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Abstract By variational methods and critical point theorems, we show the existence
of two nontrivial solutions for a nonlinear elliptic problem under Robin condition
and when the nonlinearty satisfies the usual Ambrosetti-Rabinowitz condition.
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1 Introduction

In this paper we study the existence of two nontrivial weak solutions of following
nonlinear elliptic equation under Robin condition

−∆pu+ |u|p−2u = λ f (x,u) in Ω ,

∂u
∂ν

+β (x)|u|p−2u = 0 on ∂Ω ,
(1)

where Ω ⊂RN (with N ≥ 3) is a non-empty bounded open set with a smooth bound-
ary ∂Ω , λ is a positive real parameter and 1< p<N. The differential operator in (1)
is described by the p-Laplacian, ∆pu= div(|∇u|p−2∇u). We assume f : Ω×R→R,
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β ∈ L∞(∂Ω), β (x)≥ 0 a.e. on ∂Ω . In the boundary condition, ∂u
∂ν

denotes the gener-
alized normal derivative defined by ∂u

∂ν
= |∇u|p−2∇u ·ν(x), ν(x) being the outward

unit normal at x ∈ ∂Ω .
A special case of our main result (see Theorem 6) can be given in the following

form.

Theorem 1. Let g:R→R be a nonnegative and continuous function such that there
exist positive constants a1, a2 and s ∈]p, p∗[ such that

|g(t)| ≤ a1 +a2|t|s−1 for all t ∈ R,

and

lim
τ→0+

g(τ)
τ

=+∞.

Moreover, assume that there exist ν > p and R > 0 such that

0 < ν

∫
τ

0
g(t)dt ≤ τg(τ) for all τ ∈ R with |τ| ≥ R.

Then, there exists λ > 0 such that for each λ ∈]0,λ [, the problem
−∆pu+ |u|p−2u = λg(u) in Ω ,

∂u
∂ν

+β (x)|u|p−2u = 0 on ∂Ω ,
(2)

has at least two nonnegative weak solutions.

The main novelty of our paper is that we apply a recent critical-points result to el-
liptic problems with p−Laplacian in the equation and with Robin conditions on the
boundary. There exist several existence results to problem (1), anyway our approach
is new and gives the existence of two nontrivial weak solutions. The assumptions on
the nonlinear term are easy to verify and so our results could be applied to several
problems of type (1).

Elliptic problems with Robin conditions have been studied by several authors by
applying different tools like fixed point theorems, sub and super-solution methods,
and critical point theory. We refer, without any claim to completeness, to the papers
[2, 7, 12, 13, 14, 15] and the references therein.

Moreover, we observe that the derivation and application of critical point results
of that used here have been initiated by the works of Ricceri [16, 17] which were the
starting point of several generalizations in that direction for smooth and non-smooth
functionals, we refer only to some works of Marano-Motreanu [9, 10], and Bonanno
[3, 4] that inspired us in writing this paper.

The paper is organized as follows. In Section 2, we state the main definitions
and tools that we are going to need to prove our main results. Especially, we recall
the abstract critical point theorem of Bonanno-D’Aguı̀ [5], which is an appropriate
combination of the local minimum theorem obtained by Bonanno with the classical
and seminal Ambrosetti–Rabinowitz theorem (see [1]), moreover we give a lemma
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about the relation of our perturbation concerning the Ambrosetti–Rabinowitz con-
dition and the Palais-Smale condition (Lemma 1). Then, in Section 3, we are going
to prove our main result which gives an answer about the existence of solutions to
problem (1). To be more precise, we obtain the existence of two non-trivial solu-
tions of (1), see Theorem 3, and the proof is based on the abstract critical points
result stated in Section 2. Finally, in Section 4, we consider special problem in the
autonomous case, and give an example in order to show the applicability of our
results.

2 Preliminaries and basic notations

Let (X ,‖ · ‖) be a Banach space; its dual space is X∗ and the corresponding duality
pairing is denoted by 〈·, ·〉. Let I : X →R be a Gâteaux differentiable functional; we
say that I satisfies the Palais-Smale condition, (in short (PS)−condition), if every
sequence {un}n∈N ⊆ X such that {I(un)}n∈N ⊂ R is bounded, and I′(un)→ 0 in X∗

as n→+∞, admits a strongly convergent subsequence in X .
Let A : X→ X∗ be a functional. We say that A has S+-property iff every sequence

{un}n∈N ⊂ X such that un ⇀ u in X and limsupn→+∞〈Aun,un−u〉 ≤ 0 implies that
un→ u in X .

