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Abstract. This paper deals with the existence of nontrivial solutions
for a class of nonlinear elliptic equations driven by an anisotropic Lapla-
cian operator. In particular, the existence of two nontrivial solutions
is obtained, adapting a two critical point result to a suitable functional
framework that involves the anisotropic Sobolev spaces.

1. Introduction

Let Ω be a nonempty bounded open set of the real Euclidean space RN ,
N ≥ 2, with a boundary of class C1, f : Ω × R → R a function, ~p =
(p1, p2, . . . , pN ), ~p ∈ RN . Put

p− = min {p1, p2 . . . , pN} and p+ = max {p1, p2 . . . , pN} , (1.1)

respectively the minimum and the maximum value of the anisotropic con-
figuration.
Let us consider the following problem −∆~pu = λf(x, u) in Ω,

u = 0 on ∂Ω,
(D~p

λ)

where ∆~pu =

N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

)
is the anisotropic p−Laplacian op-

erator and λ ∈ ]0,+∞[.

If pi = 2, for all i = 1, . . . , N , we get

N∑
i=1

∂2u

∂x2
i

= ∆u, the usual Lapla-

cian operator; if ~p is constant (that is pi = p for all i = 1, . . . , N) we get
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N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣p−2 ∂u

∂xi

)
= ∆̃pu, which is the pseudo p−Laplacian operator

(see, for instance, [4, 14]).
Recently, anisotropic boundary value problems have been investigated by
many authors and, for an overview on these subjects, we refer to [16, 17, 18,
22, 23, 25, 27, 28, 29, 32, 34, 35, 36, 38] and references therein.
In particular, anisotropic differential problems find their applications in
many field of applied sciences. For instance, the study of an epidemic disease
in heterogeneous habitat is expressed by an anisotropic nonlinear system. In-
deed, anisotropic operators model phenomena in which partial differential
derivatives vary with direction. For more details about these arguments, we
refer to [2, 5, 6, 46] and references therein.

In order to study problem (D~p
λ), the functional framework is based on the

theory of anisotropic Sobolev space, which was developed in [40, 41, 44] and
references therein.
In [7], the authors prove a sufficient condition for the global L∞− bounded-
ness of solutions for some class of anisotropic differential problems and under
suitable conditions on the exponents pi. The global boundedness of the solu-
tions is a combination of the original idea by Stampacchia with Sobolev-type
inequality (see [38, 42, 44, 45]).
In [28], the authors study the following quasilinear elliptic problem


−∆~mu = λup−1 in Ω,

u ≥ 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN , (N ≥ 2), ~m = (m1,m2, . . . ,mN ), mi > 1 for all i =
1, 2, . . . N , and p > 1. They give two results on the existence of at least
one solution for the given problem, by applying respectively constrained
minimization methods and mountain pass theorem. Moreover, nonexistence
results are obtained in the critical case in domains with a specific geometric
property.
In [34, 35, 36], the authors study nonhomogeneous anisotropic problem in
the case when the indexes of the operator are continuous functions, i.e. they
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consider the following anisotropic ~p(x)−Laplacian operator

∆~p(x)u =
N∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi(x)−2 ∂u

∂xi

)
. (1.2)

We observe that if pi(x) = p(x) for all i = 1, . . . , N , the operator (1.2)
becomes the pseudo−p(x)−Laplacian operator (see, for instance, [13]).
The study of nonlinear elliptic problems involving operators of the type
p(x)−Laplacian is based on the theory of generalized Lebegue-Sobolev spaces
(see for instance [21], [26], [31] and [37] for an overview on this subject).
In particular, boundary value problems with variable exponent have been
studied, for example, by [3, 11, 19, 24, 26, 33, 47].

Here and in the sequel, we suppose that p− > N . The aim of this paper is
to establish the existence of at least two nontrivial solutions for the problem

(D~p
λ), by using variational methods. Precisely, under suitable assumptions

on the nonlinearity f , we obtain the existence of two non-zero solutions to

problem (D~p
λ) (see Theorem 3.1). Our main tool is a two non-zero critical

points theorem (Theorem 2.1) established in [10]. Such critical point result
is an appropriate combination of the local minimum theorem obtained in [8],
with the classical and seminal Ambrosetti-Rabinowitz theorem (see [1]). As
a way of example, here a very special case of our main result is presented
(see Remark 4.2).

Theorem 1.1. There is η∗ > 0 such that, for each η ∈]0, η∗[, the problem −∆~pu = ηu(p−−2) + up
+

in Ω,

u = 0 on ∂Ω

has at least two positive weak solutions.

This paper is organized as follows. In Section 2, some definitions and re-
sults on anisotropic framework are collected. Precisely, an exact constant of

the compact embedding of W 1,~p
0 (Ω) in C0(Ω̄) is pointed out (see Proposition

2.1) owing to the classical Talenti result (see [43]) and its consequence is em-
phasized (see Proposition 2.2). Moreover, the Palais-Smale condition of the

energy functional associated to the problem (D~p
λ) is proved (see Lemma 2.1)

and the abstract critical points theorem (Theorem 2.1) is recalled. Finally,
conditions on f in order to obtain nonnegative solutions (see Lemma 2.2) as
well as positive solutions (see Lemma 2.3) are highlighted. The latter result
is based on a strong maximum principle established in [20].
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In Section 3, our main result, Theorem 3.1, is established. It ensures the
existence of two non-zero solutions by requiring a suitable behaviour of the
nonlinearity f (see condition (3.2)) together with the Ambrosetti-Rabinowitz
condition. Its consequence (Theorem 3.2) in order to obtain two positive so-
lutions is established. Finally, in Section 4, the autonomous case is studied.
In particular, it is shown that the (p− − 1)−sublinearity of f at 0 and the
Ambrosetti-Rabinowitz condition ensure the existence of two positive solu-
tions (see Theorem 4.2). A study of combined effects of concave and convex
nonlinearities (see Theorem 4.3) is addressed and a concrete example is em-
phasized (see Example 4.1).

2. Preliminaries and basic notations

In this section, we recall some preliminaries, basic definitions and proper-
ties.

Let (X, ‖·‖) be a Banach space, its dual space is X∗ and the corresponding
duality pairing is denoted by 〈·, ·〉. Let I : X → R be a Gâteaux differentiable
functional. We say that I satisfies the Palais-Smale condition, (in short
(PS)−condition), if any sequence {un}n∈N ⊆ X such that

(P1) {I(un)}n∈N is bounded,
(P2) {I ′(un)}n∈N converges to 0 in X∗,

admits a convergent subsequence in X.

Denote by W 1,~p
0 (Ω) the closure of C∞0 (Ω) with respect to the norm

‖u‖
W 1,~p

0 (Ω)
:=

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

.

It is well known (see for instance [44]) that W 1,~p
0 (Ω), with the respective

norm, is a Banach space.

