then defined

B =

⎡⎣ b1
...
bS−A

⎤⎦ ,
we get M = BM′. We are then left with showing that B is invertible. Indeed,

S−A = rankM = rank BM′ ≤ min
{︁

rank B, rank M′}︁ .
If our claim were false we would have S−A ≤ min{rank B, rank M′}< S−A, a contradic-
tion.

[⇐]
We first show that kerM ⊆ kerM′.
x ∈ kerM ⇔ Mx = 0 ⇒ BMx = 0 BM=M′

⇔ M′x = 0 ⇔ x ∈ kerM′.
We now show that kerM′ ⊆ kerM.
x ∈ kerM′ ⇔ M′x = 0 BM=M′

⇔ BMx = 0 B invertible⇒ Mx = 0. □

Proposition 19. Let Y,Y ′ ∈ M∗ (S,A) be given. Then

ImY = ImY ′ ⇔ there exists C ∈M∗ (A,A) such that Y ′ = YC.

Proof. [⇒]
From, Proposition 15, we have that

(kerY )⊥ = ImY T ,

and therefore,
kerY T = (ImY )⊥ =

(︁
ImY ′)︁⊥ = ker(Y ′)T .
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A6-6 M.B. DONATO AND A. VILLANACCI

Then, since Y,Y ′ ∈ M∗ (S,A), from Proposition 18,

there exists ˆ︁B ∈M∗ (A,A) such that Y ′T = ˆ︁BY T .

and
Y

′
= Y ˆ︁BT ,

and it is then enough to take C = ˆ︁BT .
[⇐]
We first show that ImY ⊆ ImY ′. w ∈ ImY ⇒ ∃z ∈ RA such that w = Y z = Y ′C−1z ⇒

∃z′ =C−1z ∈ RA such that w = Y ′z′ ⇔ w ∈ ImY ′.
We now show that ImY ′ ⊆ ImY. w′ ∈ ImY ′ ⇒ ∃z′ ∈ RA such that w′ = Y ′z′ = YCz′ ⇒

∃z =Cz′ ∈ RA such that w′ = Y z ⇔ w′ ∈ ImY . □

In order to prove that GA,S is a Hausdorff space, we need to introduce the following
preliminary results (for details on the results we do not provide proofs of, see Munkres
(1975)).

Definition 20. A topological space (X ,T ) is a T1 space if

x,y ∈ X , x ̸= y ⇒∃ Gx,Gy ∈ T such that x ∈ Gx, y /∈ Gx and x /∈ Gy, y ∈ Gy,

where the open sets Gx and Gy are not necessarily disjoint.

Proposition 21. Let a topological space (X ,T ) be given.

(X ,T ) is T1 ⇔ ∀ x ∈ X , {x} is closed .

Definition 22. A topological space (X ,T ) is a T2 or Hausdorff space if

x,y ∈ X , x ̸= y ⇒ ∃Gx,Gy ∈ T such that x ∈ Gx,y ∈ Gy and Gx ∩Gy =∅.

Remark 23. If (X ,T ) is T2, then (X ,T ) is T1.

Definition 24. A topological space (X ,T ) is a regular space if

(1) it is T1 (Munkres 1975);
(2) F closed, x /∈ F ⇒ ∃ Gx, GF ∈ T such that x ∈ Gx, F ⊆ GF and Gx ∩GF =∅.

Definition 25. A topological space (X ,T ) is a normal space if

(1) it is T1 (Munkres 1975);
(2) F1 and F2 are disjoint closed sets ⇒ ∃ G1, G2 ∈ T : F1 ⊆ G2, F2 ⊆ G2 and

G1 ∩G2 =∅.

Remark 26. If a space is normal, then it is regular.

Definition 27. Let (X ,d) be a metric space. A set U in X is open with respect to
d or it is (X ,d) open if for any x ∈ U, there exists δ > 0 such that B(X ,d) (x,δ ) :=
{y ∈ X : d (y,x)< δ} ⊆U. The topology induced by the metric d on X is the collection of
sets in X which are (X ,d) open.

Definition 28. Let X be a topological space. X is said to be metrizable if there exists a
metric d on the set X that induces the topology of X.
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Definition 29. Let X and Y be arbitrary nonempty sets. Then, the family of functions
S := { fi : X → Y}i∈I is said to separate points (in X) if ∀ a, b ∈ X such that a ̸= b, ∃ i ∈ I
such that fi (a) ̸= fi (b).

Proposition 30. Let (X ,T ) be a topological space. If C 0 (X ,R) separates points, then
(X ,T ) is Hausdorff.

To prove that GA,S is Hausdorff, we apply Proposition 30, i.e., we find a continuous
function f : GA,S →R such that for any L1,L2 ∈ GA,S with L1 ̸= L2, we have f (L1) ̸= f (L2).
Observe that f may depend on L1 and L2. The desired function f is defined as follows.
Taken v ∈ RS, fv : GA,S → R, fv (L) = d (v,L), where d (v,L) is the distance of v from L.
To prove the desired results we present some Lemmas (see Section 3.6, pages 55-58 of
Luenberger (1969).)

Given z1, ...,zm vectors in RS, define the continuous function
g :
(︁
RS
)︁m → R, g(z1, ...,zm) = det

[︁⟨︁
zi,z j

⟩︁
S

]︁
m×m .

Proposition 31. (Proposition 1, page 56 of Luenberger (1969)) g(z1, ...,zm) ̸= 0 if and only
if z1, ...,zm are linearly independent.

Proposition 32. (Theorem 1, page 57 of Luenberger (1969)) Let y1, ...,yA be linearly inde-
pendent vectors in RS. The distance δ between x∈RS and the vector space span(y1, ...,yA)∈
GS,A is such that

δ
2 =

g(y1, ...,yA,x)
g(y1, ...,yA)

Remark 33. Let
(︁
RSA

)︁∗ :=
{︂

y1, ...,yA ∈
(︁
RS
)︁A : y1, ...,yA are linearly independent

}︂
. The

following function

f :
(︁
RSA

)︁∗×RS → R such that f (y1, ...,yA,x) =
(︂

g(y1,...,yA,x)
g(y1,...,yA)

)︂ 1
2

is continuous. Furthermore, if x ∈ span(y1, ...,yA), then f (y1, ...,yA,x) = 0, simply
because x is a linear combination of y1, ...,yA and then (y1, ...,yA,x) are linearly dependent.