We consider the usual Sobolev space W 1,p(Ω), endowed with the norm

‖u‖=
(∫

Ω

|u(x)|pdx+
∫

Ω

|∇u(x)|pdx
)1/p

and denote by (W 1,p(Ω))∗ its dual space.
Since 1 < p < N, p∗ = pN

n−p and it is known that, for every u ∈W 1,p(Ω) there
exists a constant T ∈ R+ such that

‖u‖Lp∗ (Ω) ≤ T‖u‖, (3)

the constat T has been determined by Talenti (see [18]) and

T ≤ π
− 1

2 N−
1
p

(
p−1
N− p

)1− 1
p

 Γ
(
1+ N

2

)
Γ (N)

Γ

(
N
p

)
Γ

(
1+N− N

p

)
 1

N

,

where Γ is the Euler function.
Fix s ∈ [1, p∗[, by Sobolev embedding theorem and Hölder’s inequality, for every
u ∈W 1,p(Ω) we have that

‖u‖Ls(Ω) ≤ T |Ω |
p∗−s
p∗s ‖u‖, (4)

where |Ω | denotes the Lebesgue measure of Ω in R. On ∂Ω we consider the (N−
1)-dimensional Hausdorff (surface) measure σ(·). Using this measure, we can define
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in the usual way the ”boundary” Lebesgue spaces Lp(∂Ω) 1 ≤ p ≤ ∞. From the
theory of Sobolev spaces, we know that there exists a unique continuous linear map
γ0 : W 1,p(Ω)→ Lp(∂Ω), known as the ”trace map”, such that

γ0(u) = u|∂Ω
for all u ∈W 1,p(Ω)∩C(Ω).

Therefore we understand γ0(u) as representing the ”boundary values” of an arbitrary
Sobolev function u. The trace map γ0 is compact into Lη(∂Ω) for all η ∈ [1, (N−1)p

N−p ).
Also, we have

imγ0 =W
1
p′ ,p(∂Ω), (p′ =

p
p−1

), kerγ0 =W 1,p(Ω).

In the sequel, for the sake of notational simplicity, we drop the use of the trace map
γ0. All restrictions of Sobolev functions u on ∂Ω are defined in the sense of traces.
In studying problem (1) we rely on the negative p-Laplacian −∆p : W 1,p(Ω)→
(W 1,p

0 (Ω))∗. It is well-known that the operator −∆p is continuous, bounded, pseu-
domonotone and has the S+-property (see [6], [11]).

Throughout the sequel, we assume that the nonlinearity f : Ω ×R → R is a
Carathéodory function i.e. f (·, t) is measurable for every t ∈R, f (x, ·) is continuous
for almost every x ∈ Ω and satisfies the subcritical growth condition and the usual
Ambrosetti-Rabinowitz condition (in short (AR)-condition).

(H) There exist two non negative constants a1, a2, a constant s ∈]p, p∗[ such that

| f (x, t)| ≤ a1 +a2|t|s−1 for all(x, t) ∈Ω ×R.

Put F(x, t) =
∫ t

0
f (x,ξ )dξ for all (x, t) ∈Ω ×R.

(AR) There exist two constants µ > p and M > 0 such that, 0 < µF(x, t)≤ t f (x, t),
for all x ∈Ω and for all |t| ≥M.

We consider the C1-functionals Φ ,Ψ : W 1,p(Ω)→ R defined by

Φ(u) =
1
p
‖u‖p +

1
p

∫
∂Ω

β (x)|u(x)|pdσ , (5)

and
Ψ(u) =

∫
Ω

F(x,u(x))dx, (6)

for all u ∈W 1,p(Ω), whose Gâteaux derivatives at point u ∈W 1,p(Ω) are given by

Φ ′(u)(v) =
∫

Ω

|∇u(x)|p−2
∇u(x) ·∇v(x)dx

+
∫

Ω

|u(x)|p−2u(x)v(x)dx+
∫

∂Ω

β (x)|u(x)|p−2uvdσ ,

and
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Ψ
′(u)(v) =

∫
Ω

f (x,u(x))v(x)dx,

for every v ∈W 1,p(Ω). Put Iλ = Φ −λΨ , we observe that critical points of Iλ are
weak solutions of (1).