We recall that, since p− > N , the space W 1,p−

0 (Ω) is continuously embedded
in C0(Ω̄), such embedding is compact and one has

‖u‖C0(Ω̄) ≤ mp− ‖u‖W 1,p−
0 (Ω)

(2.1)

for every u ∈W 1,p−

0 (Ω), where

mp− =
N
− 1

p−

√
π

[
Γ

(
1 +

N

2

)] 1
N
(
p− − 1

p− −N

)1− 1
p−

|Ω|
1
N
− 1

p− , (2.2)
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Γ denotes the Gamma function and |Ω| is the Lebesgue measure of Ω. In
particular, if Ω is an N−dimensional ball, (2.2) is the best constant such
that (2.1) is verified (see [43, Formula (6b)]).

Now, we prove the following proposition that we will use later.

Proposition 2.1. One has

‖u‖C0(Ω̄) ≤ T0 ‖u‖W 1,~p
0 (Ω)

, (2.3)

for each u ∈W 1,~p
0 (Ω), where

T0 = 2
(N−1)(p−−1)

p− mp− max
1≤i≤N

{
|Ω|

pi−p−

pip
−

}
. (2.4)

Moreover, the embedding of W 1,~p
0 (Ω) in C0(Ω̄) is compact.

Proof. It is well known that W 1,~p
0 (Ω) is continuously embedded in C0(Ω̄) (see

for instance [41, Lemma 2]) and such embedding is compact (see [5, Lemma
2.2]). Here, we prove again such a property in order to have in addition a

precise embedding constant, that is (2.4). To this end, fix u ∈ W 1,~p
0 (Ω). In

particular, one has
∂u

∂xi
∈ Lpi(Ω) and then

∣∣∣∣ ∂u∂xi
∣∣∣∣p− ∈ L pi

p− (Ω). If pi > p−,

owing to Hölder inequality we obtain that(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p− dx

) 1
p−

≤ |Ω|
pi−p−

pip
−

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx) 1

pi

.

Clearly, if pi = p− immediately one has(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p− dx

) 1
p−

=

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx) 1

pi

= |Ω|
pi−p−

pip
−

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx) 1

pi

.

Hence, one has

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p− dx

) 1
p−

≤ |Ω|
pi−p−

pip
−

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx) 1

pi

, (2.5)

for all i = 1, . . . , N and u ∈ W 1,p−

0 (Ω), for which (2.1) can be applied,

ensuring the embedding of W 1,~p
0 (Ω) in C0(Ω̄).
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Now, we recall the following elementary inequalities that we are using
below. ( N∑

i=1

|ai|2
)1/2

≤
N∑
i=1

|ai|;
( N∑
i=1

|ai|
)1/p

≤
N∑
i=1

|ai|1/p;

( N∑
i=1

|ai|
)p
≤ 2(N−1)(p−1)

N∑
i=1

|ai|p,

where ai ∈ R, i = 1, ..., N and p ≥ 1.
So, one has

‖u‖p
−

W 1,p−
0 (Ω)

= ‖∇u‖p
−

Lp− (Ω)
=

∫
Ω

( N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣2
)1/2

p
−

dx ≤

≤
∫

Ω

(
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣
)p−
dx ≤

∫
Ω

2(N−1)(p−−1)
N∑
i=1

∣∣∣∣ ∂u∂xi
∣∣∣∣p−dx.

Hence, from (2.5) one has

‖u‖
W 1,p−

0 (Ω)
≤

(
2(N−1)(p−−1)

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−dx
)1/p−

=

= 2
(N−1)(p−−1)

p−

(
N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−dx
)1/p−

≤

≤ 2
(N−1)(p−−1)

p−
N∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣p−dx
)1/p−

≤

2
(N−1)(p−−1)

p−
N∑
i=1

|Ω|
pi−p−

pip
−

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx) 1

pi

≤

≤ 2
(N−1)(p−−1)

p− max
1≤i≤N

{|Ω|
pi−p−

pip
− }

N∑
i=1

(∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx) 1

pi

=

= 2
(N−1)(p−−1)

p− max
1≤i≤N

{|Ω|
pi−p−

pip
− }

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

,
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that is,

‖u‖
W 1,p−

0 (Ω)
≤ 2

(N−1)(p−−1)

p− max
1≤i≤N

{|Ω|
pi−p−

pip
− } ‖u‖

W 1,~p
0 (Ω)

.

Hence, from (2.1), taking also into account that the embedding of W 1,p−

0 (Ω)
in C0(Ω̄) is compact, the conclusion is obtained.

�

A consequence of previous proposition is the following property.

Proposition 2.2. Fix r > 0. Then for each u ∈W 1,~p
0 (Ω) such that

N∑
i=1

1

pi

∥∥∥∥ ∂u∂xi
∥∥∥∥pi
Lpi (Ω)

< r,

one has
‖u‖C0(Ω̄) < T max{r1/p− ; r1/p+},

where T = T0

N∑
i=1

pi
1/pi and T0 is given in (2.4).

Proof. From our assumption one has 1
pi

∥∥∥ ∂u∂xi∥∥∥piLpi (Ω)
< r for all i = 1, ..., N ,

that is
∥∥∥ ∂u∂xi∥∥∥Lpi (Ω)

< (pir)
1/pi for all i = 1, ..., N . Therefore, one has

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

<
N∑
i=1

(pir)
1/pi .

So, taking Proposition 2.1 into account, one has

‖u‖C0(Ω̄) ≤ T0

N∑
i=1

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

< T0

N∑
i=1

(pir)
1/pi ≤

≤ T0

N∑
i=1

(pi)
1/pi max{r1/p− ; r1/p+},

that is the conclusion.
�

Throughout the sequel, we suppose that f : Ω × R → R is an L1-
Carathéodory function, i.e.:

(1) x 7→ f(x, ξ) is measurable for every ξ ∈ R;
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(2) ξ 7→ f(x, ξ) is continuous for almost every x ∈ Ω;
(3) for every s > 0 there is a function ls ∈ L1(Ω) such that

sup
|ξ|≤s
|f(x, ξ)| ≤ ls(x)

for a.e. x ∈ Ω.

Put

F (x, t) =

∫ t

0
f(x, ξ)dξ for all (x, t) ∈ Ω× R.

We assume also that the nonlinearity f satisfies the following Ambrosetti-
Rabinowitz condition:

(AR) There exist constants µ > p+ and M > 0 such that, 0 < µF (x, t) ≤
tf(x, t) for all x ∈ Ω and for all |t| ≥M .

We recall that u : Ω→ R is a weak solution of problem (D~p
λ) if u ∈W 1,~p

0 (Ω)
satisfies the following condition

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

∂v

∂xi
dx = λ

∫
Ω
f(x, u(x))v(x)dx ,

for all v ∈W 1,~p
0 (Ω).

