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Abstract

In this paper, we studied Kaup—Newell (KN) equation in coupled vector form without
four-wave mixing terms in birefringent fibers. We employed Jacobi elliptic function
expansion method in order to demonstrate sub-pico-second optical soliton solutions.
Beside bright and dark solitons, Jacobi elliptic function solutions and hyperbolic solu-
tions are obtained. Moreover, the graphs for some solution are presented.

Keywords Jacobi elliptic function expansion method - Kaup—Newell model - Jacobi
elliptic function solutions - Hyperbolic function solutions - Dark solitons - Bright
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1 Introduction

In recent years, exact solutions to nonlinear partial differential equations (NLPDEs)
have played an important role in the study of many phenomena, particularly nonlinear
physical phenomena such as hydrodynamics, fluid mechanics, plasma physics, optics,
solid state physics and also in various fields of the engineering and science, it also gave
researchers an idea of understanding many physical phenomena. Optical solitons form
the basic fabric in the field of telecommunication industry. They are the carriers for the
transfer of information through optical fibers. These information transmission carri-
ers serve the modern-day telecommunication system through Internet, which include
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electronic mail transmission, social media activities. The captivating technology of
sub-pico second pulses that propagate through optical fibers is modeled with Kaup—
Newell’s (KN) equation (see [1-10]). The KNE is one of the three forms of derivative
nonlinear Schrodinger’s equations that govern this soliton dynamics. In this paper, we
investigate Kaup—Newell equation in coupled vector form without four-wave mixing
terms in birefringent fibers. We employ the Jacobi elliptic function expansion method
in order to demonstrate sub-pico-second optical soliton solutions. Moreover, we obtain
bright and dark solitons. Further, hyperbolic and Jacobi elliptic functions solutions are
also reported.

2 A description of the Jacobi elliptic function expansion method

We assume that the general form of the nonlinear partial differential equation (NLPDE)
in the form:

PQu,uy, ty, Uy, Uyr, Ugg, .. .) =0, (D

P is a polynomial function in u(x, t) and its different partial derivatives.
Main steps of the Jacobi elliptic function expansion method are as follows (see [11—
13]):

Stepl: We assume that the traveling wave solution of the Eq. (1) takes the form:
u(x, 1) =u(é), E=kx—pt, @)

k and p are real constants.
Substituting (2) in (1), we obtain the nonlinear ordinary differential Eq. (NLODE)in
the form:

Fu,u' u’,..)=0, 3)
where F is a polynomial of u(£) and its total derivatives u’, u”, ..., where the prime
" denotes % .

Step2: We assume that the solution of the Eq.(3) takes the form:

N i—1 2
B 2(6) 26 1—2z(8)
u(§) = go+ ; <—1 n Z@)z> (g’ Trz@r T +z<$>2) @

where g; and f; are constants, such that gy % 0 or fy # 0, and N is determined
by balancing the linear term of the highest order derivative and nonlinear terms, while
z(€) can be determined by the first kind of Jacobi Elliptic equation:

(dz(éf)
dé§

2
) =s+c2@) +rt@), ®)

s, ¢ and r are constants.
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Table 1 They are all Jacobi elliptic functions

No. S c r z2(§)
1 1 —(1+m?) m?2 sné
2 1—m? 2m? — 1 —m? cng
3 m? —(1+m?) 1 nsé = (sn&)~!
4 —m? 2m? — 1 1—m? ncé = (cng)~!
2

5 % # % ns€ +csé

2 2 2
6 1 m 1+%m 1 - ncé £scé or 72;55

Step3: Determine the positive integer N in (4) by balancing the highest order deriva-
tives and the nonlinear term in Eq. (3).

Step4: Substituting (4) along with Eq. (5) into (3) and collecting all the coefficients
of 7/ (£)(i = 0, 1,2, ...) then setting these coefficients to zero, yield a set of algebraic
equations, which can be solved by using the Maple or Mathematica to find the values
of fi, gi,s,c,r,p, k.