Proposition 34. GA,S is a Hausdorff topological space.

Proof. Let L1,L2 ∈ GA,S such that L1 ̸= L2 be given. For any v ∈ RS, define
fv : GA,S → R such that fv(L) = d (v,L) .
Then, from Lemma 14, fv is continuous iff

fv◦q : VA
(︁
RS)︁→R, ( fv◦q)(x1, ...,xA) = d (span(x1, , ...,xA) ,v) =

⎛⎝g
(︂ˆ︁ˆ︁y1, ...,

ˆ︁ˆ︁yA,x
)︂

g
(︂ˆ︁ˆ︁y1, ...,

ˆ︁ˆ︁yA

)︂
⎞⎠

1
2

is continuous, which is the case for what said above.
Now, take x ∈ L1 such that x /∈ L2. Then fx (L1) = 0. Observe that if C is closed and

x /∈C, then d (x,C)> 0. Then since L2 is a finite dimensional vectors space and therefore it
is closed, we have that fx (L2)> 0, as desired. □

We are now ready to show that GA,S is a C∞ manifold. For the redear’s convenience we
present below that definition.
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Definition 35. A topological space M is a said to be an m-dimensional topological manifold
if there exists a collection of triples (φi,Ui,Vi)i∈I such that

(1) {Vi}i∈I is an open covering of M, i.e., for any i ∈ I, Vi is open in M and M ⊆∪i∈IVi;
(2) for each i ∈ I, Ui is an open subset of Rm;
(3) for each i ∈ I, φi : Ui →Vi is a homeomorphism.

Every triple (φi,Ui,Vi) is called a local parametrization of M and the set of local
parametrizations is called a system of local parametrizations. Conversely, (ψi,Vi,Ui),
where ψi ≡ φ

−1
i , is called a chart of M and {(ψi,Vi,Ui)}i∈I is called an atlas of M.

Definition 36. Let M be an m-dimensional topological manifold. Consider an atlas
{(ψi,Vi,Ui)}i∈I of M, and let r ∈N∪{+∞}. M is said to be an m-dimensional Cr manifold
if, for every i, j ∈ I such that Vi ∩Vj ̸= /0,

ψ j ◦
(︁
ψ

−1
i
)︁
|ψi(Vi∩V j)

: ψi(Vi ∩Vj)⊆ Rm → ψ j(Vi ∩Vj)⊆ Rm (1)

is a Cr diffeomorphism.
The family {(ψi,Vi,Ui)}i∈I is called a Cr atlas of M and every triple (ψi,Vi,Ui) is a Cr

chart. The corresponding parametrizations (φi,Ui,Vi) are called Cr local parametrizations.

The proof that GA,S is a C ∞ abstract manifold requires some preliminary work and it is
finally presented in Proposition 46.

Observe that L ∈ GA,S,
(︂

L⊥
)︂A

, i.e., the Cartesian product A times of L⊥, is isomorphic

to R(S−A)A.

An atlas for GA,S can be constructed as follows. Given an orthonormal basis ( f 1
, ..., f A

)
of L, we can define

ϕL :
(︂

L⊥
)︂A

→ GA,S,

ϕL
(︁
u1, ...,uA)︁= span

(︂
f 1
+u1, ..., f A

+uA
)︂
.

Observe that the above function is well defined, i.e., ϕL
(︁
u1, ...,uA

)︁
∈ GA,S, as verified below.

Lemma 37. Given an orthonormal basis ( f 1
, ..., f A

) of L ∈ GA,S and
(︁
u1, ...,uA

)︁
∈
(︂

L⊥
)︂A

,
then

span
(︂
( f 1

+u1, ..., f A
+uA)

)︂
∈ GA,S.

Proof. To get the desired result, it suffices to show that ( f 1
+ u1, ..., f A

+ uA) is linearly
independent, i.e., that ∑

A
a=1 βa

(︁
f a
+ua

)︁
= 0 implies that for any a ∈ {1, ..,A}, βa = 0.

Indeed, ∑
A
a=1 βa

(︁
f a
+ua

)︁
= 0 implies that ∑

A
a=1 βa f a · f 1

= −∑
A
a=1 βaua · f 1. Moreover,

∑
A
a=1 βa f a · f 1 = β1, because ( f 1

, ..., f A
) is an orthonormal basis, and −∑

A
a=1 βaua · f 1

= 0,

because f 1 ∈ L and
(︁
u1, ...,uA

)︁
∈
(︂

L⊥
)︂A

. Hence β1 = 0; similar procedure can be used to
show that β2 = ...= βA = 0, as desired. □

Proposition 38. The function ϕL is one-to-one and continuous.
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Proof. To prove that ϕL is one-to-one, we want to show that if

ϕL
(︁
u1, ...,uA)︁ := span

(︂
( f 1

+u1, ..., f A
+uA)

)︂
= span

(︂
( f 1

+ v1, ..., f A
+ vA)

)︂
:= ϕL

(︁
v1, ...,vA)︁

then
(︁
u1, ...,uA

)︁
=
(︁
v1, ...,vA

)︁
.

Since for any a ∈ {1, ...,A}, we have that f a
+ua ∈ span

(︂
( f 1

+ v1, ..., f A
+ vA)

)︂
, then

there exists (λai)
A
i=1 ∈ RA such that

f a
+ua =

A

∑
i=1

λai

(︂
f i
+ vi

)︂
(2)

Multiplying by f a, we get ⟨ f a
, f a⟩+ ⟨ua, f a⟩= ⟨∑A

i=1 λai( f i
+ vi), f a⟩,

and using the assumptions that
(︂

f 1
, ..., f A

)︂
is a orthonormal basis of L and

(︁
u1, ...,uA)︁ ,(︁v1, ...,vA)︁ ∈ (︂L⊥

)︂A
, (3)

we get
1 = λaa. (4)

Multiplying (2) by f j, with j ∈ {1, ...,A} \ {a}, we get

f a f j
+ua f j

=
A

∑
i=1

λai

(︂
f i f j

+ vi f j
)︂
,

and again using the assumptions that
(︂

f 1
, ..., f A

)︂
is a orthonormal basis of L and (3), we

get
for any j ∈ {1, ...,A} \ {a} , 0 = λa j. (5)

Inserting (4) and (5) in (2) , we get

f a
+ua = f a

+ va.