Finally, we define the functionals Φ,Ψ : W 1,~p
0 (Ω)→ R by setting, for every

u ∈W 1,~p
0 (Ω),

Φ(u) :=
N∑
i=1

1

pi

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi dx, Ψ(u) :=

∫
Ω
F (x, u(x))dx . (2.6)

Clearly, Φ and Ψ are Gâteaux differentiable functionals whose Gâteaux

derivatives at the point u ∈W 1,~p
0 (Ω) are given by

Φ′(u)(v) =

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

∂v

∂xi
dx ,

Ψ′(u)(v) =

∫
Ω
f(x, u(x))v(x)dx ,

for every v ∈W 1,~p
0 (Ω).

We observe that the critical points in W 1,~p
0 (Ω) of the functional Iλ = Φ−λΨ

are precisely the weak solutions of problem (D~p
λ).
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Now we prove the following lemma.

Lemma 2.1. Assume that the (AR)−condition holds. Then Iλ satisfies the
(PS)−condition and it is unbounded from below.

Proof. Let {un}n∈N ⊆W 1,~p
0 (Ω) be a sequence which satisfies conditions (P1)

and (P2). Our aim is to prove that it admits a subsequence which is strongly

convergent in W 1,~p
0 (Ω). To this end, first, we verify that it is bounded in

W 1,~p
0 (Ω). Indeed, from (AR)−condition one has∫

Ω
[µF (x, un(x))− f(x, un(x))un(x)] dx =

=

∫
{x∈Ω:|un(x)|≥M}

[µF (x, un(x))− f(x, un(x))un(x)] dx+

+

∫
{x∈Ω:|un(x)|<M}

[µF (x, un(x))− f(x, un(x))un(x)] dx ≤∫
{x∈Ω:|un(x)|<M}

max
|ξ|≤M

[µF (x, ξ)− f(x, ξ)ξ] dx ≤

≤ max|ξ|≤M [µF (x, ξ)− f(x, ξ)ξ] |Ω|, that is,

∫
Ω

[µF (x, un(x))− f(x, un(x))un(x)] dx ≤ C1 ∀n ∈ N (2.7)

for some constant C1.
Moreover, we have

Iλ(un) =

[
N∑
i=1

1

pi

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

− λ
∫

Ω
F (x, un(x))dx

]
≥

≥

[
1

p+

N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

− λ
∫

Ω
F (x, un(x))dx

]
, that is,

µIλ(un) + λ

∫
Ω
µF (x, un(x))dx ≥ µ

p+

N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

and

〈I ′λ(un);un〉 =

N∑
i=1

∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi−2 ∂un
∂xi

∂un
∂xi

dx− λ
∫

Ω
f(x, un(x))un(x)dx =

=

N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

− λ
∫

Ω
f(x, un(x))un(x)dx, that is,
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N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

= 〈I ′λ(un);un〉+ λ

∫
Ω
f(x, un(x))un(x)dx.

Hence, it follows that

(
µ

p+
− 1

) N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

≤

≤ µIλ(un)− 〈I ′λ(un);un〉+ λ

∫
Ω
µF (x, un(x))dx− λ

∫
Ω
f(x, un(x))un(x)dx.

Therefore, taking (P1) and (2.7) into account, one has(
µ

p+
− 1

) N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

≤ µC2−〈I ′λ(un);un〉+λC1 = −〈I ′λ(un);un〉+C3,

for which, since −〈I ′λ(un);un〉 ≤ |〈I ′λ(un);un〉| ≤ ‖I ′λ(un)‖∗‖un‖W 1,~p
0 (Ω)

, one

has(
µ

p+
− 1

) N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

≤ ‖I ′λ(un)‖∗‖un‖W 1,~p
0 (Ω)

+C3 ∀n ∈ N. (2.8)

As usual, we denoted

‖I ′λ(w)‖∗ = sup
{
|〈I ′λ(w), v〉| : v ∈W 1,~p

0 (Ω), ‖v‖
W 1,~p

0 (Ω)
= 1
}
.

Now, arguing by a contradiction, assume that {‖un‖W 1,~p
0 (Ω)

} is not bounded.

Since, possibly by renaming the appropriate subsequence, one has

lim
n→+∞

‖un‖W 1,~p
0 (Ω)

= +∞,

from (2.8) it follows that

(
µ

p+
− 1

) N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

‖un‖W 1,~p
0 (Ω)

≤ ‖I ′λ(un)‖∗ +
C3

‖un‖W 1,~p
0 (Ω)

.
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Hence, taking (P2) into account, one has

lim
n→+∞

(
µ

p+
− 1

) N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

‖un‖W 1,~p
0 (Ω)

= 0. (2.9)

Therefore, one has

(
µ

p+
− 1

) N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

< ‖un‖W 1,~p
0 (Ω)

∀n ∈ N (by

renaming the sequence), from which, by renaming again the sequence in a
such way that ‖un‖W 1,~p

0 (Ω)
> 1, one has∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

≤
N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥pi
Lpi (Ω)

<
p+

µ− p+
‖un‖W 1,~p

0 (Ω)
;

∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

<

(
p+

µ− p+

)1/pi

‖un‖1/pi
W 1,~p

0 (Ω)
≤

≤ max

{(
p+

µ− p+

)1/p−

;

(
p+

µ− p+

)1/p+
}
‖un‖1/p

−

W 1,~p
0 (Ω)

;

N∑
i=1

∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

< N max

{(
p+

µ− p+

)1/p−

;

(
p+

µ− p+

)1/p+
}
‖un‖1/p

−

W 1,~p
0 (Ω)

=

C4‖un‖1/p
−

W 1,~p
0 (Ω)

;

‖un‖W 1,~p
0 (Ω)

< C4‖un‖1/p
−

W 1,~p
0 (Ω)

;

‖un‖p
−

W 1,~p
0 (Ω)

< Cp
−

4 ‖un‖W 1,~p
0 (Ω)

.

So that, one has

‖un‖p
−−1

W 1,~p
0 (Ω)

< Cp
−

4 ∀n ∈ N,

for which {‖un‖W 1,~p
0 (Ω)

} is bounded and this is absurd.

In conclusion, the sequence {un}n∈N which satisfies (P1) and (P2) is bounded

in W 1,~p
0 (Ω), for which our first claim is verified.