Step5: It is well-known that Eq. (5) has families of Jacobi elliptic function solutions
as follows (Table 1).

Step6: Substituting the values of go, gi, fi, s, ¢, r, z(§), p, k, as well as, the
solutions of Eq. (5) obtained in Step 5, into (4) we have the Jacobian elliptic functions
solution with the optical solitons solutions of the Eq. (1).

2.1 Some of the properties of Jacobian elliptic functions

The three Jacobi elliptic functions sn(&|m), cn(&|m), dn(&|m) are functions of the
variable & and the elliptic modulus parameter m = k%, 0 < m < 1. The inverse
functions are most easily defined in terms of elliptic integrals. For example

Z

x d
B /0 VU =21 —mz?)’

sn~ ! (&|m)

with similar relation cn~!(£|m) and dn~! (& |m).

The Jacobi elliptic functions sn§ = sn(é|m), cn&é = cn(&é|m) and dn& = dn(&|m)
are double periodic and possess properties of trigonometric functions sn> & +cn? & =
1, dn?& =1 —m?sn?é&.

If m — 1, the Jacobi functions degenerate to the hyperbolic functions sn& —
tanh &, cné — sech&, dné — seché&, cs& — csché and & — csch&, but
when m — 0, the Jacobi functions degenerate to the trigonometric functions sn § —
siné, cn& — cosé, dné — 1, csé — coté and & — cscé.
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3 Kaup-Newell model

The Kaup—Newell (KN) model in polarization-preserving fibers (see [14-24]) repre-
sented by:

Gr+iaqu+b(lg*q)=0, (©6)

where a is a coefficient of GVD, and b assures the existence of the nonlinearity. The
GVD is used to show how nonlinearity will affect the sub pico—second optical pulse
traveling through it. Finally, this model is impossible without non-linearity, because
the sub pico- second pulses only occur when the delicate balance of nonlinear and
GVD is established.

The KN system in the form of coupled vector without FWM reads

vitiave+n (102 ¢) +u (WP v) =0, )
oi+iardutn (WP ) +5 (10 ¢) =0, ®)

with the constants a; and %;, y; that assure the existence of the GVD and nonlinearity
sequentially.

4 Application on the governing model

We assume that the solutions of Egs. (7) and (8) have the form:

Yx. 1) = Pi(D) e ¥, ©)
P(x.1) = Py(®) e #, (10)
where
¥ =x — pt, (11)
and
p(x,t)=—kx+wt+¢, (12)

where P; (), j=1,2,¢(x,1t),p,«,wand{ thatrepresent the amplitude component,
phase function, speed of the soliton, frequency, wave number and phase respectively.
Substituting Egs. (9) and (10) into Eqgs.(7) and (8), and separate the real and imaginary
parts, we get

—ajPJf’—l—(asz—a)) Pj+K)ij;+K)/jR/‘:’=0, (13)

(2ajx = p) Pj+34; P} Pj+3y; P PL=0, (14)
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where j =1,2and j =3 — j. Using a balance rule leads to
P; = P, (15)
From the Eq. (14) then, the speed of the soliton is:
p=2ajKk+(yj+1) P} (16)
and

aj P =k (yj+2;) P} + (0—a;k?) Py =0. (17)

Therefore, the equation required for the exact solution of Egs. (7) and (8) is represented
by (17). From step 2 in Sect. 2 and by applying the principle of the balance criteria
between the terms of Pj3 and PJ’.’ in Eq. (17), we get N =1, then, the solution of
Eq. (17) reads

_ 2() 1—z()?
P() =go+ g1 (m)‘i‘ﬁ (m)s (18)

where g;, i = 0,1 and f] are the constants, so that g # 0 or f; # 0. Substi-
tuting Eq. (18) along with Eq. (5) into Eq. (17), and collecting all the coefficients of
Z'(€),(i = 0,1,...,6), and by setting the result to zero, we obtain the following
system:

70 coeff.:

—fk (i +r) B+ D+ fi (Bade (+2) —ay (F+45)+0)

—g0 (g5 k (vj + 1))+

K2 a; —w) =0,
z coeff.:
81 (aj (C — - 6S)
—6f1 gox (vj + 1)) —3ffk (vj + 1)) —3gdky;—3gia, +a)) =0,
22 coeff.:

fi (—aj <SC+K2—12s>—3g3K (yj+)»j)—3g%/<yj—3g%/<)»j+w>
+3 ff gow (v +4j) +3 £k (vj+2)
-3 g0 (g%/c (yj+kj)+glzxyj+gl2xkj+x2aj—w>:0,
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23 coeff.:

g1 Qa;Bc+i?—r—s5)—6flu(yi+r)+6g Ky +giky

+6g%fckj+g%/<)»j—2w)=0,

7% coeff.:

fi (aj(8c+/<2—12r>+3g(2)/< ()/j+)\j)+3g%l(‘)/j+3g%l()»j—a)>

+3 fgor (vj+2j) =3 fwc(vi+4j)
-3 80 (&%K (vj +/\j)+812'<3/j +812/<)»j+'€2aj—w) =0,

2> coeff.:

g1 (aj (c—K2—6r>+6f1g0K ()/j+kj)

—3f12/<()/j+)»j)—3g%lcyj—3g(2)/<)»j+a)>=0,

20 coeff.:

=3 fE g0k (v +2))+ K (v +2)) = g0 (g5 (v +2) +17 aj — o)

+f1 Bggk(vi+h)+aj (K2+4r>—a))=0,

This system of solutions is obtained by using Mathematica. Consequently, we obtain

six types of solutions as follows:

Type I When s =1, ¢c = —(+m?), r =m? and z(9) = sn(?). Through

sn(¥, 1) — tanh(?¥),then, we have two results

Result 1
4.2
g =0 g =% L . fi=0,
Je (c24+8) (v +3))
m=5 a]_/c2+8

Then, the dark wave solutions of Egs. (7) and (8) are:

tanh [2 (x — pt)] & K ¥ H@1H) (1)

Vot =+ 22w
\//c (k2 +8) (1 + i)
d(x, 1) =+ 2v20 tanh [2 (x — pt)] € (T X T @iH8) (20

\/K (k2 +8) (24 22)
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and ko (yj+4;)>0, j=1,2.
Result 2

Then, the bright wave solutions of Egs. (7) and (8) are:

22w

Yx, 1) =+ sech [2 (x — p1)] & (KX T@tt)
\/—K (k2 —=4) (r1+ 1)
21
b(x, 1) =+ 2v20 sech [2 (x — p1)] & (KX T @ttt)
\/—K (k2 —4) 2+ 1)
(22)

and ko (kK —4)(y;+1j) <0, j=1, 2.
Type2 When s=1—m?, c=2m?>—1, r = —m? and z(¥) = cn(?), we
have two results:

Result 1
2
g == Vo ,81=0, fi== Vo ,
e (@2 =5) (v + 2)) (22 =5) (v +4))
_ o e
" T %S

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

_ _ 2
Y(x, 1) ==+ Vo G cnlx pt]z)
Jk @k2=5) i ap el =pil
ei (—k x + wt+¢ )’ (23)
_ NLD) 3 —cnfx — pt]?
P 1) =% (1+Cn[x—,0t]2>

\/—K (2 K2 — 5) (2 +22)
e (—k x + wt+g )7 (24)

and ko (2k2=5)(yj+1j) <0, j=1,2.
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Result 2
2
Vo ,861=0, fi=7F Vo ,
JK 262 +5) (v + 1)) Je @2 +5) (v + 1))
«/§ 2w
m=—,a; =
2 %245