Repeating the same argument for any a ∈ {1, ...,A}, we get the desired result.

To prove that ϕL is continuous, define γ :
(︂

L⊥
)︂A

→VA
(︁
RS
)︁

such that

γ(u1, ...,uA) := ( f 1
+u1, ..., f A

+uA).

Then ϕL = q◦ γ :(︂
L⊥
)︂A γ−→ VA

(︁
RS
)︁ q−→ GA,S

(︁
u1, ...,uA

)︁
↦→ ( f 1

+u1, ..., f A
+uA) ↦→ span

(︂
( f 1

+u1, ..., f A
+uA)

)︂
Since q and γ are continuous, then ϕL is continuous. □
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Lemma 39. (see page 169 of Bich and Cornet (2004)) For any u ∈
(︂(︁

L
)︁⊥)︂A

,

ϕL (0)∩ (ϕL (u))
⊥ = {0} and ϕL (u)∩ (ϕL (0))

⊥ = {0}.

Moreover, we define

U∗
L := ϕL

(︃(︂
L⊥
)︂A
)︃

:=
{︃

span
(︂
( f 1

+u1, ..., f A
+uA)

)︂
:
(︁
u1, ...,uA)︁ ∈ (︂L⊥

)︂A
}︃
⊆ GA,S

and, using the fact that ϕL is one-to-one , ψL : U∗
L →

(︂
L⊥
)︂A

such that

ψL(L) = (u1, ...,uA) with span
(︂

f 1
+u1, ..., f A

+uA
)︂
= L.

Proposition 40. ψL is the inverse function of ϕL and it is continuous.

Proof. Firstly, we want to show that ψL ◦ϕL = id(︂
L⊥
)︂A and ϕL ◦ψL = idU∗

L
.

(1) (ψL ◦ϕL)
(︁
u1, ...,uA

)︁
= ψL

(︂
span

(︂
f 1
+u1, ..., f A

+uA
)︂)︂

= (u1, ...,uA).

(2) (ϕL ◦ψL)(L
′) = ϕL(u

1, ...,uA) such that span
(︂

f 1
+u1, ..., f A

+uA
)︂
= L′.

Then ϕL(u
1, ...,uA) = span( f 1

+u1, ..., f A
+uA) = L′, hence (ϕL ◦ψL)(L

′) = L′.

Now, we define g = ψL ◦q:

VA
(︁
RS
)︁ q−→ GA,S

ψL−→
(︂

L⊥
)︂A

(︁
x1, ...,xA

)︁
↦→ span

(︁
x1, ...,xA

)︁
↦→ (u1, ...,uA) such that span

(︁
(x1, ...,xA)

)︁
=

= span
(︂
( f 1

+u1, ..., f A
+uA)

)︂
If we show that g is continuous, then from Lemma 14 , we do have that ϕL is continuous

as desired.
We want to show that g above defined is a continuous function of

(︁
x1, ...,xA

)︁
. For

simplicity, define F :=
(︂

f 1
, ..., f A

)︂
, X :=

(︁
x1, ...,xA

)︁
and U := (u1, ...,uA). From the

definition of g, we do have span(X) = span(F +U). Then, from Proposition 19 , there
exists an invertible matrix C such that X = (F +U)C and then UC = X −FC. Hence

g(X) =U = XC−1 −F,

and therefore g is a continuous function of X . □

Let L ∈ GA,S be given. Since RS = L ⊕ L⊥, for any v ∈ RS, there exists a unique
(vL,vL⊥) ∈ L×L⊥ such that v = vL + vL⊥ and the following definitions are well given.

The projections on L and L⊥ are defined as follows, respectively,

πL := π : RS = L⊕L⊥ → L, such that π(v) = vL,
πL⊥ := π⊥ : RS = L⊕L⊥ → L⊥, such that π⊥(v) = vL⊥ .
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Furthermore,

UL :=
{︂

L′ ∈ GA,S : L′∩L⊥ = {0}
}︂
.

Proposition 41. L′∩L⊥ = {0} if and only if L′⊕L⊥ = RS and therefore

UL =
{︂

L′ ∈ GA,S : L′⊕L⊥ = RS
}︂
.

Proof. As it is well known, if W1 and W2 are vector subspaces of a vector space V , then

V =W1 ⊕W2 ⇔ V =W1 +W2 and W1 ∩W2 = {0} .

(1) If L′⊕L⊥ = RS , then L′∩L⊥ = {0}, as recalled above.
(2) If L′∩L⊥ = {0}, then we have to prove that L′⊕L⊥ = RS.

It suffices to show that L′+L⊥ = RS.
From Proposition 16, L⊥ ∈ GS−A,S. Let

(︁
v1, ...,vA

)︁
be a basis of L′ and(︂

vA+1, ...,vA+(S−A)=S
)︂

a basis of L⊥. We want to show that

A

∑
i=1

αivi +
S−A

∑
j=1

βA+ jvA+ j = 0 ⇒ α
1 = ...= α

A = β
A+1 = ...= β

S = 0.

Indeed, ∑
A
i=1 αivi =−∑

S−A
j=1 βA+ jvA+ j ∈ {0}= L′∩L⊥. Then,

A

∑
i=1

αivi = 0 and
S−A

∑
j=1

βA+ jvA+ j = 0

and the desired result follows from the assumption that
(︁
v1, ...,vA

)︁
is a basis of L′

and
(︂

vA+1, ...,vA+(S−A)=S
)︂

a basis of L⊥.

□

Proposition 42. Let L′ ∈ GA,S be such that L′ ∩L⊥ = {0}. Then, the restriction of πL to
L′ ⊆ RS, i.e., πL|L′ denoted by π| L′ : L′ → L, such that π|L′(v) = vL is an isomorphism.