We recall that weak solution of problem (1) is any u ∈W 1,p(Ω) such that∫
Ω

|∇u(x)|p−2
∇u(x) ·∇v(x)dx+

∫
Ω

|u(x)|p−2u(x)v(x)dx

+
∫

∂Ω

β (x)|u(x)|p−2u(x)v(x)dσ = λ

∫
Ω

f (x,u(x))v(x)dx.

Finally, we recall the following two non-zero critical points theorem established
in [5] that we use to point out our results.

Theorem 2. Let X be a real Banach space and let Φ , Ψ : X→R be two functionals
of class C1 such that inf

X
Φ(u) = Φ(0) =Ψ(0) = 0. Assume that there are r ∈R and

ũ ∈ X, with 0 < Φ(ũ)< r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

, (7)

and, for each

λ ∈Λ =

Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

 ,
the functional Iλ = Φ−λΨ satisfies the (PS)−condition and it is unbounded from
below.

Then, for each λ ∈ Λ , the functional Iλ admits at least two non-zero critical
points uλ ,1, uλ ,2 ∈ X such that I(uλ ,1)< 0 < I(uλ ,2).

3 Main Results

In this section, we present our main results. To be precise, we establish the existence
result of two non zero weak solutions of problem (1).

We have the following Lemma.

Lemma 1. Assume that conditions (H)-(AR) hold. Then Iλ satisfies the (PS)−condition.

Proof. Let {un}n∈N⊆W 1,p(Ω) be a sequence such that {Iλ (un)}n∈N⊂R is bounded,
and I′

λ
(un)→ 0 in (W 1,p(Ω))∗ as n→+∞. Simple calculations show that
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µIλ (un)−||I′λ (un)||(W 1,p(Ω))∗ ||un|| ≥ µIλ (un)− I′
λ
(un)(un) (8)

= µΦ(un)−λ µΨ(un)−Φ
′(un)(un)+λΨ

′(un)(un)

=

(
µ

p
−1
)
||un||p +

(
µ

p
−1
)∫

∂Ω

β (x)|un(x)|pdσ

− λ

∫
Ω

(µF(x,un(x))− f (x,un(x))un(x))dx

≥
(

µ

p
−1
)
||un||p +C,

where C is a constant. If {un}n∈N is not bounded, from (8) we obtain a contradiction.
Therefore {un}n∈N is bounded in W 1,p(Ω). Then, using a subsequence if necessary
we may assume that un ⇀ u in W 1,p(Ω), un → u in Ll(Ω) where l ∈ [1, p∗[ and
un→ u in Lη(∂Ω) for η ∈

[
1, (N−1)p

N−p

[
.

Using (H) and the Hölder inequality, we obtain that

lim
n→∞

∫
Ω

f (x,un)(un−u)dx = 0, (9)

lim
n→∞

∫
∂Ω

β (x)|un|p−2un(un−u)dσ = 0, (10)

and
lim
n→∞

∫
Ω

|un|p−2un(un−u)dx = 0. (11)

Taking into account that such that I′
λ
(un)→ 0 in X∗ as n→+∞, we have that

〈I′
λ
(un),un−u〉= 〈−∆pun,un−u〉+

∫
Ω

|un|p−2un(un−u)dx

+
∫

∂Ω

β (x)|un|p−2un(un−u)dσ −
∫

Ω

f (x,un)(un−u)dx→ 0.

From (9), (10) and (11) one has

limsup
n→∞

〈−∆pun,un−u〉 ≤ 0.

By the S+-property of −∆p in W 1,p(Ω) we have that un→ u in W 1,p(Ω). Hence Iλ

fulfills (PS)−condition. ut

Put

k =
|Ω |+β∞|∂Ω |

|Ω |
p

p∗
T p, (12)

where |∂Ω |=
∫

∂Ω

dσ = σ(∂Ω) and β∞ = esssup
Ω

β (x).

Theorem 3. Assume that conditions (H) and (AR) hold. Moreover assume that
there are two positive constants c and d, with d < c, such that
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a1c1−p +
a2

s
cs−p <

1
k|Ω |

∫
Ω

F(x,d)dx

dp , (13)

where a1, a2, s and k are given by (H) and (12) respectively.

Then, for each λ ∈ Λ1 :=

 k|Ω |
p

p∗

pT p
dp∫

Ω

F(x,d)dx
, 1

pT p|Ω |
p
N

1
a1c1−p+

a2
s cs−p

, prob-

lem (1) has at least two non-zero weak solutions.

Proof. Put Φ and Ψ as in (5) and (6). It is well known that Φ and Ψ satisfy all
regularity assumptions requested in Theorem 2.

