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Abstract
Weconsider a nonlinearRobin problemassociated to the p-Laplacian plus an indefinite
potential. In the reaction we have the competing effects of two nonlinear terms. One
is parametric and strictly (p − 1)-sublinear. The other is (p − 1)-linear. We prove a
bifurcation-type theorem describing the dependence of the set of positive solutions on
the parameterλ > 0.We also show that for every admissible parameter the problemhas
a smallest positive solution ūλ and we study monotonicity and continuity properties
of the map λ → ūλ.

Keywords Competing nonlinearities · Truncation · Nonlinear regularity · Nonlinear
maximin principle · Strong comparison principle · Bifurcation-type result · Minimal
positive solutions
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1 Introduction

In a bounded domain � ⊂ RN , with C2-boundary ∂�, we examine the following
nonlinear parametric Robin problem:
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340 S. Leonardi, N. S. Papageorgiou

⎧
⎨

⎩

−�pu(z)+ξ(z)u(z)p−1 = λ f (z, u(z))+g(z, u(z)), u(z) > 0, λ > 0 in �
∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂�.

(1.1)

By �pu we denote the p-Laplace differential operator defined by

�pu = div(|Du|p−2Du) for all u ∈ W 1,p(�), 1 < p < +∞.

The potential function ξ(z) ∈ L∞(�) and in general it is sign changing. So, the
left-hand side in (1.1) is not coercive. The reaction (i.e. the right-hand side of (1.1)
exhibits the competing effects of two terms. One is the parametric term λ f (z, x),
with λ > 0 being the parameter, and f (z, x) being a Carathéodory function which
has strictly (p − 1)-sublinear growth in x ∈ R near +∞. The perturbation g(z, x) is
(p − 1)-linear near +∞ and, asymptotically as x → +∞, the quotient g(z,x)

x p−1 stays

above λ̂1 the principal eigenvalue of the Robin p-Laplacian.
In the boundary condition, ∂u

∂n p
denotes the conormal derivative of u corresponding

to the p-Laplacian defined by extension of the map

C1(�̄) � u → |Du|p−2(Du, n)Rn = |Du|p−2 ∂u

∂n
,

with n being the outward unit normal on ∂�. The boundary coefficient β(z) ∈
C0,α(∂�) (α ∈]0, 1[) and β(z) ≥ 0 for all z ∈ ∂�. When β ≡ 0 we have the
usual Neumann problem.

We are looking for positive solutions of problem (1.1) and our aim is to describe
how the set of positive solutions changes as the parameter λ > 0 moves in the positive
semiaxis ]0,+∞[. So we prove a bifurcation-type result establishing the existence of
a critical parameter value λ∗ > 0 such that

• for all λ ∈]0, λ∗[ problem (1.1) has at least two positive solutions;
• for λ = λ∗ problem (1.1) has at least one positive solution;
• for all λ > λ∗ problem (1.1) has no positive solution.

Moreover, we show that for every admissible parameter λ ∈]0, λ∗] problem (1.1)
has a smallest positive solution ūλ and we study the monotonicity and the continuity
properties of the map λ → ūλ.

Such results for the set of positive solutions of elliptic equations were proved
by Ambrosetti–Brezis–Cerami [2] (for semilinear Dirichlet problems) and by Gar-
cia Azorero–Manfredi–Peral Alonso [5], Guo–Zhang [8], Hu–Papageorgiou [10],
Marano–Papageorgiou [14] (for nonlinear Dirichlet problems).

In the aforementioned papers ξ ≡ 0, hence the differential operator of the equation
is coercive and the competition is between a concave (strictly sublinear) term and
a convex (superlinear) term. So they deal with the well-known “concave–convex”
problem.

Recently Papageorgiou–Radulescu–Repovs [20] studied semilinear Robin prob-
lems with indefinite linear part and a reaction having the combined effects of concave
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Positive solutions for nonlinear Robin problems with… 341

and convex terms. They proved a bifurcation-type result as described above. There are
also the recent works of Candito–Livrea–Papageorgiou [4] (Neumann problems) and
Papageorgiou–Radulescu–Repovs [19] (Robin problems). Both treat concave–convex
problems. In [4] the emphasis is on the existence of nodal solutions. In [19] the dif-
ferential operator is nonhomogeneous, the potential function is nonnegative (thus the
left-hand side is coercive) and the reaction has the form λ f (z, x) (that is g ≡ 0).

Our approach uses variational tools based on the critical point theory combined
with suitable truncation, perturbation and comparison techniques.