Proof. We have to prove that π|L′ is linear, one-to-one and onto.
(1) π| L′ is linear because it is the restriction of a linear function to a vector subspace of

the domain.
(2) π| L′ is one-to-one. We want to show for any v′,v′′ ∈ L′, πL (v′) = πL (v′′) implies

v′ = v′′.
Observe that if v′ ∈ L′, then π|L′ (v′) := πL |L′ (v′) = πL (v′). Moreover,

there exists a unique
(︁
v1,v1

⊥
)︁
∈ L×L⊥ such that v′ = v1 + v1

⊥

and

there exists a unique
(︁
v2,v2

⊥
)︁
∈ L×L⊥ such that v′′ = v2 + v2

⊥.

Then, πL (v′) = πL (v′′) implies v1 = v2 := v∗ and then

L ∋ v∗ = v′− v1
⊥ = v′′− v2

⊥.
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A6-12 M.B. DONATO AND A. VILLANACCI

Since L′∩L⊥ = {0}, then from Lemma 41, we have RS = L′⊕L⊥.Then v∗ ∈
L ⊆ RS can be written in a unique way as the sum of vectors in L and L⊥. Then,
v′ = v′′ (and v1

⊥ = v2
⊥), as desired.

(3) π| L′ is onto. Take v ∈ L; we want to find v′ ∈ L′ such that πL (v′) = v. Since v ∈ L ⊆
RS = L′⊕L⊥, then there exist a unique (v′,v⊥) ∈ L′⊕L⊥ such that v = v′+ v⊥.

Then,
∈L′

v′ =
∈L
v +

(︄
∈L⊥

−v⊥
)︄

, and then, by definition of πL, we do have πL (v′) = v,

as desired.
□

Corollary 43. For any basis (h1, ..,hA) of L, there exists a basis ( f1, ..., fA) of L′ such that
π|L′ ( f1) = h1, ...,π|L′ ( fA) = hA.

Proof. Since π|L′ is an isomorphism, then it is onto and

∀a ∈ {1, ...,A} , ∃ fa ∈ L′ such that π|L′ ( fa) = ha. (6)

Since dimL′ = A, to show that ( f1, ..., fA) is a basis of L′, it is enough to show that
they are linearly independent, i.e., ∑

A
a=1 βa fa = 0 ⇒ β1 = ... = βA = 0. Indeed, 0 =

∑
A
a=1 βa fa

π linear⇒ 0 = ∑
A
a=1 βaπ ( fa)

(6)
= ∑

A
a=1 βaha and the desired result follows from the

fact that (h1, ..,hA) is a basis of L. □

Proposition 44. For any L ∈ GA,S, one has that U∗
L =UL.

Proof. 1. U∗
L ⊆UL.

Taken L′ ∈U∗
L , then there exists u =

(︁
u1, ...,uA

)︁
∈
(︁
L⊥)︁A such that ϕL (u) = L′. Then,

from Lemma 39 we do have ϕL (u)∩ (ϕL (0))
⊥ = {0}, i.e., L′∩L⊥ = {0}, i.e., L′ ∈UL.

2. UL ⊆U∗
L .

Taken L′ ∈UL, from Lemma 43, there exists a basis ( f1, ..., fA) of L′ such that π|L′
(︁

f 1
)︁
=

h1, ...,π|L′ ( fA) = hA, i.e., by definition of π|L′ := πL |L′ ,

πL ( f1) = h1, ...,πL ( fA) = hA

Then define v1 = πL⊥ ( f1) , ..., vA = πL⊥ ( fA) . Then,

f1 = πL ( f1)+πL⊥ ( f1) = h1 + v1, ..., fA = πL ( fA)+πL⊥ ( fA) = hA + vA.

Hence

L′ = span( f1, ..., fA) = span(h1 + v1, ...,hA + vA) , where (v1, ...,vA) ∈
(︂

L⊥
)︂A

and therefore L′ ∈U∗
L = ϕL

(︂(︁
L⊥)︁A

)︂
, as desired. □

Proposition 45. For any L ∈ GA,S, UL is open.

Proof. First of all, given any basis (v1, ...,vS−A) of L⊥, we prove that

q−1 (UL) =
{︁
(y1, ...,yA) ∈VA

(︁
RS)︁ : (y1, ...,yA,v1, ...,vS−A) ∈VS

(︁
RS)︁}︁ .

We have
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q−1 (UL) =
{︁
(y1, ...,yA) ∈VA

(︁
RS
)︁

: span(y1, ...,yA)∩L⊥ = {0}
}︁
=

=
{︁
(y1, ...,yA) ∈VA

(︁
RS
)︁

: span(y1, ...,yA)⊕L⊥ = RS
}︁
=

=
{︁
(y1, ...,yA) ∈VA

(︁
RS
)︁

: (y1, ...,yA,v1, ...,vS−A) is a basis of RS
}︁
=

=
{︁
(y1, ...,yA) ∈VA

(︁
RS
)︁

: (y1, ...,yA,v1, ...,vS−A) ∈VS(RS)
}︁
.

To prove that UL is open in GA,S, we prove that q−1 (UL) is open in GA,S. Since

q−1 (UL) =
{︁
(y1, ...,yA) ∈VA

(︁
RS
)︁

: (y1, ...,yA,v1, ...,vS−A) ∈VS
(︁
RS
)︁}︁

=
{︁
(y1, ...,yA) ∈VA

(︁
RS
)︁

: det [y1, ...,yA,v1, ...,vS−A] ̸= 0
}︁
,

q−1 (UL) is open in VA
(︁
RS
)︁

and then UL is open in GA,S. □

Proposition 46. GA,S is a C ∞ manifold of dimension equal to the dimension of
(︂

L⊥
)︂A

, i.e.,

(S−A)A and (ψL,U
∗
L ,
(︂

L⊥
)︂A

)L∈GA,S
defines an C∞ atlas for GA,S.