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

- _ o2
Y1) =+ Ve ( 1+ 3en[x p;] )
\/K (2K2+5) (y1 4+ A1) 1 +cnl[x — pt]
ol (Crx + o1t )7 03)
Vo (—1+3cn[x—,ot]2)
1 + cnfx — pt]?

p(x, 1) ==+
\/K (2K2+5) (2 + A2)
ei (—k x + o t+¢ )’ (26)

and ko (yj+4;)>0, j=1,2.
Type 3 When s =m?>, c=—(m>+1), r =1 and z() = ns(®). Through
ns(?, 1) — coth(¥), then, we have two results

Result 1

42w w
=0, m=1, a;=

g =0, gi==£ ., f =

\/K (/c2+8) (yj +Aj)

Then, the dark wave solutions of the Egs. (7) and (8) are:

Yx, 1) ==+ 2viw tanh[2 (x — p 1)] € (KX T @) (27)
\//c (k2 +8) (14 i)
22w tanh[2 (x — p 1)] o (= x + wt+¢ )’ (28)

¢(x,1) =%
\/K (K2 + 8) (2 + A2)

and ko (yj+4;)>0, j=1,2.
Result 2

g0 =0, g1=0, fi==% ., m =1, aj=K2_4
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Then, the bright wave solutions of the Eqs. (7) and (8) are:

Y(x,t)=F 2V20 sech[2 (x — p 1)] o (K x tottt )’ (29)
J (=4 Gt
¢('x’t)=:F 2\/2(0 sech[2 (x—,Ol)] ei (—k x + o t+¢ ),

\/—K (k2 —4) (4 r2)
(30)

and ko (k2 —4) (vj+2j) <0, =12
Type 4 When s = —m?,c=2m?—1, r=1—m? and z(®¥) = nc(®), we
have two results:

Result 1
2
g == Ve ,81=0,fi=7F Vo ,
Jr @62 =5) (v + 1)) Je @2 =3) (v +4))
_r 2o
=547 525

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

Jo (—1+3nc[x—pt]2>
ey (Towar
o (Kx otk (€20
Jo (—1+3nc[x—pt]2>
\/_K (2"2_5) (y2 + 22) 1 +nc[x — pt]?
o (KXt wrHD) (32)

Y(x,t) ==

¢(x,t) =%

and ko (2k2=5)(yj+1j) <0, j=1, 2.
Result 2

o =0 fi=% SR
\//c 5) (vj + 1)) \/K (262 +5) (vj + *j)

ﬁ _ 2w
2 YT s

m =

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

2
ﬂ <3—1‘IC[X—,OI]> ol (Crkx+ortl)

Yx,t) ==+
\/K (2K2+5) ()/1"‘)»1) 1+nC[x—,0t]2




23 Page 100f 16 H. M.Ahmed et al.

(33)
b, 1) =+ Vo (3_110[)‘_:0”2) ol (KXt o)
\/K (2K245) (2 +A2) L+ nelx — pr]?
(34)

and ko (yj+1;)>0, j=1,2

Type5 When s =r = }1 , c= 1_5’"2 and z(v) = ns(¥) &£ cs(), we have two
results: Result 1

2./2 (w—(k2+1)a; w—a;(k?+1
w0 as V2 (= ( L J(‘ )
K(yj+kj) \/a_]

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

Y(x,t) ==

2\/2(60—611("2“))( nslx — p 1] 4 cs[x — p ] )

VK (1 + A1) 1+ (ns[x — p t] £ cs[x — p t])?
ei (—k x+w t+§)’ (35)

P(x,t) ==

2\/2(w—a2(/c2+1)) < ns[x — p t] Ecs[x — p £] )

VK (y2+22) 14+ (ns[x — p t] Ecs[x — p t])?
ei (—k x+w t—&-;‘)7 (36)

withe (y; + 1)) (@ —a; (k*+1)) >0,a; (k?+1) <w <a; (k* +2) anda; >
0 j=1,2.