For other kind of operators with lower order terms see also [11,12]

2 Mathematical preliminaries: hypotheses

Let X be a Banach space and let X∗ be its topological dual. By < ·, · > we denote the
duality brackets for the dual pair (X∗, X).

Given ϕ ∈ C1(X ,R), we say that ϕ satisfies the “Cerami condition” (the C-
condition for short) if the following property holds:

“Every sequence {un} ⊂ X such that

{ϕ(un)} ⊂ R is bounded

and

(1 + ‖un‖)ϕ′(un) → 0 in X∗, asn → +∞,

admits a strongly convergent subsequence”.
This is a compactness-type condition on the functional ϕ which compensates for

the fact that X is in general infinite dimensional and so it is not locally compact. The
C-condition leads to a deformation theorem from which one can derive the minimax
theory of the critical values ofϕ. Amajor result in this theory is the so-called ”mountain
pass theorem”, which we recall here.

Theorem 2.1 If ϕ ∈ C1(X ,R) satisfies the C-condition, u0, u1 ∈ X, ‖u1 − u0‖ >

ρ > 0

max{ϕ(u0), ϕ(u1)} < inf{ϕ(u) : ‖u1 − u0‖ = ρ} = ηρ

and c = infγ∈
 max0≤t≤1 ϕ(γ (t))with
 = {γ ∈ C([0, 1], X) : γ (0) = u0, γ (1) =
u1}, then c ≥ ηρ and c is a critical value of ϕ (that is, there exists û ∈ X such that
ϕ′(û) = 0, ϕ(û) = c).

By ‖ · ‖ we denote the norm of W 1,p(�) given by

‖u‖ := [‖u‖p
L p + ‖Du‖p

L p

]1/p
for all u ∈ W 1,p(�).
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342 S. Leonardi, N. S. Papageorgiou

The Banach space C1(�̄) is an ordered space with positive (order) cone

C+ = {u ∈ C1(�̄) : u(z) ≥ 0 ∀z ∈ �̄}.

This cone has a nonempty interior given by

D+ = {u ∈ C+ : u(z) > 0 ∀z ∈ �̄}.

Also we will use another open cone in C1(�̄), namely

int Ĉ+ =
{

u ∈ C1(�̄) : u(z) > 0 for all z ∈ �,
∂u

∂n

∣
∣
∣
∣
∂�∩u−1(0)

< 0

}

.

On ∂� we consider the (N − 1)-dimensional Hausdorff (surface) measure σ(·).
Using this measure we can define in the usual way the “boundary” Lebesgue spaces
Lq(∂�), 1 ≤ q ≤ +∞. From the theory of Sobolev spaces, we know that there exists
a continuous linear map γ0 : W 1,p → L p(∂�), known as the “trace map” , such that

γ0(u) = u|∂� ∀u ∈ W 1,p(�) ∩ C(�̄) .

So, the trace map defines boundary values for every Sobolev function. We know
that

im γ0 = W
1
p′ ,p(∂�)

(
1/p + 1/p′ = 1

)
and ker γ0 = W 1,p

0 (�).

The trace map γ0(·) is compact into Lq(∂�) for all q ∈ [1, (N−1)p
N−p [, if p < N , and

into Lq(∂�) for all q ∈ [1,+∞[, if p ≥ N .
In the sequel, for notational economy, we drop the use of trace map γ0(·). All

restrictions of Sobolev functions on ∂� are understood in the sense of traces.

Let A : W 1,p(�) → W 1,p(�)∗ be the nonlinear map defined by

< A(u), h >=
∫

�

|Du|p−2(Du, Dh)RN dz for all u, h ∈ W 1,p(�). (2.1)

The next proposition shows the main properties of this map (see, for example, [7],
Gasinski–Papageorgiou , Problem 2.192, p. 279).

Proposition 2.2 If

A : W 1,p(�) → W 1,p(�)∗

is defined by (2.1), then A(·) is bounded, continuous, monotone and of type (S)+ (that
is, if

un
w→ u in W 1,p(�)
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Positive solutions for nonlinear Robin problems with… 343

and

lim sup
n→+∞

< A(un), un − u >≤ 0

then

un → u in W 1,p(�)).

We introduce the conditions on the potential function ξ(·) and on the boundary
coefficient β(·).
(ξ ) ξ ∈ L∞(�).
(β) β ∈ C0,α(∂�) for some 0 < α < 1 and β(z) ≥ 0, ∀z ∈ ∂�.

Remark 2.3 When β ≡ 0 we recover the Neumann problem.

