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Abstract

We consider a nonlinear Robin problem associated to the p-Laplacian plus an indefinite
potential. In the reaction we have the competing effects of two nonlinear terms. One
is parametric and strictly (p — 1)-sublinear. The other is (p — 1)-linear. We prove a
bifurcation-type theorem describing the dependence of the set of positive solutions on
the parameter A > 0. We also show that for every admissible parameter the problem has
a smallest positive solution %, and we study monotonicity and continuity properties
of the map A — u;,.
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1 Introduction

In a bounded domain @ c RY, with C?-boundary 92, we examine the following
nonlinear parametric Robin problem:

B S. Leonardi
leonardi @dmi.unict.it

Nikolaos S. Papageorgiou
npapg @math.ntua.gr

Dipartimento di Matematica e Informatica, Universita degli Studi di Catania, Viale A. Doria, 6,
95125 Catania, Italy

Department of Mathematics, National Technical University, Zografou Campus, 15780 Athens, Greece

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11117-019-00681-5&domain=pdf

340 S.Leonardi, N. S. Papageorgiou

—Apu(R)+HE@uERP T =4 f(z,u(2)+8(z u(@), u(z) >0, A>0 inQ
8_u+ﬂ(z)|u|p—2u =0 on 052.

onp
1.1)
By A,u we denote the p-Laplace differential operator defined by
Apu = div(|Du|P~2Du) forallu € WhHP(Q), 1 < p < +o0.

The potential function £(z) € L°°(2) and in general it is sign changing. So, the
left-hand side in (1.1) is not coercive. The reaction (i.e. the right-hand side of (1.1)
exhibits the competing effects of two terms. One is the parametric term A f(z, x),
with A > 0 being the parameter, and f(z, x) being a Carathéodory function which
has strictly (p — 1)-sublinear growth in x € R near +oco. The perturbation g(z, x) is
(p — 1)-linear near +o0o and, asymptotically as x — 400, the quotient g<z -9 stays

above A; the principal elgenvalue of the Robin p-Laplacian.
In the boundary condition, 5 denotes the conormal derivative of u corresponding
to the p-Laplacian defined by extensmn of the map

CcY(Q) 3> u — |DulP2(Du, n)pr = |Du|”_2g—:,
with n being the outward unit normal on d€2. The boundary coefficient f(z) €
CO2Q) (« €]0, 1) and B(z) = 0 for all z € 9Q2. When 8 = 0 we have the
usual Neumann problem.

We are looking for positive solutions of problem (1.1) and our aim is to describe
how the set of positive solutions changes as the parameter A > 0 moves in the positive
semiaxis ]0, +00o[. So we prove a bifurcation-type result establishing the existence of
a critical parameter value A* > 0 such that

e forall & €]0, A*[ problem (1.1) has at least two positive solutions;
e for A = A* problem (1.1) has at least one positive solution;
e forall > A* problem (1.1) has no positive solution.

Moreover, we show that for every admissible parameter A €]0, A*] problem (1.1)
has a smallest positive solution i, and we study the monotonicity and the continuity
properties of the map A — ;.

Such results for the set of positive solutions of elliptic equations were proved
by Ambrosetti-Brezis—Cerami [2] (for semilinear Dirichlet problems) and by Gar-
cia Azorero—Manfredi—Peral Alonso [5], Guo—Zhang [8], Hu—Papageorgiou [10],
Marano—Papageorgiou [14] (for nonlinear Dirichlet problems).

In the aforementioned papers & = 0, hence the differential operator of the equation
is coercive and the competition is between a concave (strictly sublinear) term and
a convex (superlinear) term. So they deal with the well-known “concave—convex”
problem.

Recently Papageorgiou—Radulescu—Repovs [20] studied semilinear Robin prob-
lems with indefinite linear part and a reaction having the combined effects of concave
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and convex terms. They proved a bifurcation-type result as described above. There are
also the recent works of Candito—Livrea—Papageorgiou [4] (Neumann problems) and
Papageorgiou—Radulescu—Repovs [19] (Robin problems). Both treat concave—convex
problems. In [4] the emphasis is on the existence of nodal solutions. In [19] the dif-
ferential operator is nonhomogeneous, the potential function is nonnegative (thus the
left-hand side is coercive) and the reaction has the form A f(z, x) (that is g = 0).

Our approach uses variational tools based on the critical point theory combined
with suitable truncation, perturbation and comparison techniques.

For other kind of operators with lower order terms see also [11,12]

2 Mathematical preliminaries: hypotheses
Let X be a Banach space and let X* be its topological dual. By < -, - > we denote the
duality brackets for the dual pair (X*, X).

Given ¢ € C'(X,R), we say that ¢ satisfies the “Cerami condition” (the C-

condition for short) if the following property holds:
“Every sequence {u,} C X such that

{¢(u,)} C R is bounded
and
(1 + llun @' (wn) — 0 in X*, asn — o0,

admits a strongly convergent subsequence”.

This is a compactness-type condition on the functional ¢ which compensates for
the fact that X is in general infinite dimensional and so it is not locally compact. The
C-condition leads to a deformation theorem from which one can derive the minimax
theory of the critical values of ¢. A major result in this theory is the so-called ”mountain
pass theorem”, which we recall here.

Theorem 2.1 If ¢ € CY(X, R) satisfies the C-condition, ug, u; € X, |ui — uoll >
p >0

max{g(uo), p(u1)} < inflo@) : lur —uoll = p} =1,
andc = infy, cr maxo<,<1 @(y (1)) withI’ = {y € C([0, 1], X) : y(0) = up, y(1) =

u1}, then ¢ > n, and c is a critical value of ¢ (that is, there exists i € X such that
¢'(@) =0, pit) =c).

By || - | we denote the norm of W7 (Q) given by

1
lull == [llull?, + 1Dull}, ] P forallu € WhP(Q).
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342 S.Leonardi, N. S. Papageorgiou

The Banach space C1() is an ordered space with positive (order) cone
Cy={uecCl(Q):uiz =0vzeQl.
This cone has a nonempty interior given by
Dy={ueCy :u) >0VzeQl

Also we will use another open cone in C! (), namely

) _ 9
int €, = {u e CY () :u(z) >0 forallz € Q, a—”
n

<0y.
aQNu—1(0)

On 02 we consider the (N — 1)-dimensional Hausdorff (surface) measure o (-).
Using this measure we can define in the usual way the “boundary” Lebesgue spaces
L1(0R2), 1 < g < + o0o. From the theory of Sobolev spaces, we know that there exists
a continuous linear map yy : wlr — p (0€2), known as the “trace map” , such that

Yo(u) = ujpq Yu € WHP(Q)nC(Q).