Next, we verify that {un}n∈N admits a subsequence which is strongly con-

vergent in W 1,~p
0 (Ω). Since W 1,~p

0 (Ω) is reflexive (see [5, Remark 2.1]), {un}n∈N
admits a subsequence which converges weakly to some u ∈W 1,~p

0 (Ω). Clearly,

since the embedding of W 1,~p
0 (Ω) in C0(Ω̄) is compact (see Proposition 2.1),
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the renamed sequence {un}n∈N converges strongly to u in C0(Ω̄). First, we
prove that one has

〈Φ′(un);un − u〉 → 0. (2.10)

Indeed, we have

〈Φ′(un);un − u〉 = 〈I ′λ(un);un − u〉 + λ

∫
Ω
f(x, un)(un − u)dx. So, since

one has∫
Ω
f(x, un)(un − u)dx ≤

∫
Ω
C(un − u)dx,

being f(x, un(x)) ≤ max|ξ|≤k f(x, ξ) since ‖un‖C0 ≤ ‖un−u‖C0 +‖u‖C0 ≤ k,
and
〈I ′λ(un);un − u〉 ≤ ‖I ′λ(un)‖∗‖un − u‖W 1,~p

0 (Ω)
≤M‖I ′λ(un)‖∗

the condition (2.10) is proved.
Moreover, one has

〈Φ′(u);un − u〉 → 0, (2.11)

since Φ′(u) is a linear operator in W 1,~p
0 (Ω) and un

w−→ u in W 1,~p
0 (Ω). Hence,

from (2.10) and (2.11) one has

〈Φ′(un)− Φ′(u);un − u〉 → 0. (2.12)

Now, put

Ai(w)(v) =

∫
Ω

∣∣∣∣ ∂w∂xi
∣∣∣∣pi−2 ∂w

∂xi

∂v

∂xi
dx; Bi(w)(v) =

1

‖w‖pi−2
Lpi (Ω)

Ai(w)(v)

for all i = 1, ..., N and for all w, v ∈W 1,~p
0 (Ω). From (2.12), one has

〈Bi(un)− Bi(u);un − u〉 → 0, ∀i = 1, ..., N. (2.13)

Observe that one has
〈Bi(un)− Bi(u);un − u〉 =

= 〈Bi(un);un〉 − 〈Bi(un);u〉 − 〈Bi(u);un〉+ 〈Bi(u);u〉 =

=

∥∥∥∥∂un∂xi

∥∥∥∥2

Lpi (Ω)

+

∥∥∥∥ ∂u∂xi
∥∥∥∥2

Lpi (Ω)

− 〈Bi(un);u〉 − 〈Bi(u);un〉 =

=

(∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u∂xi

∥∥∥∥
Lpi (Ω)

)2

+ 2

∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

−

−〈Bi(un);u〉 − 〈Bi(u);un〉 =
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=

(∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u∂xi

∥∥∥∥
Lpi (Ω)

)2

+

+

(∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

− 〈Bi(un);u〉

)
+

+

(∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

− 〈Bi(u);un〉

)
.

Moreover, one has

|〈Bi(un);u〉| ≤
∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

and |〈Bi(u);un〉| ≤
∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

.

Indeed, by Hölder inequality, the first inequality follows from steps below∫
Ω

∣∣∣∣∂un∂xi

∣∣∣∣pi−2 ∂un
∂xi

∂u

∂xi
dx ≤

≤

∫
Ω

(∣∣∣∣∂un∂xi

∣∣∣∣pi−1
) pi

pi−1

dx


pi−1

pi [∫
Ω

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi) dx] 1

pi

=

=

∥∥∥∥∂un∂xi

∥∥∥∥pi−1

Lpi (Ω)

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

and the second is established in the same way. So, it follows

〈Bi(un)− Bi(u);un − u〉 ≥

(∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

−
∥∥∥∥ ∂u∂xi

∥∥∥∥
Lpi (Ω)

)2

,

for which, taking (2.13) into accont, one has

lim
n→+∞

∥∥∥∥∂un∂xi

∥∥∥∥
Lpi (Ω)

=

∥∥∥∥ ∂u∂xi
∥∥∥∥
Lpi (Ω)

, ∀i = 1, ..., N. (2.14)

From [15, Proposition III.30], taking into account that Lpi(Ω) is uniformly
convex, one has

lim
n→+∞

∥∥∥∥∂un∂xi
− ∂u

∂xi

∥∥∥∥
Lpi (Ω)

= 0, ∀i = 1, ..., N. (2.15)

Hence, one has
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lim
n→+∞

N∑
i=1

∥∥∥∥∂un∂xi
− ∂u

∂xi

∥∥∥∥
Lpi (Ω)

= 0, (2.16)

that is,

lim
n→+∞

‖un − u‖W 1,~p
0 (Ω)

= 0, (2.17)

and our claim is proved.
Finally, standard computations show that from (AR)−condition we ob-

tain that the functional Iλ is unbounded from below. More precisely, from
(AR)−condition there are two constants A > 0 and B ≥ 0 such that

F (x, t) ≥ Atµ −B, ∀(x, t) ∈ Ω× R

(see for instance [39]). Fix ū ∈W 1,~p
0 (Ω), nonnegative and ū 6≡ 0, and h > 1,

then one has

Iλ(hū) =

N∑
i=1

1

pi

∥∥∥∥∂hū∂xi

∥∥∥∥pi
Lpi (Ω)

− λ
∫

Ω
F (x, hū(x))dx ≤

≤ hp+
N∑
i=1

1

pi

∥∥∥∥ ∂ū∂xi
∥∥∥∥pi
Lpi (Ω)

− λ
∫

Ω
(A(h|ū|)µ −B)dx =

= D1h
p+ − hµλA

∫
Ω |ū|

µdx− λB|Ω| = D1h
p+ −D2h

µ −D3, with D1 > 0,
D2 > 0, D3 ≥ 0.
Hence,

lim
h→+∞

Iλ(hū) = −∞

and the proof is complete.
�

Remark 2.1. We recall that Φ′ is called an (S)+−map if for every sequence

{un} ⊆ W 1,~p
0 (Ω) such that un

w−→ u and lim sup
n→+∞

〈Φ′(un), un − u〉 ≤ 0 one

has un → u in W 1,~p
0 (Ω). So, arguing as in the proof of Lemma 2.1, it is

easy to verify that Φ′ is an (S)+−map. We also recall that, under different
assumptions on ~p, such a property for Φ′ has been proved in [12, Lemma 2].

Our main tool is a two non-zero critical points theorem established in
[10]. It is a consequence of a local minimum theorem obtained in [8] (see
also [9]) and the classical Ambrosetti-Rabinowitz theorem established in [1].
We recall it here for convenience of the reader.
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Theorem 2.1. ([10, Theorem 2.1] ) Let X be a real Banach space and let
Φ, Ψ : X → R be two functionals of class C1 such that inf

X
Φ(u) = Φ(0) =

Ψ(0) = 0. Assume that there are r ∈ R and ũ ∈ X, with 0 < Φ(ũ) < r, such
that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
, (2.18)

and, for each

λ ∈ Λ =

Φ(ũ)

Ψ(ũ)
,

r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

 ,
the functional Iλ = Φ−λΨ satisfies the (PS)−condition and it is unbounded
from below.