Explicitly, we observe that from (13), one has Λ1 6= /0.
Consider the constant function u(x) = d ∈W 1,p(Ω), taking into account (12) we

have

Φ(u) =
dp

p

(∫
Ω

dx+
∫

∂Ω

β (x)dσ

)
≤ dp

p
(|Ω |+β∞|∂Ω |) = k|Ω |

p
p∗

pT p dp. (14)

On the other hand one has

Ψ(u) =
∫

Ω

F (x,d)dx,

hence, we obtain

Ψ(u)
Φ(u)

>
pT p

k|Ω |
p

p∗

∫
Ω

F (x,d)dx

dp . (15)

Now, set r = 1
p
|Ω |

p
p∗

T p cp. For all u ∈W 1,p(Ω) such that u ∈Φ−1 (]−∞,r]), taking

(5) into account, one has that ‖u‖ ≤ (pr)
1
p we have

Φ
−1 (]−∞,r])⊆

{
u ∈W 1,p(Ω) : ‖u‖ ≤ (pr)

1
p
}
. (16)

From (H) follows

|F(x, t)| ≤ a1|t|+a2
|t|s

s
for every (x, t) ∈Ω ×R. (17)

From (4), (16) and (17) one has

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤

sup
‖u‖≤(pr)

1
p

Ψ(u)

r
(18)
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≤

sup
‖u‖≤(pr)

1
p

(
a1‖u‖L1(Ω)+

a2

s
‖u‖s

Ls(Ω)

)
r

≤

sup
‖u‖≤(pr)

1
p

(
a1T |Ω |

p∗−1
p∗ ‖u‖+ a2

s
T s|Ω |

p∗−s
p∗ ‖u‖s

)
r

≤
a1T |Ω |

p∗−1
p∗ (pr)

1
p + a2

s T s|Ω |
p∗−s

p∗ (pr)
s
p

r

= pT p|Ω |
p∗−p

p∗

a1

(
T p pr

|Ω |
p

p∗

) 1−p
p

+
a2

s

(
T p pr

|Ω |
p

p∗

) s−p
p


= pT p|Ω |
p
N

[
a1c1−p +

a2

s
cs−p

]
.

Therefore, from (13), (15), (18) we obtain condition (7) of Theorem 2. Moreover,
since 0 < d < c and again by virtue of (13), we infer that

kdp < cp. (19)

Indeed, arguing by contradiction, if we assume that kdp≥ cp and using (17) we have

a1c1−p +
a2

s
cs−p ≥ 1

k
a1d + a2

s ds

dp ≥ 1
k|Ω |

∫
Ω

F (x,d)dx

dp ,

which contradicts (13). Then from (14), (19) we obtain that

Φ(u)< r.

By virtue of Lemma 1, for all fix λ ∈Λ1 the functional Iλ satisfies the (PS)−condition.
Using (AR)−condition, it is easy to prove that the functional Iλ is unbounded from
below. Moreover, inf

u∈W 1,p(Ω)
Φ(u) = Φ(0) =Ψ(0) = 0, therefore, all assumptions of

Theorem 2 are satisfied. So, for all λ ∈ Λ1 ⊂ Λ problem (1) admits at least two
non-zero weak solutions. ut

Finally, we point out the following result that we will use to obtain nonnegative
solutions for our problem (1).

Lemma 2. Let f : Ω×R→R, assume that f (x,0)≥ 0 for a.e. x ∈Ω . Consider the
problem 

−∆pu+ |u|p−2u = λ f+(x,u) in Ω ,

∂u
∂ν

+β (x)|u|p−2u = 0 on ∂Ω .
(20)

where
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f+(x, t) =

 f (x,0), if t < 0,

f (x, t), if t ≥ 0.
(21)

Then, the weak solutions of problem (20) are nonnegative weak solution of problem
(1).

Proof. If ū∈W 1,p(Ω) is a weak solution of (20), choosing v = ū− = max{−u,0} ∈
W 1,p(Ω) as test function (see, for instance, [8, Lemma 7.6]), one has∫

{ū<0}
|∇ū(x)|pdx+

∫
{ū<0}

|ū(x)|pdx+
∫

∂Ω

β (x)|ū(x)|pdσ

= λ

∫
{ū<0}

f+(x, ū(x))ū(x)dx≤ 0,

that is ū ≥ 0 for a.e. x ∈ Ω . Then ū is a nonnegative weak solution of problem (1)
Hence, our claim is proved. ut

Now, we present our result on the existence of at least two nonnegative solutions.