So, the trace map defines boundary values for every Sobolev function. We know
that

1
imyo=W7»""@Q) (1/p+1/p' =1) and ker yp = Wé’p(Q).

The trace map yp(-) is compact into L4(9€2) for all ¢ € [1, %[, if p < N, and

into L9(02) forall g € [1, 4+ oo[,if p > N.

In the sequel, for notational economy, we drop the use of trace map yp(:). All
restrictions of Sobolev functions on 9€2 are understood in the sense of traces.

Let A : WhP(Q) — WLP(Q)* be the nonlinear map defined by
< A(u),h >=f |Du|P~*(Du, Dh)gnv dz forallu, h € whrQ). (1)
Q

The next proposition shows the main properties of this map (see, for example, [7],
Gasinski—Papageorgiou , Problem 2.192, p. 279).

Proposition 2.2 [f
AW (Q) - whr (@)

is defined by (2.1), then A(-) is bounded, continuous, monotone and of type (S)+ (that
is, if

Uy = u in WhP(Q)
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and

limsup < A(uy), up —u ><0
n—+ 00

then
up — u in WhHP(Q)).

We introduce the conditions on the potential function £(-) and on the boundary
coefficient S(-).

(&) &€ L>(Q).
(B) B e ChHQ)forsome 0 < a < 1and B(z) > 0, Vz € Q.

Remark 2.3 When 8 = 0 we recover the Neumann problem.

In what follows by y), : WP (Q) — R we denote the C!-functional defined by

yp) = || Dull?, +/Qs<z)|u|”dz+/mﬂ(z)|u|"do, VYuewhr(Q).

Let fo : 2 x R — R be a Carathéodory function satisfying

| fo(z, x)| < ao(z)[1 + |x|""'] fora.a. z € Qand Vx € R,

Np .
with g € L®(2) and 1 < r < p*, where p* = { N-» ?fp <N .
400 ifp>=N

We set Fy(z, x) = f(;c fo(z, 5) ds and consider the C'-functional gy : W17 (Q) —
R defined by

1
0(0) =~ @) —/ Folz,wydz, Vu e W'P(Q).
Q

The next result is a special case of a more general one of Papageorgiou—Radulescu
[17] (see also Brezis—Nirenberg [3], Garcia Azorero—Manfredi—Peral Alonso [5],
Guo—Zhang [8] for earlier results of this nature).

Proposition 2.4 Ifug € W7 (Q) is a local C' (Q)-minimizer of go, that is there exists
po > 0 such that

@ouo) < @(uo +h) forallh € C'(Q) and ||kl c1 i) < po,

then uy € CH"(Q) for some 0 < n < 1 and ug is a local WP (Q)-minimizer of ¢q,
that is, there exists p; > 0 such that

@uo) < @(ug +h) forallh € WhP(Q), |kl < pr.
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344 S.Leonardi, N. S. Papageorgiou

The above result is essentially an outgrowth of the nonlinear regularity theory of
Lieberman [13]. To make effective use of Proposition 2.4 we need the following strong
comparison principle. Again, the result is a special case of a more general result due
to Papageorgiou—Radulescu—Repovs [19]

Proposition 2.5 If§ € L®(Q), £(z) > 0 fora.a. z € Q, h1, hy € L®() satisfy
0<¢<hyz)—hi(z) foraa z € Q,
u,v e CI(Q)\{O} satisfy u < v and

—Apu(z) +~‘§:(Z)IM(Z)IP*2M(1) =hi(z) foraa. z € Q
—Apu(2) +E@I@)IP20(2) = ha(z) foraa.zeQ

thenv —u € inté+.
We will also need some facts about the spectrum of the differential operator u —
—Apu + £(2)|ul”~2u. So, we consider the following nonlinear eigenvalue problem.

—Apu(2) + E@ulP2u(2) = Au(2)|P2u(z) inQ

9
L B@uP2u=0 on 49
8np

(2.2)

We say that X is an “eigenvalue” if the problem admits a nontrivial solution
i known as “eigenfunction” corresponding to the eigenvalue . This eigenvalue
problem was studied by Papageorgiou—Radulescu [16] (Robin problems) and Mugnai—
Papageorgiou [15] (Neumann problems). We know that problem (2.2) admits a smallest
eigenvalue A1 which has the following properties:

° il is isolated [that is, there exists ¢ > 0 such that the open interval ]5»1, 5»1 + ¢l
contains no eigenvalue of (2.2)];

o ipis simple (that is, if &z, 0 are eigenfunctions corresponding to the eigenvalue Al
then 27 = 00 for some 6 € R\{0});

i = mf[””( W e WP Q) u £ 0} 2.3)

||u||Lp

The nonlinear regularity theory implies that all eigenfunctions of (2.2) belong to
cl(Q). Moreover, the above properties of A imply that all the eigenfunctions corre-
sponding to A1 have fixed sign.

Let 1] be the LP-normalized (that is, ||iZ1|L»r = 1), positive eigenfunction corre-
sponding to 1. Then form the nonlinear maximum principle (see Pucci—Serrin [21]),
we have | € Dy.

In (2.3) the infimum is realized on the corresponding one dimensional eigenspace
Rii;. An eigenfunction i € C!(2) corresponding to an eigenvalue A * A1 is neces-
sarily nodal (that is, sign changing). The Ljusternik—Schnirelmann minimax scheme
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gives us in addition to A1, a whole strictly increasing sequence {Ax} of distinct eigen-
values (known as “variational eigenvalues”) such that ):k — +00. We do not know
if this sequence of variational eigenvalues exhausts the spectrum of (2.2). This is the
caseif N =1lorif p =2.