Then, for each λ ∈ Λ, the functional Iλ admits at least two non-zero
critical points uλ,1, uλ,2 ∈ X such that I(uλ,1) < 0 < I(uλ,2).

Finally, we point out the following results in order to the sign of solutions
that we will use in the next sections. To this end, put

f+(x, t) =

 f(x, 0), if t < 0,

f(x, t), if t ≥ 0,
(2.19)

for all (x, t) ∈ Ω × R and denote by (D~p
λ,f+

) the problem having f+ as

nonlinear term.
The first result allows to obtain nonnegative solutions. Precisely, we have
the following.

Lemma 2.2. Assume that

f(x, 0) ≥ 0 for a.e. x ∈ Ω.

Then, any weak solution of the problem (D~p
λ,f+

) is nonnegative and it is also

a weak solution of (D~p
λ).

Proof. Let ū be a weak solution of problem −∆~pu = λf+(x, u) in Ω,

u = 0 on ∂Ω.
(D~p

λ,f+
)
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So, one has

N∑
i=1

∫
Ω

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi−2 ∂ū

∂xi

∂v

∂xi
dx = λ

∫
Ω
f+(x, ū(x))v(x)dx ,

for all v ∈ W 1,~p
0 (Ω). We claim that ū is a nonnegative function. To this

end, put ū− = min{ū, 0}. Clearly, one has ū− ∈ W 1,~p
0 (Ω) (see, for instance,

[30, Lemma 7.6]). Moreover, setting A = {x ∈ Ω : ū(x) < 0}, taking into
account that ū is a weak solution and choosing v = ū−, one has

0 ≤
N∑
i=1

∫
A

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi dx =

N∑
i=1

∫
A

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi−2 ∂ū

∂xi

∂ū−

∂xi
dx =

=

N∑
i=1

∫
Ω

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi−2 ∂ū

∂xi

∂ū−

∂xi
dx =

= λ

∫
Ω
f+(x, ū(x))ū−(x)dx = λ

∫
A
f+(x, ū(x))ū−(x)dx =

= λ

∫
A
f(x, 0)ū−(x)dx ≤ 0 ,

that is,
N∑
i=1

∫
A

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi dx = 0.

Hence, one has∫
A

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi dx = 0 for all i = 1, ..., N ,

for which∫
Ω

∣∣∣∣∂ū−∂xi
∣∣∣∣pi dx =

∫
A

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi dx+

∫
Ω\A

∣∣∣∣∂ū−∂xi
∣∣∣∣pi dx = 0 for all i = 1, ..., N

and hence(∫
Ω

∣∣∣∣∂ū−∂xi
∣∣∣∣pi dx) 1

pi

= 0 for all i = 1, ..., N .

It follows

‖ū−‖
W 1,~p

0 (Ω)
=

N∑
i=1

(∫
Ω

∣∣∣∣∂ū−∂xi
∣∣∣∣pi dx) 1

pi

= 0,

so that ū−(x) = 0 in Ω and so ū(x) ≥ 0 in Ω. Hence, our claim is proved.
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Moreover, ū is a weak solution for (D~p
λ). Indeed, one has

N∑
i=1

∫
Ω

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi−2 ∂ū

∂xi

∂v

∂xi
dx = λ

∫
Ω
f+(x, ū(x))v(x)dx =

= λ

∫
Ω
f(x, ū(x))v(x)dx ,

for all v ∈W 1,~p
0 (Ω), and the conclusion is achieved.

�

The next result allows to obtain positive solutions. It is based on the strong
maximum principle established in [20] and here, since p− > N ≥ 2, the
degenerate case is applied.

Lemma 2.3. Assume that

f(x, t) ≥ 0 for a.e. x ∈ Ω, for all t ≥ 0.

Then, any non-zero weak solution of the problem (D~p
λ,f+

) is positive and it

is also a weak solution of (D~p
λ).

Proof. Let ū be a non-zero weak solution of problem (D~p
λ,f+

). Owing to

Proposition 2.1 and Lemma 2.2 it is bounded and nonnegative in Ω and it

is also a weak solution of (D~p
λ). Therefore, taking also our assumption into

account, one has

N∑
i=1

∫
Ω

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi−2 ∂ū

∂xi

∂v

∂xi
dx = λ

∫
Ω
f(x, ū(x))v(x)dx ≥ 0 ,

for all v ∈W 1,~p
0 (Ω), with v ≥ 0 in Ω. So, in particular, one has

N∑
i=1

∫
Ω

∣∣∣∣ ∂ū∂xi
∣∣∣∣pi−2 ∂ū

∂xi

∂v

∂xi
dx ≥ 0

for all v ∈ C∞0 (Ω), with v ≥ 0 in Ω. Hence, all assumptions of [20, Corollary
4.4] are verified and the function ū is positive in Ω.

�

Remark 2.2. We observe that the conclusion of Lemma 2.1 also holds for
the functional Iλ associated to the function f+, defined as before and with
f(x, 0) ≥ 0 in Ω, by requiring:
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(AR+) There exist constants µ > p+ and M > 0 such that, 0 < µF (x, t) ≤
tf(x, t) for all x ∈ Ω and for all t ≥M .

Indeed, given a (PS)−sequence {un}, one has∫
Ω

[
µF+(x, un(x))− f+(x, un(x))un(x)

]
dx =

=

∫
{x∈Ω:un(x)≥M}

[µF (x, un(x))− f(x, un(x))un(x)] dx+

+

∫
{x∈Ω:0≤un(x)<M}

[µF (x, un(x))− f(x, un(x))un(x)] dx+

+

∫
{x∈Ω:un(x)<0}

[µf(x, 0)un(x)− f(x, 0)un(x)] dx ≤∫
{x∈Ω:0≤un(x)<M}

max
0≤ξ≤M

[µF (x, ξ)− f(x, ξ)ξ] dx+

+

∫
{x∈Ω:un(x)<0}

[(µ− 1)f(x, 0)un(x)] dx ≤

≤ max0≤ξ≤M [µF (x, ξ)− f(x, ξ)ξ] |Ω|, that is.∫
Ω

[
µF+(x, un(x))− f+(x, un(x))un(x)

]
dx ≤ C1 ∀n ∈ N

for some constant C1. At this point the same proof of Lemma 2.1 ensures
the conclusion.