Specifically, let @ = a; (K2 + 2), then, the dark soliton solutions of the Eqgs. (7) and
(8) are:

_ N2a tanh[x — p 1] & <X+ (k242) a1 1+0)
VK (y1 4 A1)

dx,t) =+ V292 nhlr — pt] el CrxE (E42) a0,

K (y2+A2)

Vix,1) ==+ (37
(38)

Result 2

Jo— (kK2 +1)a; o \/—a)—i—aj (k2+1)
K()/j-l-)»j) , \/Ta./'

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

g0 =0, g1=0, fi==%

Yx, 1) ==+

w—da (K2+ 1) (1 — (ns[x — p t] £ cs[x —,ot])2>
Ve (A 1+ (ns[x — p t] £ cs[x — p 1])?
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ol (K X+ 1+0) 39)
b=+ a)—az(/c2+1) <l—(ns[x—pt]:l:cs[x—pt])2>
T Tk htr \I+ (slx — p il £ eslx — p1])?
ei (—k x+w t+;‘)’ (40)

with k (y;+4;) (@—a; (kK*+1)) >0, a; (kK2—1) <o < a; (k*+1)
anda; >0 j=1, 2.

Specifically, let @ = a; (K2 - 1), then, the bright soliton solutions of the Egs. (7)
and (8) are:

_NZZa sechlx — p t] ¢ ¥ 3+ (F=1) a1 140) 41
Jr (v + A1)

p(x.1) = i—v(_sz < sechlx = p 1] o At (P a ko) g
Vi (2 2

Y(x,t) ==

Type6 Whens = r = 1527 ¢ = 1927 and 7(9) = ne(9)£se(9) orz(?) = (md)
we have two results:

Result 1
2. Jo—(k2+1)a; —w+a; (k2 +1
+ ( ) J :()’ z\/ ]( )

80 =0, g1 = . N
w (vi+2j) V2

Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:

2\/m ( ncfx — pt] L sclx — pt] )
VK (Y1 + A1) 1+ (nc[x — p t] £ sclx — p t])?
ei (—k x+o l+§)’ (43)

2\/m ( nclx — p t] £ sclx — p t] )
Vi (2 +A2) 1+ (nc[x — p t] £ sc[x — p t])?
ei (=K x+w t+§)’ (44)

Yx, 1) ==+

P(x,t) ==

or

vx, 1 =

zm ( cnfx — p 1] (£1 +sn[x — p t]) )
Vi (vt + A1) en[x — p 11> + (£1 + sc[x — p t])?
ei (—k x+w t+;)’ (45)

2\/m< enlx — p 1] (&1 + snx — p 1]) )

Vi (Y2 +A2) enlx — p t1? + (£1 + sc[x — p t])2

¢(x, 1) =
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ei (—k x+w t+§)’ (46)

with « (yj +Aj) (a)—aj (IC2+ 1)) > 0, aj (ICZ— 1) < o < aj (K2+1)
anda; >0 j=1, 2.
Specifically, let @ = a; (k> — 1), then, the hyperbolic function solutions and bright
soliton solutions of the Egs. (7) and (8) are:

2

V) =+ 2 -2a ( cosh[x — pr] + tanh[x — pt] >
Tk + A \ 1+ (cosh[x — pt] 4 tanh[x — pr])?

ei(—lc)c—Q—(lcz—1)a1t—§—§)7 (47)