We will also encounter a weighted version of the eigenvalue problem (2.2). So, let
m € L*°(2)\{0} and consider the following nonlinear eigenvalue problem

—Apu(@) +E@Nu@IP2u(@) = im@)|u@)|P2u(z) inQ

ou 5
— +B@ulP"u=0 on I
onp

2.4)

We can have a smallest eigenvalue 11 (m) which now has the following variational
characterization

vp(u)

/ m(@ul? dz
Q

The corresponding eigenfunctions i have constant sign. As before, by i1 we denote
the positive, L”-normalized eigenfunction. We have it; € D and the infimum in (2.5)
is realized on Rii;

*1(m) = inf cue WhP(Q),u#0] . (2.5)

Lemr[la 2.6 Ifm~1, my € L®(Q)\{0}, m1(2) < my(z) fora.a. z € Q and m| # my,
then Ly(m3) < Ai(m1)

Proof Using (2.5) and recalling that it; € Dy, we have

Yp (1) - Vp(ﬁl)

= Ai(my).
[ me@iraz [ met a:
Q Q

Ai(my) <

Finally let us fix some basic notation that we will use in the sequel.
If x € R then we set x* = max{+x, 0}. For u € WP (), we define u*(-) =
u(-)*. We know that

uFewh?P(Q), u=ut—u", ul=ut4u".

If g : @ x R — R is a Carathéodory function, then N, (-) denotes the Nemytskii
(superposition) operator for g(z, x) defined by Ng(u)(-) = g(-,u(-)) for all u €
whr(Q).

Given u, v € WP () with u(z) < v(z) for a.a. z € 2, we define

[, v] = {y € WhP(Q) : u(z) < y(z) < v(z) foraa.z e Q).
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346 S.Leonardi, N. S. Papageorgiou

By intci(g)lu, vl we denote the interior in the C 1(Q)-norm topology of the set [1, v]N
cl(Q).
Also, if u € WhP(Q), we set
[ul={y € WhP(Q) : u(z) < v(z) foraa.z e Q).

If X is a Banach space and ¢ € C! (X, R), then by K, we denote the critical set of
@, that is,

Ky={ueX:¢u =0}
Now we will introduce our hypotheses on the two competing nonlinearities f(z, x)

and g(z, x) in the reaction problem (1.1).
Let f : 2 x R — IR be a Carathéodory function such that

(f1) one has
f(z,0) =0 fora.a.z e Q;
(f2) forevery p > 0 there exists a positive function o, € L°°(£2) such that
0< f(z,x) <ay(z) fora.a.z e Qandallx € [0, p;
(f3) we have

im L& g

xX—400 xl’—l

uniformly for a.a. z € Q;
(f4) there exists 69 > 0 and g €]1, p[ such that

c1x?7! < f(z,x) fora.a.z e Q, allx € [0, 8]
and for every s > 0 there exists 77; > 0 such that
Ny < f(z,x) foraa.ze Q,allx >s.

Remark 2.7 Since we are looking for positive solutions and all the above hypotheses
concern the semiaxis [0, +o0o[ , without any loss of generality, we may assume that

f(z,x) =0 fora.a.z € Qand Vx < 0. (2.6)

Hypothesis (f3) implies that for a.a. z € 2, f(z, -) is strictly (p — 1)-sublinear near
+ 00. Hypothesis (f4) reveals the presence of a concave nonlinearity near 0.

In turn, g : 2 x R — R is a Carathéodory function such that
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(g1) one has
g(z,0) =0 fora.a.z e Q;
(g2) there exists a positive function & € L% (£2) such that
gz, 0| < @@ +x"7h)

fora.a.z € angl all x > 0;
(g3) there exists > Ay such that

~ .. Z,X
n < liminf 8( ),
x— 400 xP*l

uniformly for a.a. z € €;
(g4) there exist ¢p, 3, ¢4, 81 > 0 and r €]p, p*[ such that

—ex?7! < g(z, %)

fora.a.z € Q,all x € [0, 8;] and

1

g(z,x) < csx"h —eqx?™!

fora.a.z € Q,all x > 0.

Remark 2.8 As we did for f(z, -), without any loss of generality, we may assume that
g(z,x) =0 foraa.z €, allx <0 2.7

Hypotheses (g2), (g3) imply that, for a.a. z € @, g(z, ) is (p — 1)-linear near 400

’

and, asymptotically as x — 400, the quotient 8 x) stays above Al

p—1
So, in the present work the competition is bet)gveen a concave term and a (p — 1)-
linear perturbation. Evidently in hypothesis (g4), by appropriately modifying c;, we
can always assume that ¢4 > ||£]| 1.
Finally, for every p > 0 and every B C]0, +oo[ bounded, we can find éf >0
such that for all A € B and a.a. z € €2, the function

X = Af(z. %) + gz, x) + EfxP! 2.8)
is nondecreasing on [0, p].
If p = 2, then this hypothesis is a one-sided local Lipschitz condition on the

reaction. If for a.a. z € R, f(z,-) and g(z, -) are bqth differentiable and for every
p > 0and every B C]0, +o0[ bounded, we can find éf > ( such that

(A fl %) + gh(z. 0] x? = —EPxP

fora.a. z € Q,all x € [0, p], all A € B, then hypothesis (2.8) is satisfied.
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348 S.Leonardi, N. S. Papageorgiou

Examples The following functions satisfy hypotheses (f1)-(f4) and (g1)—(g4). For
the sake of simplicity we drop the z-dependence.

fi(x) =x971 forallx >0, withl <g < p < +o0,
_[A@xrt—xPThy ifx €0, 1]
g10x) = {ﬁxl’_l ifx > 1

with 7 > A, D;

x4~ if x € [0, 1]

frlx) = xP1 N In2—1
In(1 + x) In2

fe@x Tt —xPly ifx €0, 1]

g2(0) = {ﬁ(x”l T ifx > 1

ifx>1

withe >0, n>n,t<p<r.

3 Positive solutions of problem (1.1)
We introduce the following two sets

¥ = {A >0 : problem (1.1) admits a positive solution},
S(A) = {positive solutions of problem (1.1)}.

Also, we define
A =sup.Z.
Proposition 3.1 Ifhypotheses (§), (B), (fl)—(f4), (g1)—(g4) and (2.8) hold, then £ # ()

and, for every . € £, S(\) C Dy.