Theorem 4. Let f : Ω ×R→ R be a continuous functions, f (x,0) ≥ 0 a. e. x ∈
Ω . Assume that (H) and (AR)−condition hold. Moreover, there are two positive
constants c and d, with d < c, such that

a1c1−p +
a2

s
cs−p <

1
k|Ω |

∫
Ω

F(x,d)dx

dp . (22)

Then, for each λ ∈Λ1 :=

 k|Ω |
p

p∗

pT p
dp∫

Ω

F(x,d)dx
, 1

pT p|Ω |
p
N

1
a1c1−p+

a2
s cs−p

 problem

(1) has at least two nonnegative solutions.

Proof. Since all conditions of Theorem 3 are satisfied, then for each λ ∈ Λ1 the
problem (1) admits at least two non zero weak solutions in W 1,p(Ω) and, taking
into account Lemma 2, they are also nonnegative. ut

4 Some consequences

We point out a special case of Theorem 3 when the nonlinearity f does not depend
on x.

Theorem 5. Let f : R→R be a nonnegative continuous function such that (H) and
(AR)−condition hold. Moreover, assume that there are two positive constants c and
d, with d < c, such that
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a1c1−p +
a2

s
cs−p <

1
k

F(d)
dp . (23)

Then, for each λ ∈Λ2 :=
]

k

pT p|Ω |
p
N

dp

F(d) ,
1

pT p|Ω |
p
N

1
a1c1−p+

a2
s cs−p

[
problem


−∆pu+ |u|p−2u = λ f (u) in Ω ,

∂u
∂ν

+β (x)|u|p−2u = 0 on ∂Ω ,
(24)

has at least two nonnegative weak solutions.

Proof. Our aim is to apply Theorem 4. We observe that from condition (23) we
obtain condition (13) of Theorem 3 and moreover f (x,0)≥ 0 a.e. x ∈Ω . Then, for

each λ ∈Λ2 :=
]

k

pT p|Ω |
p
N

dp

F(d) ,
1

pT p|Ω |
p
N

1
a1c1−p+

a2
s cs−p

[
problem (24) has at least two

nonnegative weak solutions. ut

Finally, we want consider the case when the nonlinear term of problem (24) has a
(p−1)-linearity at zero.

Theorem 6. Let f : R→ R be a nonnegative continuous function such that the (H)
and (AR)−condition hold and

limsup
t→0+

F(t)
t p =+∞, (25)

and put λ ∗ = 1

pT p|Ω |
p
N

sup
c>0

1
a1c1−p + a2

s cs−p .

Then, for each λ ∈ ]0,λ ∗[, problem (24) admits at least two nonnegative weak
solutions.

Proof. Put λ ∈ ]0,λ ∗[, there is c > 0 such that λ < 1

pT p|Ω |
p
N

1
a1c1−p+

a2
s cs−p . From

(25) there is 0 < d < c such that pT p|Ω |
p
N

k
F(d)
dp > 1

λ
. Hence, Theorem 5 guarantees

the conclusion. ut

Example 1. Let p = 3, N = 4 and Ω = B(0,3
1
8 ) and consider the function f : R→R

given by f (t) = t4 +1.
Putting a1 = 1, a2 = 5 and s = 5, we observe that conditions (H) holds. On the

other hand

F(t) =
∫ t

0
(ξ 4 +1)dξ =

t5

5
+ t ,

limsup
t→0+

F(t)
t p = lim

t→0+

t5 +5t
5t3 =+∞,

and (AR)−condition is satisfied as a simple computation shows.



Two nontrivial solutions for Robin problems driven by a p−Laplacian operator 11

Moreover, one has that

T ≤ π
− 1

2 4−
1
3 2

2
3

(
Γ (3)Γ (4)

Γ
( 4

3

)
Γ
( 11

3

)) 1
4

,

sup
c>0

1
a1c1−p + a2

s cs−p = sup
c>0

1
1
c2 + c2

=
1
2
,

λ
∗ =

1

pT p|Ω |
p
N

sup
c>0

1
a1c1−p + a2

s cs−p ≥
22 ·5 3

4 ·π 3
4

3
11
2

.

Using Theorem 6, for each λ ∈
]

0, 22·5
3
4 ·π

3
4

3
11
2

[
, the problem{

−∆3u+ |u|u = λ (t4 +1) in Ω ,
∂u
∂ν

+β (x)|u|u = 0 on ∂Ω ,

admits at least two nonnegative weak solutions.
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