3. Main Results

In this section, we present our main results. First, we point out an ex-
istence result of at least two non-zero weak solutions, that is Theorem 3.1,
which is based on the two critical points theorem, Theorem 2.1. Next, we
point out a consequence, Theorem 3.2, that ensures the existence of two
positive weak solutions.
Put

R := sup
x∈Ω

dist(x, ∂Ω);

simple calculations show that there is x0 ∈ Ω such that B(x0, R) ⊆ Ω and
we denote by

ωR := |B(x0, R)| = π
N
2

Γ(1 + N
2 )
RN ,

the measure of the N -dimensional ball of radius R.
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Finally, we set

K =
1[

N∑
i=1

1

pi

(
2

R

)pi]
ωR

(
2N − 1

2N

)
max

{
T p− ;T p+

} ,
which depends on T as given in Propositition 2.2, computed in turn by the
Talenti constant (see (2.2) and (2.4)).

Theorem 3.1. Assume that the (AR)−condition holds and there are two

positive constants c and d, with max
{
dp
−

; dp
+
}
< min

{
cp
−

; cp
+
}

, such that

F (x, t) ≥ 0, for all (x, t) ∈ Ω× [0, d] , (3.1)

and ∫
Ω

max
|ξ|≤c

F (x, ξ)dx

min
{
cp− ; cp+

} < K

∫
B(x0,R2 )

F (x, d) dx

max
{
dp− ; dp+

} . (3.2)

Then, for each
λ ∈ Λ̃ := 1

max
{
T p−;T p+

} 1

K

max
{
dp
−
;dp

+
}

∫
B(x0,R2 )

F (x, d) dx

,
1

max
{
T p−;T p+

} min
{
cp
−
;cp

+
}

∫
Ω

max
|ξ|≤c

F (x, ξ)dx

,

problem (D~p
λ) has at least two non-zero weak solutions.

Proof. Put Φ and Ψ as in (2.6). It is well known that Φ and Ψ satisfy all
regularity assumptions requested in Theorem 2.1 and, moreover, one has

inf
u∈W 1,~p

0 (Ω)

Φ(u) = Φ(0) = Ψ(0) = 0. Our aim is to verify condition (2.18). To

this end, put r = min{
( c
T

)p−
;
( c
T

)p+
} where T is defined in Proposition

2.2, and fix

ũ(x) =


0 if x ∈ Ω \B(x0, R),
2d

R
(R− |x− x0|) if x ∈ B(x0, R) \B

(
x0,

R
2

)
,

d if x ∈ B
(
x0,

R
2

)
.

Clearly, ũ ∈ W 1,~p
0 (Ω). Moreover, for all u ∈ W 1,~p

0 (Ω) such that u ∈
Φ−1 (]−∞, r]), from Proposition 2.2 one has

|u(x)| < T max{r1/p− ; r1/p+} = c for all x ∈ Ω.
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So,

Ψ(u) =

∫
Ω
F (x, u(x))dx ≤

∫
Ω

max
|ξ|≤c

F (x, ξ)dx,

for all u ∈ X such that u ∈ Φ−1 (]−∞, r]). Hence,

sup
u∈Φ−1(]−∞,r])

Ψ(u) ≤
∫

Ω
max
|ξ|≤c

F (x, ξ)dx.

Therefore, one has

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤

∫
Ω

max
|ξ|≤c

F (x, ξ)dx

min
{(

c
T

)p−
;
(
c
T

)p+}

≤ max
{
T p
−

;T p
+
} ∫

Ω
max
|ξ|≤c

F (x, ξ)dx

min
{
cp− ; cp+

} . (3.3)

On the other hand, we have

Φ(ũ) =
N∑
i=1

1

pi

∫
Ω

∣∣∣∣ ∂ũ∂xi
∣∣∣∣pi dx ≤

[
N∑
i=1

1

pi

(
2d

R

)pi]
ωR

(
2N − 1

2N

)
≤

≤

[
N∑
i=1

1

pi

(
2

R

)pi]
ωR

(
2N − 1

2N

)
max

{
dp
−

; dp
+
}

and, taking (3.1) into account, one has

Ψ(ũ) ≥
∫
B(x0,R2 )

F (x, d) dx.

Hence, we obtain

Ψ(ũ)

Φ(ũ)
≥ 1[

N∑
i=1

1

pi

(
2

R

)pi]
ωR

(
2N − 1

2N

)
∫
B(x0,R2 )

F (x, d) dx

max
{
dp− ; dp+

} =
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= max
{
T p
−

;T p
+
}
K

∫
B(x0,R2 )

F (x, d) dx

max
{
dp− ; dp+

} ,

that is,

Ψ(ũ)

Φ(ũ)
≥ max

{
T p
−

;T p
+
}
K

∫
B(x0,R2 )

F (x, d) dx

max
{
dp− ; dp+

} . (3.4)

Hence, from (3.3), (3.4) and assumption (3.2) we obtain

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
.

So, in order to satisfy condition (2.18) of Theorem 2.1, it is enough to verify
that Φ(ũ) < r.

To this end, since max
{
dp
−

; dp
+
}
< min

{
cp
−

; cp
+
}

(for which, in particular

d < c), and again by virtue of (3.2), we infer that

1

K
max

{
dp
−

; dp
+
}
< min

{
cp
−

; cp
+
}
. (3.5)

Indeed, arguing by contradiction, if we assume that 1
K max

{
dp
−

; dp
+
}
≥

min
{
cp
−

; cp
+
}

, we have

∫
Ω

max
|ξ|≤c

F (x, ξ)dx

min
{
cp− ; cp+

} ≥ K

∫
Ω

max
|ξ|≤c

F (x, ξ)dx

max
{
dp− ; dp+

} ≥ K
∫
B(x0,R2 )

F (x, d) dx

max
{
dp− ; dp+

}
which contradicts (3.2).
Hence, taking into account that

Φ(ũ) ≤

[
N∑
i=1

1

pi

(
2

R

)pi]
ωR

(
2N − 1

2N

)
max

{
dp
−

; dp
+
}

=
1

K
1

max
{
T p− ;T p+

} max
{
dp
−

; dp
+
}

and
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r = min{
( c
T

)p−
;
( c
T

)p+
} ≥ 1

max
{
T p− ;T p+

} min
{
cp
−

; cp
+
}

,

condition (3.5) ensures as claimed.
Finally, observing that Lemma 2.1 establishes that the functional Iλ is

unbounded from below and it satisfies the (PS)−condition, we can apply
Theorem 2.1. Therefore, Iλ admits two non-zero critical points that are

two non-zero weak solutions to problem (D~p
λ) for all λ ∈ Λ̃ ⊂ Λ and the

conclusion is achieved.
�

A special case of our main result is the following theorem.

Theorem 3.2. Let f : Ω × R → R be a continuous function such that
f(x, t) ≥ 0 for a.e. x ∈ Ω and for all t ≥ 0.
Assume that the (AR+)−condition holds. Moreover, assume that there are
two positive constants c and d, with d < 1 ≤ c, such that∫

Ω
F (x, c)dx

cp−
< K

∫
B(x0,R2 )

F (x, d) dx

dp
− . (3.6)

Then, for each λ ∈ Λ̃ := 1

max
{
T p− ;T p+

} 1

K
dp
−∫

B(x0,R2 )
F (x, d) dx

,
1

max
{
T p− ;T p+

} cp
−∫

Ω
F (x, c)dx

 ,
problem (D~p

λ) has at least two positive weak solutions.