Proof We leave at the end the proof that .2 # () and we start proving the second part

of the statement.
Let A € Z. Then we can find u € S(A) such that

—Apu@) +E@uP =& f(z,u(2) + g(z,u(z)) foraa x e Q

ou _1
+BuP~1=0 on 9€2
ony

3.1

(see Papageorgiou—Radulescu [16]).
Form (3.1) and Proposition 7 of Papageorgiou—Radulescu [17], we deduce
ueL®R).
Let p = ||u||p~, B = {1} and let éf be as postulated by hypothesis (2.8).
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From (3.1) and hypothesis (2.8), for a.a. z € 2, we have

Apu() = [ gl +EF | ur!
=ue€ Dy (see[6],p.738)
— S(.) C D

Next we show that .Z # .
X X

Let F(z,x) = / f(z,8)ds,G(z,s) = / g(z,8)ds, u > ||&]| L~ and consider
0 0

the C'-functional

N 1 H —p 1

Palu) = 5 yp(u) + > lu= 17, — | »F(z,u)dz— | G(z,u)dz, Yue W"P(Q).
Q Q

On account of hypotheses (f2), (f3) and (f4), we see we can find a constant ¢5 > 0
such that

F(z,x) <csx?+xP foraa.ze Q allx >0. (3.2)
Also, from hypothesis (g4) we have

Gz.x) < S2x" —xP foraazeQ, allx >0, (3.3)
r p

Recall that we can take ¢4 > ||&|| . We have

. _ 1
@) = colluII” + — [yp @) + callull7, ] = Mlut|?

3.4
—c7 [Mlut9 4 callut )]
for some cg, c¢7 > 0 (see (2.6), (2.7), (3.2), (3.3) and recall that & > ||&]| )
Since ¢4 > ||&|| L, choosing A > 0 sufficiently small, we have
_ 1
collu™|I” + » [vp@™) + callu™l17,] = Alu™ 1P = cgllul” (3.5)
for some cg > 0.
Merging (3.5) in (3.4), we obtain for A > 0 sufficiently small
@.0) = cgllull? = e [Alull + eallu]’] 36

= [es — c7 (MullT™P + callul|”=P) ] ull?

forallu € Whr(Q).
We now set

0,(t) = 9P 4¢"7P forallt >0
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350 S.Leonardi, N. S. Papageorgiou

and we observe that we can find 7y > 0 such that

6;.(to) = inf,>0 0,(¢) = 6} (19) =0 1 1
= AMp—qitg 7 =(r= ptd "
Mp — —q
N [M} "
r—p
It follows that
0, (o) = 07 asr — 0T,

So, we can find ¢ > 0 small enough such that

cg > 705 (tg) forall A €]0, Ao[

. N o A 3.7
= inf {¢5.(0) : ull = p = 160} = s, > 0 = 4,(0) G7)
for all A €]0, Ag[ [see (3.6)].
Hypotheses (f3) and (g3) imply that
@ (ti]) - —o0 ast — + oo (recall § > . (3.8)

We now claim that the functional ¢, satisfies the C—condition.
We consider a sequence {u,,} € W7 () such that {$; (u,)} C R is bounded and

(14 Nun DG} (un) — 0 in WHP(Q)* as n — + o0.

So, we have

< A(up), h > +/ é(z)lunlpfzunhder/ B(@)|un|P*uph do
Q IQ

—/ u(u;)”‘lhdz—/ (A f(z,un) + 8z, un)l hdz (3.9)
Q Q
enllhl]

L fluall

forall h € WhP(Q) with g, — 0.
In (3.9) we choose h = —u, € W'7(Q). Then

Vo) + plluy 17, < &n [see(2.6)and(2.7)]
= collu, |I” < e, forsome constant cg > 0, all n € IN (recall that pu > [|€]|z)
= u, > 0 in WP(Q).

(3.10)
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We plug (3.10) in (3.9). Then

< A(u), h > +/ E@ P hdz +/ B )P hdo
Q a0

—/Q[Af(z,u,f)jtg(z,u,f)]hdz G.11)
< g, lhll
forallh € WhP(Q), with &/, — 0%,
We show that {u,"} € WP (Q) is bounded.
Arguing indirectly, suppose that, at least for a subsequence, we have
||u,'1"|| — +o00. (3.12)

ut

Let y, = ﬁ for all n € IN. We have ||y,|| = 1, y, > 0 for all n € IN. So we
Up

may assume that
yu =y in WhP(Q) andy, — yin L?(Q) and in L?(382),y > 0.  (3.13)

From (3.11), we obtain

< AGW.h > +/ S(z)yff”hdH/ By, hdo
Q 0Q
_/ [ANf () + Ng(u,)]
Q

hdz 3.14
e 17! G
enllhll
e
forallh € WhP (), alln € IN.
Hypotheses (f2) and (f3) imply that
Np(uf /
{%} C LP () isbounded (1/p+1/p = 1). (3.15)
Up |77
Similarly hypothesis (g2) and (3.12) imply that
Ng(u;f /
{iL)l} C LP(Q) is bounded. (3.16)
oy 1P~

So, if in (3.14) we choose h = y, —y € WP (), we pass to the limit as n — 400
and use (3.13), (3.15) and (3.16), then we obtain
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limy— 400 < A(yn), Yo —y >=0
= y, — y in WP (Q)(see Proposition 2.2) (3.17)
= lyll=1y=0.

From (3.15), (3.16) and by passing to a subsequence if necessary, we deduce

Ny (M,J{) w . »

W — 0 in L” (R2) (see hypotheses (f1) and (f3)) (3.18)
n

N, (uf /

# = no(@)y""" in LP(Q) (3.19)
n

with 7§ < 19(z) < c¢jo for a.a. z € Q, some constant c¢jg > 0 (see hypotheses (gl),
(g3) and [1], proof of Proposition 16).