Proof. The thesis follows from following facts.
(1) (U∗

L )L∈GA,S
is an open cover of GA,S (Proposition 45);

(2) ψL and (ψL)
−1 are continuous (Proposition 38 and Proposition 40);

(3) For any (UE ,ψE) and (UF ,ψF) two local charts at E,F ∈ GA,S, respectively, such
that UE ∩UF ̸= /0, the function ψF ◦ (ψE)

−1 is a C∞ diffeomorphism (see Bich and
Cornet (2004) page 169).

□

We can show that GA,S has further topological properties.

Proposition 47. GA,S is a compact topological space.

Proof. We are going to show that V 0
A

(︁
RS
)︁

is compact. Then since q0 : V 0
A

(︁
RS
)︁
→ GA,S is

onto and continuous from Remark 12 , the desired result follows.
We endow V 0

A

(︁
RS
)︁

with the Euclidean metric5 of RSA, i.e., for any M ∈V 0
A

(︁
RS
)︁

∥M∥2 :=
A

∑
a=1

⟨Ca (M) ,Ca (M)⟩S = A,

Ca (M) denote the a-th column of M. It then follows that V 0
A

(︁
RS
)︁

is bounded.
Now, take a sequence {Mn}n∈N ⊆V 0

A

(︁
RS
)︁
, where for any n ∈ N

Mn :=
[︁

C1 (Mn) ... Ca (Mn) ... CA (Mn)
]︁

and Mn
n→ ˜︁M. We want to show that ˜︁M ∈V 0

A

(︁
RS
)︁
. Observe that for any a ∈ {1, ...,A},

we do have that Ca (Mn)
n→Ca

(︂ ˜︁M)︂. Moreover, since for any n ∈ N, Mn ∈V 0
A

(︁
RS
)︁
, then

5Observe that in a finite dimensional vector space any metric induces the same topology.
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for any i, j ∈ {1, ..,A}, ⟨︁
Ci (Mn) ,C j (Mn)

⟩︁
S =

{︃
1 if i = j,
0 if i ̸= j

Since the inner product is a continuous function, then⟨︂
Ci
(︂ ˜︁M)︂ ,C j

(︂ ˜︁M)︂⟩︂
S
= lim

n→+∞

⟨︁
Ci (Mn) ,C j (Mn)

⟩︁
S =

{︃
1 if i = j
0 if i ̸= j

i.e., ˜︁M ∈V 0
A

(︁
RS
)︁
, as desired.

We are left with showing that GA,S is metrizable. □

Proposition 48. GA,S is second countable, i.e., it has a countable basis.

Proof. Since {UL : L ∈ GA,S} is an open cover of GA,S and GA,S is compact, that open cover

admits a finite subcover say {Ui : i ∈ {1, ...,m}}, with m ∈ N, and
(︂

ψi,Ui,
(︁
L⊥

i
)︁A
)︂

i∈{1,...,m}

is still an atlas for GA,S. Since
(︁
L⊥

i
)︁A is isomorphic to R(S−A)A, for any i ∈ {1, ...,m}, Ui is

diffeomorphic to R(S−A)A, say via αi. Let C be a countable basis of R(S−A)A.
Since second countability is preserved under homeomorphisms, then, for any i ∈

{1, ...,m}, Ui has a countable basis Bi = {αi (C) : C ∈ C }. Define now B = ∪m
i=1Bi.

We are left with showing that B is a countable basis for GA,S.
B is countable because it is the finite union of countably many sets. To show that B is a

basis for GA,S we have to check the following conditions.
1. B ⊆ T , and
2. ∀L ∈ GA,S, ∀S ∈ T such that L ∈ S, ∃B ∈ B such that L ∈ B ⊆ S.
1. Since Bi = {αi (C) : C ∈ C } , C is open in R(S−A)A and αi is a diffeomorphism from

R(S−A)A to Ui, then αi (C) is open in Ui and therefore in GA,S, as desired.
2. Take L ∈ GA,S and S ∈ T such that L ∈ S. We want to show that there exists BL ∈ B

such that L ∈ BL ⊆ S. Since GA,S ⊆∪m
i=1Ui, then there exists j ∈ {1, ...,m} such that L ∈U j

and there exists ˆ︁BL ∈ B j such that L ∈ ˆ︁BL ⊆U j. Observe ˆ︁BL ∩S ⊆ ˆ︁BL ⊆U j is an open set
containing L. Then, since B j is a basis of U j, then there exists BL ∈ B j ⊆ B such that
L ∈ BL ⊆ ˆ︁BL ∩S ⊆ S, as desired. □

Further properties of GA,S immediately follow from the above results and the following
Proposition (for more details see Munkres (1975)).

Proposition 49. Let X be a topological space which is second countable, i.e., it admits
a countable basis, (indeed, first countable suffices), Hausdorff and compact. Then the
following statements hold true.

(1) Every convergent sequence converges to a unique limit.
(2) X has a so called nested countable local basis at any x ∈ X, i.e., a countable local

basis B = {Bn}n∈N such that ∀n, Bn+1 ⊆ Bn.
(3) Let a nested local basis {Bn}n∈N at x be given. Assume that {xn}n∈N ⊆ X is such

that ∀n ∈ N, xn ∈ Bn. Then xn → x.
(4) Let S be a subset of X. x ∈ Cl(S) if and only if there exists a sequence of points of

A converging to x.
(5) S is closed if and only if it sequentially closed.
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(6) Compact sets are closed.
(7) Let a topological spaces (Y,T ′) and a function f : X → Y be given. Then, f is

continuous if and only if it sequentially continuous.
(8) If X is second countable, then S ⊆ X is sequentially compact implies it is compact.
(9) If X is Hausdorff, then S ⊆ X is compact implies it is sequentially compact.

(10) X is normal.
(11) X is regular.
(12) X is metrizable.

Remark 50. The main consequences of above Proposition are the following ones.
i. What we defined to be an open set in T , the topology we endowed GA,S with, is indeed
open with respect to a metric; i.e., GA,S is a metric space whose induced topology is exactly
T - defined in Definition 4 and Proposition 5 above;
ii. the fact that GA,S is a metric space allows to apply standard theory on set-valued
functions; indeed, standard theory requires domain and codomain of set-valued functions to
be metric spaces.