Sort) =+ 2 —2as < cosh[x — pt] + tanh[x — pt] >
T T k(s + A2) UL + (cosh[x — pt] 4 tanh[x — pr])2
ei(—Kx—Q—(Kz—l)azt—Q—{), (48)
or
_ —2ay i(—Kx+(K2—l)alt+{)
U, 1) = iﬁ W sech[x — pt] e , (49)
_ v —2a3 i(—Kx+(K2—l)a2t+§)
¢(x,t) = im sech[x — pt] e . (50)
Result 2
2(w — (k2 + l)a) w—aj(k*+1)
g0=0, g1=0, fi= \/ “om= ].
K (vj+2)) Vai
Then, the Jacobi elliptic function solutions of the Egs. (7) and (8) are:
et \/2 w—a (k2 +1)) <1—(nc[x—pt]:l:sc[x—pt])2)
X =
’ Vi i+ A1) 1+ (nc[x — p 1] £ sclx — p t])?
i (—k x4+w t+{) (51)
Py \/2 _a2 ])) (1—(nc[x—pt]:i:sc[x—,0t])2>
T Vi (V—z +2) 1+ (nc[x — p t] £ sclx — p t])?
ei (—k xt+w t+§'), (52)
or
ot \/2 —ar (k2 + 1)) [ _cnfx — pt] + (£1 + sn[x — pr])>
NIICZEEN enfx — pr]? + (£1 + sc[x — pt])?

ei(—Kx+a)t+{)’ (53)
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o

o

L L L L L Lox
-15 -10 -5 o a5 10 15

FE=F371
a8

Fig.3 3D and 2D diagrams of a Jacobi elliptic function solution (25)

V2(@=a (@ +1) [ Zcnfx — pr] 4+ (£1 + snlx — pi))
Vi (2 +212) cnlx — pt]? + (£1 + sclx — pt])?
ei(flcx+wt+§)’ (54)

d(x,1) =%
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L x
-15 -10

0.5

04

01

Fig.6 3D and 2D diagrams of a dark wave solution (55)

with k (yj +Aj) (a) —aj (K2 + 1)) >0,a; (K2 + 1) <w=aj (K2 +2) anda; >
0 j=1 2

Specifically, let @ = a; (k2 + 2), then, the dark soliton solutions of the Eqgs. (7) and
(8) are:

V2 ay i (— 249
x. 1) = F—= _ tanh[x — p 1] ol (e xt («*+2) a1 I+§)’ (55)
vx, 1) =7F FATTESN) P
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V2a i (=it (P42) az 140)

———— tanh[x — 56
mtan [x —ptle (56)

¢(x.1) =F

5 Graphic representation of solutions

In this part, some diagrams are presented in 3D and 2D format of some of the solutions
obtained in this paper including solutions of fine travel waves and also of hyperbolic
functions and other solutions in various shapes to fully understand this system. Figure
1 shows the 3D and 2D a dark wave solutions of Eq. (19) with = 1.2, ¥ =
2, Y1 =T =14, A\t =2 =06, p=2,¢ =1 and —15 < x < 15.
Figure 2 shows the 3D and 2D a bright wave solution of Eq. (21) withw = 1.4, k =
1.2, 1 =T, =1, Ay = A2 =16, p=1, ¢ =2 and —15 < x < 15.
Figure 3 shows the 3D and 2D a Jacobi elliptic function solution of Eq. (25) with w =
13, k =1, T =T =12, Ay =2 =13, p=15,¢ =2 and —15 <
x < 15. Figure 4 shows the 3D and 2D a hyperbolic function solution of Eq. (47)
withw =15, k =05, T1 =T =13, A1 =x =15 p=12, ¢ =13 and
—15 < x < 15. Figure 5 shows the 3D and 2D a bright soliton solution of Eq. (49)
withw =14, k =06, Y1 =T =1.1, Ay =2 =12, p=1.5, ¢ =14 and
—15 < x < 15. Figure 6 shows the 3D and 2D a dark soliton solution of Eq. (55)
withow =15, k=16, "1 =T =14, Ai=x =12, p=15, { =14 and
—15 <x < 15.

6 Conclusion

The KN equation without four-wave mixing (FWM) terms in birefringent fibers
has been studied successfully using Jacobi elliptic function expansion method. We
obtained all possible solitons for this equation. Beside bright and dark solitons, Jacobi
elliptic function solutions and hyperbolic solutions are also reported. Furthermore,
3D and 2D graphs of bright and dark soliton and Jacobi elliptic function solutions are
presented for better illustration.
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