So, if in (3.14) we pass to the limit as n — 400 and we use (3.17), (3.18) and
(3.19) then we obtain

<AO)h > +f @y hdz +f By’ 'hdo
Q Q2

=f 02y thdz, Yh € WP ()
Q

(3.20)
—Apy(2) +E@y@)P T =no(@)y(@)P! foraazeQ
Rl
12 4y =0 on Q2
on
(see [16]).
From Lemma 2.6 we know that
J(o) <A < M) =1 [see(3.19)]
=> y must be nodal or zero [see(3.20)].
This contradicts (3.17). Hence we have proved that
{ur} € WhP(Q) is bounded
= {u,} € WHP(Q) is bounded [see(3.10)].
So we may assume that
Uy — u in WhP(Q) and u, — u in LP(Q) and in LP (3). (3.21)

We return to (3.9), we choose i = u, —u € WhP(Q), we passtothelimitasn — +oo
and use (3.21). Then we get

lim,— 400 < A(up), up —u >=0
= u, — u in WP (Q)(see Proposition2.2)
= ¢ satisfies the C-condition.
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This proves the claim.
Thus, (3.7), (3.8) and the claim permit the use of Theorem 2.1 on ¢;, A €]0, Agl[.
So, we can find u; € WP (Q) such that
u) € K@A and I’lA’t)L < @A(’/M)» (3.22)
From (3.22) and (3.7), we have
u, #0 and @ (u) = 0. (3.23)

Then

<A b=+ [ e uhdes [ p@lnt Pundo~ [ pa) s
Q aIQ Q

_ /Q [ f o) + g (2o )1 hdz.

(3.24)
In (3.24) we choose h = —u, € W1-P(Q). Then
yp () + llus 17, =0 [see (2.6)and (2.7)]
= ciillu, I’ <0 for some constant c1; > O(recall that i > [|§]| L)
= u) >0, u) #0 [see(3.23)]
= u); € SA) C Dy VAe€]0, ]
=10, 1olC &
=2 #0.
m}
Proposition 3.2 If hypotheses (&), (B), (f1)—(f4), (g1)-(g4) and (2.8) hold, then \* <

+00.

Proof On account of hypothesis (g3), we can find 7 > A and a constant M > 0 such
that

g(z,x) > fxP~! foraazeQ, allx > M (3.25)
Also by hypothesis (g4) we have
g(z,x) > _szp—l fora.a.z € 2, allx € [0, §1]. (3.26)

Finally hypotheses (f2) and (f3) imply that we can find a constant c12 > 0 such
that

g(z,x) = —cppxP~! foraa.z € Q, allx € [8;, M]. (3.27)

Then on account of hypothesis (f4) and since ¢ < p, using (3.25), (3.26) and (3.27)
we see that for A > 0 big enough we can have that
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Af(z,x)+g(z,x) > xP7! foraa. zeQ, allx > 0. (3.28)

Let A > A and suppose that A € .Z.The we can find u; € S(A) € D (see
Proposition 3.1). We have

—Apuy(z) + E@ul” =1 f(z.un() + 8(z, ux(2))
> Af(z,ux(2)) + g(z, u)(z)) (since L > A) (3.29)
> fuy ()P~ fora.a. z € Q[(see (3.28)].

We consider the Carathéodory function k; ((z, x) defies by

0 ifx <0
ki(z, x) = (7 + w)xP~! if0<x <u)(z) (3.30)
(@ + wu ()P~ ifx > u;(2).

We set
X
K.(z, x)=/ ki(z,s)ds
0
and introduce the C!-functional v, : W17 (Q) — R defined by
1 Howp 1.p
Vo (u) == ;Vp(u) + ;”u”LI’ - QKA(Za u)dz, Yue W " (Q).

Using (3.30) and the fact that i > ||§]| L, we see that
¥, (+) s coercive.

Also, using the Sobolev embedding theorem and the compactness of the trace map,
we infer that

¥;.(+) is sequentially weakly lower semicontinuous.
So, by the Weierstrass—Tonelli theorem, we can find & € wlp (€2) such that
Vi () = inf{yy () : u € WHP(Q)). (3.3
We choose ¢ €]0, 1[ small enough such that

tie; € [0,u;] (recall thatiy € D).
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Then we have

P
Vi(tiiy) = %Wﬁl) “ A [see (3.30)]

tP .
= ;[M -7l <0
= Y (@) < 0=1Y,(0) [see (3.31)]
=i #0.

From (3.31) we have

wi(ﬁ) =0
=< A(il), h > +/ [£(z) + plli|P ik dz +/ B()|a|P2iih do
Q . (3.32)

=/kk(z,ﬂ)hdz, Vhe WhP(Q).
Q

In (3.32) we choose h = ii~ € WP (Q). Then

yp@ )+ pla |7, =0 [see(3.29)]
=i >0,0#0 (recall that u > ||&]|p).

Next in (3.32) we choose h = (ii — u;)™ € WP (). Then

< A@), (@—u)* > +/Q[§(z) + Wi~ —up) T dz + /BQ B’ i—u)" do
= /Q[ﬁ +udul ™ @ —up)tdz [see (3.30)]
< fQ [Xf(z, uy) + gz, up) + uuf"] (@ —u;)tdz [see (3.29)]
< fg [Af(z, ) + gz, un) + Wf‘l] (@i —u;)*dz (since A > A, f > 0)
=< A(uy), (1 —up)t > +/Q[S(z) + ulu? ™ @ = up)*tdz

+/ Bu? ™ @ —u)* do (since u; € S())
Q2

= i <u, (since u > ||&]| L~ and using hypothesis(8)).

So we have proved that

ii € [0,us], @i #0. (3.33)

From (3.30), (3.32) and (3.33), we obtain
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< A(), h >+/ E()aP'h dz—l—/ B()a" " h da:/ 7P~ 'hdz, Vhe w'P(Q)
Q IR Q

—Apii(z) + E@i()P 1 = fia(z)P~! foraa. z € Q (3.34)
= { o +B@aP =0 on 0%2.
onp

Recall that 7 > ):1. Then from (3.34) and Lemma 2.6, we infer that # must be
nodal, a contradiction to (3.33). Therefore A ¢ . and so

A =sup.Z < i < +o0.

]

Proposition 3.3 If hypotheses (&), (B), (f1)—~(f4), (g1)—(g4) and (2.8) hold, » € £ and
Tt €]0, A[then T € Z.

Proof Since A € £, we can find u; € S(A) C D (see Proposition 3.1).
Lete; : 2 x R — IR be the Carathéodory function defined by

0 ifx <0

er(z,x) = { tf(z,x) + g(z, x) + px?~! if0<x <u;(z) (3.35)
Tf(z,u.(2) + 8z, up (2)) + puu; ()P~ if x > up(2).

X
We set E;(z,x) = / e:(z,5)ds and consider the C'-functional 1@,
0
WP (Q) — R defined by

7 1 H p L,p
Ye(u) = ;Vp(u) + ;IIMIILP - QEr(z,u)dz, Yue WP (Q).