Remark 51. We conclude the section with a simple crucial consequence of all above
analysis. We have seen that there exists m ∈ N such that{︃

(ψLi ,ULi ,
(︂

L⊥
i

)︂A
)

}︃
i∈{1,...,m}

is an atlas for GA,S. Therefore, for any L ∈ GA,S there exists i ∈ {1, ..,m} and an associated
chart (ψLi ,ULi ,

(︁
L⊥

i
)︁A
) such that L ∈ULi and

L = span(FLi +ψLi (L)) ,

where FLi is a basis of Li. Observe that

ψ
∗
i : ULi ⊆ GA,S →

(︂
L⊥

i

)︂A
)⊆

(︁
RS)︁A

, ψ
∗
i (L) = FLi +ψLi (L) ,

where FLi +ψLi (L) is an S×A full rank matrix and it is a homeomorphism.

3. Existence result for GQVI involving Grassmannian manifolds

In the present section, we first recall the definition of variational inequalities and then we
present an existence result on generalized quasi-variational inequalities involving Grass-
mannian manifolds.

Definition 52. Let C ⊆ Rn be a nonempty, closed and convex set and let S : C ⇒ Rn and
Φ : C ⇒ Rn be set-valued maps. A Generalized Quasi-Variational Inequality associated
with C,S,Φ, denoted by GQVI, is the following problem

Find x ∈ S (x) such that there exists ϕ ∈ Φ(x) with ⟨ϕ,x− x⟩ ≥ 0, ∀x ∈ S (x) . (7)

In particular, when S(x) = C for any x ∈ C, (7) is a Generalized Variational Inequality,
GVI; when Φ is single-valued, (7) reduces to the Quasi-Variational Inequality, QVI. When
both Φ(x) is singleton and S(x) = C, for any x ∈ C, we have the classical Stampacchia
Variational Inequality, VI.
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Now, we introduce a variational inequality theorem involving the Grassmannian manifold
using the result below, presented and proved by Bich and Cornet (2004).

Theorem 53. Let C be a nonempty, convex, compact subset of Rn; for any a ∈ {1, ...,A},
let Ψa : GA,S ×C → RS be a continuous function and let Φ : GA,S ×C ⇒ C be a convex
valued and compact valued set-valued map which is either lower semicontinuous or upper
semicontinuous. Then, there exists

(︁
E,x
)︁
∈ GA,S ×C such that

for any a ∈ {1, ...,A},
Ψa
(︁
E,x
)︁
∈ E; (8)

either Φ
(︁
E,x
)︁
=∅ or x ∈ Φ

(︁
E,x
)︁
. (9)

Theorem 54. Let C be a nonempty, convex and compact subset of Rn. Let F : GA,S×C ⇒Rn

be a nonempty valued, convex valued, compact valued and upper semicontinuous set-
valued function; let K : GA,S ×C ⇒C ⊆ Rn be a nonempty valued, convex valued, compact
valued, closed and lower semicontinuous set-valued function and for any a ∈ {1, ...,A}, let
Ψa : GA,S ×C → RS be a continuous function. Then there exists

(︁
E,x
)︁
∈ K

(︁
E,x
)︁

and there
exists u ∈ F

(︁
E,x
)︁

such that,

⟨u,z− x⟩n ≥ 0, ∀z ∈ K
(︁
E,x
)︁

(10)
and for any a ∈ {1, ...,A},

Ψa
(︁
E,x
)︁
∈ E. (11)

Proof. First of all observe that GA,S is a metric space. Since C is compact by assumption,
GA,S is compact from Proposition 47 and F is upper semicontinuous and compact valued on
C by assumption, we have that

F (GA,S ×C) is compact. (12)

Define H := convF (GA,S ×C) which is compact and convex. Moreover, define T :
GA,S ×C×H ⇒C such that T (E,x,u) = argminz∈K(x,E) ⟨u,z− x⟩n .

Observe that, by definition of K, z ∈C and therefore T is well defined. Observe also that
gu,x : K → R such that gu,x(z) = ⟨u,z− x⟩n is a continuous function.

From assumptions on K, we can apply the Maximum Theorem and then T is

nonempty and compact valued, upper semicontiunuous, closed and also convex valued.
(13)

The last property is a consequence of the following standard argument. Take y1,y2 ∈
T (E,x,u) and λ ∈ [0,1]. Then,

∀z ∈ K (x,E) , ⟨u,y1 − x⟩ ≤ ⟨u,z− x⟩ , (14)

and
∀z ∈ K (x,E) , ⟨u,y2 − x⟩ ≤ ⟨u,z− x⟩ . (15)

Multiplying (14) by (1−λ ) and (15) by λ and summing up, we get

∀z ∈ K (x,E) , ⟨u, [(1−λ )y1 +λy2]− x⟩ ≤ ⟨u,z− x⟩ ,
as desired.
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Now, define P : GA,S ×C×H ⇒C×H such that P(E,x,u) := T (E,x,u)×F (E,x).
Observe that the above definition is well given because by definition of T , ImT ⊆C, and

F (GA,S ×C)⊆ H.
Observe that C×H is nonempty, convex and compact and by definition, P is nonempty,

convex, closed valued and compact valued. Moreover P is upper semicontinuous (from
Proposition 4 page 25 of Hildebrand 1974.) Then, we can apply Theorem 53 and we have
that there exists

(︁
E,x,u

)︁
∈ GA,S ×C×H such that for any a ∈ {1, ...,A}, Ψa

(︁
E,x
)︁
∈ E and,

since P is nonempty valued, (x,u) ∈ P
(︁
x,u,E

)︁
.

From the last statement, x ∈ T
(︁
x,u,E

)︁
, i.e., x ∈ argminz∈K(x,E) ⟨u,z− x⟩, that is equiva-

lent to ⟨u,z− x⟩n ≥ ⟨u,x− x⟩n = 0, ∀z ∈ K
(︁
x,E
)︁
, and moreover, u ∈ F

(︁
x,E
)︁
. Combining

all the above, we get the desired results. □

Remark 55. A converse of Theorem 54 does hold true, i.e., if conditions (10) and (11)
do hold true then condition (8) and (condition (9) with P in the place of Φ) hold true
as well. Indeed, to get the above result we have to show that (x,u) ∈ P

(︁
x,u,E

)︁
, i.e.,

x ∈ T
(︁
x,u,E

)︁
= argminz∈K(x,E) ⟨u,z− x⟩n and u ∈ F

(︁
x,E
)︁
, which follows immediately

from assumption (10).