In what follows by γp : W 1,p(�) → R we denote the C1-functional defined by

γp(u) = ‖Du‖p
L p +

∫

�

ξ(z)|u|p dz +
∫

∂�

β(z)|u|p dσ, ∀ u ∈ W 1,p(�).

Let f0 : � × R → R be a Carathéodory function satisfying

| f0(z, x)| ≤ α0(z)[1 + |x |r−1] for a.a. z ∈ � and ∀x ∈ R,

with α0 ∈ L∞(�) and 1 < r ≤ p∗, where p∗ =
{

Np
N−p if p < N
+∞ if p ≥ N

.

We set F0(z, x) = ∫ x
0 f0(z, s) ds and consider the C1-functional ϕ0 : W 1,p(�) →

R defined by

ϕ0(u) = 1

p
γp(u) −

∫

�

F0(z, u) dz, ∀u ∈ W 1,p(�) .

The next result is a special case of a more general one of Papageorgiou–Radulescu
[17] (see also Brezis–Nirenberg [3], Garcia Azorero–Manfredi–Peral Alonso [5],
Guo–Zhang [8] for earlier results of this nature).

Proposition 2.4 If u0 ∈ W 1,p(�) is a local C1(�̄)-minimizer of ϕ0, that is there exists
ρ0 > 0 such that

ϕ0(u0) ≤ ϕ(u0 + h) for all h ∈ C1(�̄) and ‖h‖C1(�̄) ≤ ρ0,

then u0 ∈ C1,η(�̄) for some 0 < η < 1 and u0 is a local W 1,p(�)-minimizer of ϕ0,
that is, there exists ρ1 > 0 such that

ϕ(u0) ≤ ϕ(u0 + h) for all h ∈ W 1,p(�), ‖h‖ ≤ ρ1.
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344 S. Leonardi, N. S. Papageorgiou

The above result is essentially an outgrowth of the nonlinear regularity theory of
Lieberman [13]. Tomake effective use of Proposition 2.4 we need the following strong
comparison principle. Again, the result is a special case of a more general result due
to Papageorgiou–Radulescu–Repovs [19]

Proposition 2.5 If ξ̂ ∈ L∞(�), ξ̂ (z) ≥ 0 for a.a. z ∈ �, h1, h2 ∈ L∞(�) satisfy

0 < ĉ ≤ h2(z) − h1(z) for a.a. z ∈ �,

u, v ∈ C1(�̄)\{0} satisfy u ≤ v and

−�pu(z) + ξ̂ (z)|u(z)|p−2u(z) = h1(z) for a.a. z ∈ �

−�pv(z) + ξ̂ (z)|v(z)|p−2v(z) = h2(z) for a.a. z ∈ �

then v − u ∈ intĈ+.

We will also need some facts about the spectrum of the differential operator u →
−�pu + ξ(z)|u|p−2u. So, we consider the following nonlinear eigenvalue problem.

⎧
⎨

⎩

−�pu(z) + ξ(z)|u|p−2u(z) = λ̂|u(z)|p−2u(z) in �
∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂�

(2.2)

We say that λ̂ is an “eigenvalue” if the problem admits a nontrivial solution
û known as “eigenfunction” corresponding to the eigenvalue λ̂. This eigenvalue
problemwas studied byPapageorgiou–Radulescu [16] (Robin problems) andMugnai–
Papageorgiou [15] (Neumannproblems).Weknow that problem (2.2) admits a smallest
eigenvalue λ̂1 which has the following properties:

• λ̂1 is isolated [that is, there exists ε > 0 such that the open interval ]λ̂1, λ̂1 + ε[
contains no eigenvalue of (2.2)];

• λ̂1 is simple (that is, if û, v̂ are eigenfunctions corresponding to the eigenvalue λ̂1,
then û = θv̂ for some θ ∈ R\{0});

•

λ̂1 = inf

[
γp(u)

‖u‖p
L p

: u ∈ W 1,p(�), u �= 0

]

. (2.3)

The nonlinear regularity theory implies that all eigenfunctions of (2.2) belong to
C1(�). Moreover, the above properties of λ̂1 imply that all the eigenfunctions corre-
sponding to λ̂1 have fixed sign.

Let û1 be the L p-normalized (that is, ‖û1‖L p = 1), positive eigenfunction corre-
sponding to λ̂1. Then form the nonlinear maximum principle (see Pucci–Serrin [21]),
we have û1 ∈ D+.