Proof. We apply Theorem 3.1 to the function f+, as defined in (2.19), taking
into account that the (AR+)−condition is enough to verify the Palais-Smale
condition of the associated functional (see Remark 2.2). Therefore, problem

(D~p
λ,f+

) admits two non-zero solutions for each λ ∈ Λ̃. Hence, Lemma 2.3

ensures that they are positive weak solutions of (D~p
λ).

�

Remark 3.1. Taking into account condition (3.2) of Theorem 3.1, we can
give other two versions of Theorem 3.2 depending on whether the positive
constants c and d are such that either d < c ≤ 1 or 1 ≤ d < c. To be precise,
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it is enough to substitute in Theorem 3.2 the condition (3.6) and interval Λ̃
with the followings∫

Ω
F (x, c)dx

cp+
< K

∫
B(x0,R2 )

F (x, d) dx

dp
− (3.6’)

and

 1

max
{
T p− ;T p+

} 1

K
dp
−∫

B(x0,R2 )
F (x, d) dx

,
1

max
{
T p− ;T p+

} cp
+∫

Ω
F (x, c)dx

 ,
in the first case. Similarly, in the other case, they become∫

Ω
F (x, c)dx

cp−
< K

∫
B(x0,R2 )

F (x, d) dx

dp
+ (3.6”)

and

 1

max
{
T p− ;T p+

} 1

K
dp

+∫
B(x0,R2 )

F (x, d) dx

,
1

max
{
T p− ;T p+

} cp
−∫

Ω
F (x, c)dx

 .
Example 3.1. Fix N = 3 and Ω = B(0, 2), put p1 = 4, p2 = 5, p3 = 6 and
consider the following problem

−
3∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

)
= 10−12(x2 + y2 + z2)u8 + 10−12u in Ω,

u = 0 on ∂Ω,

(3.7)
where

3∑
i=1

∂

∂xi

(∣∣∣∣ ∂u∂xi
∣∣∣∣pi−2 ∂u

∂xi

)
=
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=
∂

∂x

(∣∣∣∣∂u∂x
∣∣∣∣2 ∂u∂x

)
+

∂

∂y

(∣∣∣∣∂u∂y
∣∣∣∣3 ∂u∂y

)
+

∂

∂z

(∣∣∣∣∂u∂z
∣∣∣∣4 ∂u∂z

)
.

Theorem 3.2 ensures that the problem (3.7) admits two positive weak solu-
tions.
Indeed, by choosing f(x, y, z, t) = (x2+y2+z2)t8+t2 for which F (x, y, z, t) =

(x2 + y2 + z2)
t9

9
+
t3

3
, it is easy to verify that the (AR+)−condition holds.

Moreover, taking into account that in this case one has mp− = 4

√
33

2π , T0 =

3

√
25·32√
π

, T = (
√

2 + 5
√

5 + 6
√

6) 3

√
25·32√
π

, max
{
T p
−

;T p
+
}

= T 6 = (
√

2 + 5
√

5 +

6
√

6)6 (25·32)
2

π , K =
5

210 · 32 · 7 · 37(
√

2 + 5
√

5 + 6
√

6)6
, by choosing c = 1 and

d = 10−14, we have

1

max
{
T p− ;T p+

} 1

K
dp
−∫

B(x0,R2 )
F (x, d) dx

=

=
7 · 37

5

1
22

5 d
5 + 22

d

≤ 7 · 37

4
d =

7 · 37

4
10−14 < 10−12

and
1

max
{
T p− ;T p+

} cp
−∫

Ω
F (x, c)dx

=
5

(
√

2 + 5
√

5 + 6
√

6)621534
> 10−12,

for which we obtain

1

max
{
T p− ;T p+

} 1

K
dp
−∫

B(x0,R2 )
F (x, d) dx

< 10−12 <

<
1

max
{
T p− ;T p+

} cp
−∫

Ω
F (x, c)dx

.

Hence, all assumptions of Theorem 3.2 are satisfied and our claim is proved.
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Remark 3.2. To the best of our knowledge, we do not know regularity

results of solutions for a general problem as (D~p
λ), which in particular involves

nonlinearities. In other completely different contexts, regularity results are
obtained for anisotropic problems under suitable assumptions and we refer,
for instance, to [28, Theorem 5], where a classical C2−solution is obtained,
and to [16], where the local boundedness of solutions (as local minimizers of
the energy functional) is established.

4. Some consequences

In this section, we point out some consequences of our main results in
autonomous case. To be precise, let f : [0,+∞[→ [0,+∞[ be a continuous
function and consider the following anisotropic Dirichlet problem −∆~pu = λf(u) in Ω,

u = 0 on ∂Ω.
(AD~p

λ)

The usual Ambrosetti-Rabinowitz condition, given in Section 2, becomes:

(AR+
1 ) there exist constants µ > p+ and M > 0 such that, 0 < µF (t) ≤ tf(t)

for all t ≥M .

Moreover, put

K∗ =
ωR

2N |Ω|
K,

where K is given in Section 3.

A special case of Theorem 3.2 is the following result.

Theorem 4.1. Let f : [0,+∞[→ [0,+∞[ be a continuous function such that
the (AR+

1 )−condition holds. Moreover, assume that there are two positive
constants c and d, with d < 1 ≤ c, such that

F (c)

cp−
< K∗F (d)

dp−
. (4.1)

Then, for each

λ ∈ Λ̃1 :=

]
1

max
{
T p− ;T p+

} 1

|Ω|
1

K∗
dp
−

F (d)
,

1

max
{
T p− ;T p+

} 1

|Ω|
cp
−

F (c)

[
,

the problem (AD~p
λ) has at least two positive weak solutions.
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Proof. We can assume f defined in R by setting f(t) = f(0) for all t < 0.
Hence, the conclusion follows from Theorem 3.2.

�

Now, by setting

λ∗ =
1

max
{
T p− ;T p+

} 1

|Ω|
sup
c≥1

cp
−

F (c)
,

we point out the following consequence of Theorem 4.1.

Theorem 4.2. Let f : [0,+∞[→ [0,+∞[ be a continuous function such that
the (AR+

1 )−condition holds. Assume that

lim sup
t→0+

F (t)

tp−
= +∞. (4.2)

Then, for each λ ∈ ]0, λ∗[, the problem (AD~p
λ) admits at least two positive

weak solutions.

Proof. Fix a positive number λ < λ∗. So, there is c ≥ 1 such that λ <

1

max
{
T p− ;T p+

} 1

|Ω|
cp
−

F (c)
, that is,

max
{
T p
−

;T p
+
}
|Ω|F (c)

cp−
<

1

λ
.