4. Motivating example

In this Section, we present a framework the above analysis can be applied to. The model
we analyze was first studied in the seminal paper by Duffie and Shafer (1985).

The chosen model builds on the standard two-period, general equilibrium model of pure
exchange with uncertainty. In the commodity markets, C ≥ 2 different physical commodities
are traded, denoted by c ∈ C = {1,2, . . . ,C}. In the final period, only one among S ≥ 1
possible states of the world, denoted by s ∈ {1,2, . . . ,S}, will occur. The initial period
is denoted by s = 0 and we define the set of all states S 0 = {0,1, . . . ,S} and the set of
uncertain states S = {1,2, . . . ,S}. In the initial period, asset markets open and A ≥ 1 assets
are traded, denoted by a ∈ A = {1,2, . . . ,A}. We assume A ≤ S. Finally, there are H ≥ 2
households, denoted by h ∈ H = {1,2, . . . ,H}.

The time structure of the model is as follows: in the initial period, households exchange
commodities and assets, and the consumption takes place. In the final period, the uncertainty
is resolved, households honor their financial obligations, exchange commodities, and then
consume commodities.

We denote xsc
h ∈R and esc

h ∈R+ as the consumption and the endowment of commodity c
in state s by household h, respectively6. We define xs

h = (xsc
h )c∈C ∈RC, xh = (xs

h)s∈S 0 ∈RG

x = (xh)h∈H ∈ RGH and similarly es
h ∈ RC

+, eh ∈ RG
+, e ∈ RGH

+ , where G =C(S+1).
Household h’s preferences are represented by a utility function uh : RG → R. We denote

by U the set of vectors u = (uh)h∈H .
Moreover, we denote by psc ∈ R+ the price of commodity c in state s, by qa ∈ R

the price of asset a and by ba
h ∈ R the quantity of asset a held by household h. We

6Given v,w ∈ RN , we denote by v ≫ w, v ≥ w and v > w the standard binary relations between vectors. Also
the definitions of the sets RN

+ and RN
++ are the common ones.
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define ps = (psc)c∈C ∈ RC
+, p1 = (ps)s∈S ∈ RCS

+ , p = (ps)s∈S 0 ∈ RG
+, q = (qa)a∈A ∈ RA,

bh = (ba
h)a∈A ∈ RA, b = (bh)h∈H ∈ RAH .

We denote by ysac ∈ R the units of commodity c delivered by one unit of asset a in state
s and we define ysa = (ysac)c∈C ∈ RC, ys = (ysa)a∈A ∈ RAC, y = (ys)s∈S ∈ RSAC. Note in
particular that, in state s, asset a promises to deliver a vector ysa of commodities. The above
described assets are usually called real assets in the literature.

Define the return matrix function as follows

R : RCS
+ ×RSAC →M(S,A),

R(p1,y) :=

⎡⎢⎢⎢⎢⎣
⟨p1,y11⟩C · · · ⟨p1,y1a⟩C · · · ⟨p1,y1A⟩C

· · ·
⟨ps,ys1⟩C · · · ⟨ps,ysa⟩C · · · ⟨ps,ysA⟩C

· · ·
⟨pS,yS1⟩C · · · ⟨pS,ySa⟩C · · · ⟨pS,ySA⟩C

⎤⎥⎥⎥⎥⎦ ,
where M(S,A) denotes the set of real S×A matrices, Rs(p1,y) := (⟨ps,ysa⟩C)a∈A is the
s−th row of matrix R(p1,y) and aR

(︁
p1,y

)︁
:= (⟨ps,ysa⟩C)s∈S is the a− th column of

R
(︁

p1,y
)︁
.

We define the set of economies as E :=RGH
+ ×U ×RSAC, with generic element ε := (e,u,y).

Definition 56. A vector
(︂˜︁x,˜︁b, ˜︁p,˜︁q)︂ ∈ RGH ×RAH ×RG

+ ×RA is an equilibrium for the
economy ε ∈ E if

(1) for any h ∈ H ,
(︂˜︁xh,˜︁bh

)︂
solves the following problem. Given ε ∈ E and (˜︁p,˜︁q) ∈

RG
+×RA,

max
(xh,bh)∈RG

+×RA
uh (xh)

s.t. ⟨˜︁p0,x0
h − e0

h⟩C + ⟨˜︁q,bh⟩A ≤ 0

⟨˜︁ps,xs
h − es

h⟩C −⟨Rs(˜︁p1,y),bh⟩A ≤ 0, ∀s ∈ S ;

(16)

(2)
(︂˜︁x,˜︁b)︂ satisfies market clearing conditions

a. for any s ∈ S 0 and c ∈ C ,

∑
h∈H

˜︁x sc
h ≤ ∑

h∈H

esc
h if ˜︁p sc = 0,

∑
h∈H

˜︁x sc
h = ∑

h∈H

esc
h if ˜︁p sc > 0;

b. for any a ∈ A ,

∑
h∈H

˜︁ba
h = 0. (17)

In what follows, we first explain why the problem of existence of an equilibrium cannot
be analyzed using standard techniques employed in similar models, as Kakutani fixed
point theorem or homotopy arguments. Then, we show how the concept of equilibrium is
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strictly related to the concept of Grassmannian manifolds. Finally, we present a variational
inequality problem whose solutions, under suitable assumptions, are indeed equilibria we
are trying to prove the existence of. We warn the reader that our goal below is to convey
the general idea of the link between an interesting specific problem and the Variational
Inequality result in terms of Grassmannian we presented in Theorem 54. Indeed, the matter
is more complicated then what described below: a rigorous, complete analysis of the proof
of existence is presented in a companion paper by the authors (see Donato and Villanacci
(2020)).