From (3.30) and since u > ||€]| > (g), We see that I/A/-[(~) is coercive.
Also, itis sequentially weakly lower semicontinuous. So, we can findu, € W7 (Q)
such that

Ve (uy) = inf{Yr () : u € WHP(Q)). (3.36)
Letu € D4 and choose ¢ €]0, 1[ small enough such that
0 <tu(z) <8 foraa.zeQ, (3.37)

with § = min{Jo, &1} [see (f4) and (g4)]. Then on account of hypotheses (g2) and (g4),
we have

Tept?

n tP
Ue(tu) < ;[y,;(u) +cislllully, — llull?, (3.38)
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for some constant cj3 > i > ||€]| L~ [see (3.37)].
Since g < p, if in (3.38) we choose ¢ €]0, 1[ even smaller, we deduce that

Y (tu) <0
= Y () < 0=1.(0) [see (3.36)]
=u; #0.
From (3.36) we have
VL) =0
S AGu) h > +/ [£) + el 2uch dz +/ BO\uelP2uch do
Q 0
= / er(z,up)hdz, Yhe WhP(Q).
Q
(3.39)

As before, choosing in (3.39) firsth = —u, € WhP(Q)andthenh = (uy—uy)t €
WP (), we show that

urs € [0,u,], ug #0. (3.40)
From (3.35), (3.39) and (3.40) we conclude that

u € St) S Dy =>t1e%.

An interesting byproduct of this proof is the following corollary.

Corollary 1 If hypotheses (&), (B), (fl)—(f4), (g1)—(g4) and (2.8) hold, » € £, t €
10, A[ and u, € S(A), then T € £ and there exists u; € S(t) such that

u) —ur € CL\{0}.
In fact, using Proposition 2.5, we can improve the conclusion of this corollary. The

following stronger version will be used in the analysis of the minimal solution map
which we conduct later.

Proposition 3.4 If hypotheses (£), (B), (fl)—(f4), (g1)—~(g4) and (2.8) hold, » € £,
T €10, A[ and u; € S(A), then T € £ and there exists u; € S(t) such that

u) —u; €intCy.

Proof From Corollary 1 we already know that T € . and that we can find u; € S(t)
such that

u); —ur € C4\{0}.
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Let p = ||uy|lr~, B = [, A] and let é‘f > 0 be as postulated by hypothesis (2.8).
We have

—Apur + (6@ +E 1l
= 1f(ur) + g 1)+ Eul ! (3.41)
= Af(@our) + 8z ur) +EPul ™ — (L= 7) f (2 ur).

Since u; € Dy, m; = ming u; > 0 and then from hypothesis (g4) we have
0 <iir =cim?™' < f(z,ur(z)) foeaaze Q.
Therefore

Mf(oue) + g oue) +EPul ™ — 0= ) f(z ue)
< hf(zour) + g ug) + EFul ™ — .= D,
< Af(z,uy)+ gz, uy) + é‘/fuf_l [since u; < uj, see hypothesis(2.8)]
=—Apuy +[6(2) + éf]uffl foraa. z € Q

(3.42)

Since (A — ©)5,, > 0, from (3.41), (3.42) and Proposition 2.5, we deduce that
Uy — Uy € inté’+.

O

Next we show that forall A €]0, A*[ problem (1.1) has at least two positive solutions.

Proposition 3.5 If hypotheses (€), (B), (f1)—(f4), (g1)—(g4) and (2.8) hold, 1 €]0, A*[,
then problem (1.1) has at least two positive solutions

ug, u € Dy, ug # ul.

Proof Let0 < 7 < A < 6 < A*. We know that 7,0 € £ (see Proposition 3.3).
According to Proposition 3.4, we can find ug € S(0) € D4 and u, € S(r) € D4
such that uy — u, € intC,. Using these two solutions we introduce the Carathéodory
function /) : 2 x R — R define by

Mz, ur(2) + g(z, ur (2) + pu ()P~ ifx < u(z)
Lz, x) = { Af(z,x) + gz, x) + pxP~! ifu; (z) <x <up(z)

Af(z,up(2) + 8z, ua(2) + pug ()P~ if x > up(2).
(3.43)

X
As always > |[|€]|L~. We set L) (z,x) = f 1, (z, s) ds and consider the C!-
0
functional ¢; : W7 (Q) — R defined by

~ _ 1 Hoop Lp
0.(u) = ;Vp(u) + ;Ilulle - QLx(z, u)dz, Yue WP (Q).
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This functional is coercive [see (3.43)] and sequentially weakly lower semicontin-
uous. So, we can find ug € W7 () such that

Ga(uo) = inf{Py (u) : u € WP (Q)}
= @; () =0 (3.44)

=< A(ug), h > —i—/ [E(z) + wlluol? 2uoh dz +/ ﬁ(z)luolpfzuoh do
Q FI9)

:/l)\(z,uo)hdz, Vhe WhP(Q). (3.45)
Q

In (3.45) we choose h = (ug —ug)t € WhP(Q)and h = (u; —ug)t € WhHr(Q),
and using (3.43) we show that

uo € [ug, ugl N Dy, up € S(A) [see (3.43)].
In fact, as in the proof of Proposition 3.4, exploiting Proposition 2.5, we obtain
ugp € intc1(9)[ur, ugl, ugp € S(A) (3.46)
We consider the following Carathéodory function

Mz ur(2) + 8(z, ur (2) + puc ()P~ if x < u.(2)

Af(z,x) + g(z, x) + pxP~! x> ur(2), (3.47)

r(z, x) = {
X ~
Weset Ry (z, x) = / r1.(z, s) ds and consider the C'-functional y;, : WP (Q) —
R defined by

7 1 H p Lp
Y (u) == ;yp(u) + ;IIuIILp -/, Ri(z,u)dz, Yue WhP(Q).