On the other hand, from (4.2) one has lim sup
t→0+

max
{
T p
−

;T p
+
}
|Ω|K∗F (t)

tp−
=

+∞, for which there is a positive sequence {dn} such that dn → 0+ and

max
{
T p
−

;T p
+
}
|Ω|K∗F (dn)

dp
−
n

>
1

λ

for all n > ν. Fix n̄ > ν such that dn̄ < 1 and put d = dn̄. One has d < 1 ≤ c
and

max
{
T p
−

;T p
+
}
|Ω|F (c)

cp−
<

1

λ
< max

{
T p
−

;T p
+
}
|Ω|K∗F (d)

dp−
.

Hence, all assumption of Theorem 4.1 are satisfied and, taking also into
account that λ ∈ Λ̃1, the conclusion is achieved.

�
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Remark 4.1. Actually, taking into account the generality of (3.2) in Theo-
rem 3.1 (see Remark 3.1), the parameter λ∗ can be chosen in a more precise
way, that is,

1

max
{
T p− ;T p+

} 1

|Ω|
max

{
sup
c≥1

cp
−

F (c)
; sup

0<c<1

cp
+

F (c)

}
.

As a consequence of Theorem 4.2 we point out the following result which
deals with a problem having combined effects of concave and convex nonlin-
earities.

Theorem 4.3. Fix s, q such that 0 ≤ s < p− − 1 and p+ − 1 < q. Put
η∗=

min


1− p+

q+1

p+

s+1−1
,

 (s+1)(q+1)

max{T p−;T p+}|Ω|

(
p+

s+1−1
)p+−(s+1)

q−s
(

1− p+

q+1

)(q+1)−p+

q−s

(q+1)
(

1− p+

q+1

)
+(s+1)

(
p+

s+1−1
)


q−s

(q+1)−p+

.
Then, for each η ∈]0, η∗[ the problem −∆~pu = ηus + uq in Ω,

u = 0 on ∂Ω
(AD~p

η)

has at least two positive weak solutions.

Proof. Our aim is to apply Theorem 4.2 to the function f(u) = ηus + uq.

Indeed, fix µ such that p+ < µ < q + 1, then one has lim
t→+∞

µF (t)

f(t)t
=

lim
t→+∞

µ(η t
s+1

s+1 + tq+1

q+1 )

(ηts + tq)t
=

µ

q + 1
< 1, for which there is M > 0 such that

µ(η t
s+1

s+1 + tq+1

q+1 ) < (ηts + tq)t for all t ≥ M and so (AR+
1 )−condition is

verified. Moreover, lim
t→0+

f(t)

tp−−1
= lim

t→0+

ηts + tq

tp−−1
= +∞, for which also (4.2)

is satisfied. Hence, Theorem 4.2 ensures that the problem −∆~pu = λ (ηus + uq) in Ω,

u = 0 on ∂Ω,
(4.3)

admits two positive weak solutions for all positive λ < λ∗. Therefore, in
order to obtain the conclusion it is enough to prove that λ∗ > 1. To this
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end, we observe that the function
cp

+

F (c)
in ]0, 1[ assumes the maximum in

c̄ =

(
p+

s+1 − 1

1− p+

q+1

η

) 1
q−s

, being η < η∗ ≤
1− p+

q+1

p+

s+1 − 1
and taking into account

that D cp
+

F (c) = c(p++s)

(
p+

s+1 − 1
)
η +

(
p+

q+1 − 1
)
cq−s[

η c
s+1

s+1 + cq+1

q+1

]2 . It follows that (see also

Remark 4.1) one has

λ∗ ≥ 1

max
{
T p− ;T p+

} 1

|Ω|
sup

0<c<1

cp
+

F (c)
=

1

max
{
T p− ;T p+

} 1

|Ω|
c̄p

+

η c̄
s+1

s+1 + c̄q+1

q+1

=
(s+ 1)(q + 1)

max
{
T p− ;T p+

}
|Ω|

(
p+

s+1 − 1
) p+−(s+1)

q−s
(

1− p+

q+1

) (q+1)−p+

q−s

(q + 1)
(

1− p+

q+1

)
+ (s+ 1)

(
p+

s+1 − 1
) 1

η
(q+1)−p+

q−s

> 1,

being

η<η∗≤

 (s+ 1)(q + 1)

max
{
T p−;T p+

}
|Ω|

(
p+

s+1 − 1
) p+−(s+1)

q−s
(

1− p+

q+1

) (q+1)−p+

q−s

(q + 1)
(

1− p+

q+1

)
+(s+ 1)

(
p+

s+1 − 1
)


q−s

(q+1)−p+

,

for which the conclusion is achieved.
�

Remark 4.2. Theorem 1.1 in Introduction is an immediate consequence of
Theorem 4.3. Indeed, it is enough to choose s = p− − 2 and q = p+.

Finally, we present an example of problem that admits two positive weak
solutions, applying Theorem 4.3.

Example 4.1. Put p1 = 3, p2 = 4, N = 2 and Ω = B(0, 1). Theorem 4.3

ensures that for each η ∈
]
0, 3

28(2
1
2 +3

1
3 )8

[
, the problem−

∂

∂x1

(∣∣∣∣ ∂u∂x1

∣∣∣∣ ∂u∂x1

)
− ∂

∂x2

(∣∣∣∣ ∂u∂x2

∣∣∣∣2 ∂u

∂x2

)
= ηu+ u5 in Ω,

u = 0 on ∂Ω,

admits at least two positive weak solutions.
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Indeed, in this case one has mp− =
(

2
π

) 1
3 ; T0 = 2

π
1
4

; T = (3
1
3 + 4

1
4 ) 2

π
1
4

;

max
{
T p
−

;T p
+
}

= T 4 = (3
1
3 + 4

1
4 )4 24

π ; max
{
T p
−

;T p
+
}
|Ω| = (3

1
3 + 4

1
4 )424;

(s+ 1)(q + 1) = 12;(
p+

s+1 − 1
) p+−(s+1)

q−s
(

1− p+

q+1

) (q+1)−p+

q−s

(q + 1)
(

1− p+

q+1

)
+ (s+ 1)

(
p+

s+1 − 1
) = 1

3
1
2 4

, for which

η∗ = min

1

3
;

[
3

1
2

(3
1
3 + 4

1
4 )424

]2
 =

3

(3
1
3 + 4

1
4 )828

.
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715–734.



Existence of two positive solutions... 31

[29] N. Fusco, C. Sbordone, Some remarks on the regularity of minima of anisotropic
integrals, Commun. in Partial Differential Equations 18 (993), 153–167.

[30] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, 2nd
edn, Springer-Verlag, Berlin, 1983.
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