The first step in our strategy is to introduce the definition of fixed - image equilibrium
which can be shown to be equivalent to the definition of equilibrium under a simple condition.
Before presenting the definition of fixed - image equilibrium, we describe and motivate
the two differences between that definition and the definition of “true”equilibrium, i.e.,
Definition 56.

In the definition of equilibrium, as a consequence of standard monotonicity assumptions
on the utility functions, for any household it is the case that each budget inequality in (16)
does hold true as an equality. Therefore, it must be

(︁
⟨ps,xs

h − es
h⟩
)︁

s∈S ∈ spanR
(︁˜︁p1,y

)︁
.

Observe that spanR
(︁˜︁p1,y

)︁
is a linear subspace of RS of dimension equal to rankR(p,y)

and represents the space of potentially available values of excess demands in period 1. When
the endogenous variable p changes, that dimension may change. That drop of rank leads to
a discontinuity of the demand function which constitutes a major problem in the application
of standard proof techniques. The above observations motivate the need to “fix the linear
subspace of potentially available values of excess demand” and leads to the concept of a
fixed - image equilibrium. In that concept, the value of the excess demands in period 1
has to be contained in a linear subspace of RS which is independent of prices and of fixed
dimension A, i.e.,

(︁
⟨ps,xs

h − es
h⟩
)︁

s∈S ∈ L where L is an element in GA,S, the Grassmannian
manifold of A dimensional subspaces of RS.

Using the properties of the Grassmannian manifold we have seen that for any L ∈ GA,S
there exists i ∈ {1, ...m} and an S×A matrix ψ∗

i (L) such that

L = Imψ
∗
i (L) (18)

- see Remark 51. That observation allows to rewrite
(︁
⟨ps,xs

h − es
h⟩
)︁

s∈S ∈ L as “there exists
bh ∈ RA such that

(︁
⟨ps,xs

h − es
h⟩
)︁

s∈S = ψ∗
i (L) · bh”, as we do in the definition of fixed -

image equilibrium (see Definition 57).
That definition contains also the requirement that the image of the return matrix R

(︁˜︁p1,y
)︁

has to be contained in the linear subspace L, which is a crucial condition to preserve the
link between the newly introduced notion of equilibrium and the original one.

Definition 57. A vector
(︂˜︁x,˜︁b, ˜︁p,˜︁L)︂∈RGH ×RAH ×RG

+×GA,S is a fixed - image equilibrium
for the economy ε ∈ E if
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(1) for any h ∈ H , (˜︁xh,˜︁bh) solves the following problem. Given ε ∈ E and (˜︁p,˜︁L) ∈
RG
+×GA,S

max
(xh,bh)∈RG

+×RA
uh (xh)

s.t. ⟨˜︁p0,x0
h − e0

h⟩C + ⟨1Sψ∗
i (˜︁L),bh⟩A ≤ 0(︁

⟨ps,xs
h − es

h⟩
)︁

s∈S −ψ∗
i (˜︁L)bh ≤ 0S,

(19)

(2) ˜︁x satisfies the market clearing conditions. For any s ∈ S 0 and c ∈ C ,

∑
h∈H

˜︁x sc
h ≤ ∑

h∈H

esc
h if ˜︁p sc = 0,

∑
h∈H

˜︁x sc
h = ∑

h∈H

esc
h if ˜︁p sc > 0;

(3)
ImR

(︂˜︁p1,y
)︂
⊆ ˜︁L. (20)

The definition of the fixed-image equilibrium presented above can be characterized in
terms of a suitable generalized quasi-variational inequality, a simplified form of which is
presented below.

Find
(︂
(˜︁xh,˜︁bh)h∈H , ˜︁p,˜︁L)︂ ∈ B

(︂˜︁p,˜︁L)︂×∆×GA,S and g = (gh)h∈H ∈ ∏
h∈H

Th(˜︁xh) such that

⟨((−gh)h∈H ,0A,( ∑
h∈H

(˜︁x h − es
h))s∈S 0),(x,b, p,L)− (˜︁x,˜︁b, ˜︁p,˜︁L)⟩ ≤ 0 (21)

for any ((xh,bh)h∈H , p,L) ∈ B(˜︁p,˜︁L)×∆×GA,S,

and ImR(˜︁p1,y)⊆ ˜︁L
where ∆ is the simplex in RG, the set-valued map Th : RG ⇒ RG is defined as

Th(xh) := conv
(︂

N>
h (xh)∩S(0,1)

)︂
,

with S(0,1) = {x ∈ RG : ∥x∥G = 1}, the unit sphere of RG, and N>
h (xh), the normal cone to

the strict upper level set U>
uh(xh)

:= {x ∈ Rn : u(x)> uh(xh)} ,

Bh : ∆×GA,S ⇒ RG
+×RA,

Bh((p,L) :=

{ (xh,bh) ∈ RG
+×RA : there exists (ψLi ,ULi ,

(︁
L⊥

i
)︁A
) ∈ Λ such that L ∈ULi and

⟨p0,x0
h − e0

h⟩C + ⟨1Sψ∗
i (L) ,bh⟩A ≤ 0,(︁

⟨ps,xs
h − es

h⟩
)︁

s∈S −ψ∗
i (L)bh ≤ 0S }
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and B(p,L) = ∏h∈H Bh(p,L).
Observe as the variational inequality in (21) has a simple structure, made up by two

parts. A first one, involving (x,b), relates to the households’ maximization problems, and
the second one, involving (p,L) to market clearing conditions.

In according to Definition 52 and to Theorem 54, the problem (21) represents a general-
ized quasi-variational inequality where

C := conv(B(∆×GA,S))×∆,

K(x,b, p,L) := B(p,L)×∆

F(x,b, p,L) :=−( ∏
h∈H

Th(xh))×{0A}×

{︄
∑

h∈H

(xh − eh)

}︄
.

Remark 58. As already pointed out above, the proof of the existence of equilibrium for the
model presented in the section requires a further modification of the concept of equilibrium,
suitable assumptions and further remarks. We analyze in detail that problem in a companion
paper (see Donato and Villanacci 2020).
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