From (3.43) and (3.47) we see that

¢)\|[ur,u9] = w)» [u ug]
= ug is a local C'-minimizer of ¥; [see (3.44) and (3.46)] (3.48)
= ug is alocal WP ()-minimizer oflh(see Proposition 2.4).
Using (3.47) we can show that
K% C [u[ND4. (3.49)

On account of (3.47) and (3.49), we see that we may assume that K i is finite.
Otherwise we already have an infinity of positive solutions for problem (1.1).
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The (3.48) implies that we can find p €]0, 1[ small enough such that
V(o) < inf{ () : [l —uoll = p} = iy, (see [1]) (3.50)
Hypotheses (f3) and (g3) imply that
Un(th) = —o0 ast — +00. (3.51)
Moreover, as in the proof of Proposition 3.1, we show that
IZ/)L(-) satisfies the C-condition. (3.52)

Then (3.50), (3.51) and (3.52) permit the use of Theorem 2.1. So we can find
i € WP () such that

i€ Ky andm; < U (i) [see (3.50)]. (3.53)

From (3.49), (3.50) and (3.53) we conclude that
e S C Dy and it # uyp.
O

Next we show that the critical parameter value A* is admissible and hence . =
[0, A*].

Proposition 3.6 If hypotheses (&), (B), (fl)—(f4), (g1)—(g4) and (2.8) hold, then A* €
Z.

Proof Consider a sequence {A,} €]0, A*[ such that A, — (A*)™. Letu,, € S(A,,) C
Dy, Vn € IN. From the proof of Proposition 3.5, we see that we can have that the
sequence {u,} is increasing. Thus we get

< Alwn) h > +/ s(z>uz"1hdz+/ Bul  hdo =/[xnf<z,un>
Q 02 Q
+g(z, up)lhdz, (3.54)

VheWhr(Q), VneN.
Reasoning as in the claim in the proof of Proposition 3.1, we show that

{un} € WHP(€) is bounded.
So we may assume that
Up — uy in WhHP(Q) and u, — u, in LP(2) and in L? (3Q). (3.55)
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In (3.54) we choose h = u, — us, € WHP(Q), we pass to the limit as n — 400
and we use (3.55). Then

lim, . < A(uy), up —uy >=0

= u, — uy in WHP(Q), uy # O(since u; < u, forall n € IN). (3.56)

Passing to the limit as n — +o00 in (3.54) and using (3.56), we conclude that
uy € SO C Dy = 21" e Z.

O

Now we turn our attention to the existence of minimal positive solutions (that is, a
function u; € S(A) € D such that u) < u for all u € S(A)). After establishing the
existence of such a minimal positive solution i, we will examine the monotonicity
and continuity properties of the map A — uj.

Hypotheses (f1)—(f4) and (g1)—(g4) imply that we can find constants c14 > 0 and
c15 > ||&||Le such that

Af(z,x)+ g(z,x) > Acpaxd — c15xp_1 foraa.zeQ, allx >0,all A € .Z.
(3.57)
This unilateral growth restriction on the reaction of (1.1) suggests the following
auxiliary Robin problem
—Apu2) + E@u(2)P ! = rerau(@)™! —cisu@)P!, w>0 inQ

9
L Bur =0 onaq. 3%
on,

Proposition 3.7 If hypotheses (&), (B) hold and ) > 0, then problem (3.58) admits a
unique positive solution u) € D.

Proof We consider the C'-functional 4, : || — R defined by

A 1 7 Acig
a(u) == ;y,,(u>+;||u 17, +cislutly, — . lut 9, Yue WP (),

with p > [|§][ .

Since w, ¢15 > ||&| L, We see that ay (-) is coercive. Also, it is sequentially lower
semicontinuous. So, we can find i1, € W7 () such that

a (i) = inf{a, () : u € WhHP(Q)). (3.59)

Since g < p, foru € Dy and ¢ €]0, 1[ small enough, we will have a; (tu) < 0,
hence

a, (i) <0 [see (3.59)]
= u; #0.
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From (3.59) we have
a (i) =0
=< A@i;), h > +/ E(2) x|~ 2ﬂxhdz+/ B@)ix|P2ihdo
—/L/(u Y lhdz—/[kcl4(u P eis@hH? " hdz, Yhe WP (Q).
(3.60)

In (3.60) we choose h = —it, — € € WP (). Then we have

ypliy) + plli; 7, =0
= ci6llit; |” <0 for some constant ¢jg > 0
= i, > 0, i, #0.

Then from (3.60), the nonlinear regularity theory and the strong maximum principle
, we infer that &, € D is a positive solution of (3.58).

Next we show the uniqueness of the positive solution of (3.58).

So, we suppose that v, is another positive solution of (3.58). Again, we have that
v, € D4.Lett > 0 be the biggest positive real number such that

1) < iy. (3.61)

Suppose that # < 1 and let c17 > c15 > ||&]| L. We have
—Ap(t5) + [6(2) + c171(10;) P!
— ¢p-1 [—A,,f),\ + Q)+ c”)ﬁf‘l]
_ ~q—1 p—1
= tp-1 I:)\C14vg + (c17 — 615)1)){) ] (3.62)
< Aera(to)7 ! + (e17 — 1) (¢ P! (sincet < 1, ¢ < p)
< rewit? ™+ (c17 — c15)a? ™" (see (3.61) and recall that ¢17 > ¢15)
= —Apiiy + [E() + el ™" foraa. z € Q.
Since vy, € Dy, from (3.62) and Proposition 2.5 it follows that

iy — 1ty €intCy [see (3.61)].

This contradicts the maximality of # > 0. Therefore > 0 and so

vy <u,; [see (3.61)].

Interchanging the roles of i, and v, in the above argument, we obtain

i) <0y = ) = Uy.
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This unique solution i, € D4 of problem (3.58) provides a lower bound for the
elements of S(A), forall A € .Z =]0, A*].

Proposition 3.8 If hypotheses (&), (B), (fl)—~(f4), (g1)—(g4) and (2.8) hold and ). € £,
then i < u forallu € S(A).

Proof Letu € S(1) € Dy. We introduce the following Carathéodory function
0 ifx <0

3.(z, x) = { Acraxd=! + (u — c15)xP 7! ifO<x<uz)  (3.63)
reau ()4 + (n—crs)u@P! ifx > u(z).

X
We set Hy (z, x) = / 71 (z, s) ds and consider the C'-functional 75 : W'P(Q) —
0
R defund by

7 -_l Bovumwe — | B dz, ¥ Lr@
A(u) == pJ/p(u)-i-pllu Iy » ; sz, u)dz, Yu e WHP(Q).

The functional 7, (-) is coercive [see (3.63)] and sequentially weakly lower semi-
continuous. So, we can find iig € W7 () such that

Ty (iio) = inf{Ty () :u € WHP(Q)} <0 = 7,(0) (since g < p)

= iig # 0 and 7] (iig) = 0. (3.64)
From the equality in (3.64), we have
< Alio), h > + / [£(2) + plliio|" %iioh dz + / B(@)liiol P 2iioh do
; o2 (3.65)

=/ Nz, dio)hdz, Yh e WhP(Q).
Q

In (3.65) first we choose h = —ii; € WLP(Q) then we have

ypliio) + pllitg 17, =0 [see (3.63)]
= ug >0, ug # 0.

Also in (3.65) we choose h = (iig — u)* € WhP(S2). We have
< Aliio), (ftg —u)* > +/ [£(2) + plial ™ (o — w)* dz
Q
+ / Bl (g — w)T do
02
_ / Dherau?™" + (u — ersuPVGio — uy* dz [see (3.63)]
Q

= / [hf (2, u) + g(z, w) + puP~H]Gio — )" dz [see (3.57)]
Q
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=< A®), (g —u)* > +/ [£(z) + pnluP Vg — )t dz
Q

+/ B@uP g —u)T do
Q2

= up <u (since u > [&]lL).
So, we have proved that

uo € [0, u], ug #0
= ug = u, (see (3.63), (3.65) and Proposition 3.7)
=u; <u forallu € S(L).

O

From Papageorgiou—Radulescu—Repovs [18] (see the proof of Proposition 7 in
[18]), we have that the solution set S(A) is downward directed, that is, if u, # € S(}),
then we can find y € S(A) such that y < u, y < #. Using this fact, we can show that
S(A) admits a minimal element.

Proposition 3.9 If hypotheses (§), (B), (f1)—(f4), (g1)—(g4) and (2.8) hold and ) € L,
then problem (1.1) admits a smallest positive solution u) € S(A) € D4 (that is,
uy <uforallueSHA))

Proof On account of Lemma 3.10, p. 178 of Hu—Papageorgiou [9], we can find {u,} C
S(1) decreasing such that

inf S(A) = inf u,.
nelN
We then have
< A(up), h > +/ E(z)ufl’_lhdz—}-/ ,B(Z)u,’,’_lhda
Q Q

= / (A f(z,un) + 8(z, up)lhdz, (3.66)
Q

YheW'P(Q), VnelN
Since 0 < u, < uy, foralln € IN, if in (3.66) we choose h = u, € WP (), then
we see that
{uy} € WHP() is bounded.
So, we may assume that

Uy, = ii; in WhP(Q) and u, — ii; in LP(Q)and in L (9Q). (3.67)

In (3.66) we choose h = u, — iy € WP (), we pass to the limit as n — +o00
and use (3.67). We deduce
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lim, oo < A(up), up —uy >=0

= u, — i in WP (Q)(see Proposition 2.2). (3.68)

From Proposition 3.8 we have

u, <u, vYvnelN

= i) < uy. (3.69)

Therefore, if in (3.66) we pass to the limit as n — 400 and we use (3.68) and
(3.69) then we conclude that

ii, € S(\) C D, and ii; = inf S().

m}

Next we examine the monotonicity and continuity properties of the map A — i,
from .Z =10, A*] into C'(Q).

Proposition 3.10 If hypotheses (§), (B), (f1)~(f4), (g1)~(g4) and (2.8) hold, then the
map A — ity from £ =10, A*] into C'(Q) satisfies

(a) it is strictly increasing that is,
0<A<O <A =ig—i; eintCy;
(b) it is left continuous.

Proof (a) Let 0 < A < 6 < A*. From Proposition 3.4 we know that we can find
u) € S(A) € D such that

I/-lg — Uy € intC+
= up —uy €intCy (since uyp < uy).

This proves the strictly monotonicity of the map A — ;.
(a) Let {A,} C .Z and assume that A,, — A~ . Evidently A € .. From (a) we have

L_t)W <u, VnelN

= {it;,} € WP(Q) is bounded. (3.70)

From (3.62) and Proposition 3.2 of Papageorgiou—Radulescu [17] we know that we
can find a constant ¢1g > 0 such that

lits, Lo < c13, VneNN.

Then, Theorem 2 of Lieberman [13] implies that we can find 6 €]0, 1[ and a
constant c19 > 0 such that

_ 1,0,6y 1= )
up, € C(), llup,llcrog <cro, VnelN
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Exploiting the compact embedding of C!-?($2) into C!($2) and the monotonicity
of {u;,} (see (a)), we have

it, — i in CH(Q). (3.71)
Suppose that ii; # it;. Then we can find zg € € such that

U (z0) < ux(z0)
= u3(20) < uy,(z0) foralln > ng.

This contradicts (a). Therefore u; = u; and so we can conclude that the map
A — u, is left continuous. O

Remark 3.11 A similar proof can show that the map A — u; from R into C 1(Q) (see
Proposition 3.7) is strictly increasing. This fact can be used to provide an alternative
proof that A* € .Z (see Proposition 3.6) .

We can state the following theorem which summarizes the dependence of the set
of positive solutions of (1.1) on the parameter A.

Theorem 3.12 If hypotheses (€), (B), (fl )-(f4), (g1)—(g4) and (2.8) hold, then there
exists A* > 0 such that

(a) forall & €]0, A*[ problem (1.1) has at least two positive solutions
uo, IZED_A,_, M—O#ﬁ;

(b) for . = A* problem (1.1) has at least one positive solution u, € D;

(c) forall & > A* problem (1.1) has no positive solutions;

(d) for every 1 €]0, A*] problem (1.1) has a smallest positive solution i) and the
map A — ity from £ =10, A*] into C1(Q) is

e strictly increasing
e left continuous.

Remark 3.13 Hypotheses ( f3) and (g3) imply that the reaction of (1.1), asymptotically
at 400, is uniformly nonresonant with resect to A1.Itis an interesting open problem
whether Theorem 3.12 above remains valid if we can have resonance with respect to
):1 or even nonuniform nonresonance with respect to A 1, that is,

i) < tim &Y

— uniformly fora.a. z € Q
x—+oo xP—

with € L®(Q), n(z) > A1, for a.a. z € €, and the inequality is strict on a set of
positive Lebesgue measure.
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