In (2.3) the infimum is realized on the corresponding one dimensional eigenspace
Rû1. An eigenfunction û ∈ C1(�̄) corresponding to an eigenvalue λ̂ �= λ̂1 is neces-
sarily nodal (that is, sign changing). The Ljusternik–Schnirelmann minimax scheme
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Positive solutions for nonlinear Robin problems with… 345

gives us in addition to λ̂1, a whole strictly increasing sequence {λ̂k} of distinct eigen-
values (known as “variational eigenvalues”) such that λ̂k → +∞. We do not know
if this sequence of variational eigenvalues exhausts the spectrum of (2.2). This is the
case if N = 1 or if p = 2.

We will also encounter a weighted version of the eigenvalue problem (2.2). So, let
m ∈ L∞(�)\{0} and consider the following nonlinear eigenvalue problem

⎧
⎨

⎩

−�pu(z) + ξ(z)|u(z)|p−2u(z) = λ̃m(z)|u(z)|p−2u(z) in �
∂u

∂n p
+ β(z)|u|p−2u = 0 on ∂�

(2.4)

We can have a smallest eigenvalue λ̃1(m) which now has the following variational
characterization

λ̃1(m) = inf

⎡

⎢
⎢
⎣

γp(u)
∫

�

m(z)|u|p dz
: u ∈ W 1,p(�), u �= 0

⎤

⎥
⎥
⎦ . (2.5)

The corresponding eigenfunctions ũ have constant sign. As before, by ũ1 we denote
the positive, L p-normalized eigenfunction.We have ũ1 ∈ D+ and the infimum in (2.5)
is realized on Rũ1

Lemma 2.6 If m1,m2 ∈ L∞(�)\{0}, m1(z) ≤ m2(z) for a.a. z ∈ � and m1 �= m2,
then λ̃1(m2) < λ̃1(m1)

Proof Using (2.5) and recalling that ũ1 ∈ D+, we have

λ̃1(m2) ≤ γp(ũ1)
∫

�

m2(z)ũ
p
1 dz

<
γp(ũ1)

∫

�

m1(z)ũ
p
1 dz

= λ̃1(m1) .

��
Finally let us fix some basic notation that we will use in the sequel.
If x ∈ R then we set x± = max{± x, 0}. For u ∈ W 1,p(�), we define u±(·) =

u(·)±. We know that

u± ∈ W 1,p(�), u = u+ − u−, |u| = u+ + u− .

If g : � × R → R is a Carathéodory function, then Ng(·) denotes the Nemytskii
(superposition) operator for g(z, x) defined by Ng(u)(·) = g(·, u(·)) for all u ∈
W 1,p(�).

Given u, v ∈ W 1,p(�) with u(z) ≤ v(z) for a.a. z ∈ �, we define

[u, v] = {y ∈ W 1,p(�) : u(z) ≤ y(z) ≤ v(z) for a.a. z ∈ �}.
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346 S. Leonardi, N. S. Papageorgiou

By intC1(�̄)[u, v]we denote the interior in theC1(�̄)-norm topology of the set [u, v]∩
C1(�̄).

Also, if u ∈ W 1,p(�), we set

[u[= {y ∈ W 1,p(�) : u(z) ≤ v(z) for a.a. z ∈ �}.

If X is a Banach space and ϕ ∈ C1(X ,R), then by Kϕ we denote the critical set of
ϕ, that is,

Kϕ = {u ∈ X : ϕ′(u) = 0}.

Nowwe will introduce our hypotheses on the two competing nonlinearities f (z, x)
and g(z, x) in the reaction problem (1.1).

Let f : � × R → R be a Carathéodory function such that

( f 1) one has

f (z, 0) = 0 for a.a. z ∈ �;

( f 2) for every ρ > 0 there exists a positive function αρ ∈ L∞(�) such that

0 ≤ f (z, x) ≤ αρ(z) for a. a. z ∈ � and all x ∈ [0, ρ];

( f 3) we have

lim
x→+∞

f (z, x)

x p−1 = 0,

uniformly for a.a. z ∈ �;
( f 4) there exists δ0 > 0 and q ∈]1, p[ such that

c1x
q−1 ≤ f (z, x) for a. a. z ∈ �, all x ∈ [0, δ0]

and for every s > 0 there exists η̃s > 0 such that

η̃s ≤ f (z, x) for a.a. z ∈ �, all x ≥ s.

Remark 2.7 Since we are looking for positive solutions and all the above hypotheses
concern the semiaxis [0,+∞[ , without any loss of generality, we may assume that

f (z, x) = 0 for a.a. z ∈ � and ∀x < 0. (2.6)

Hypothesis (f3) implies that for a.a. z ∈ �, f (z, ·) is strictly (p−1)-sublinear near
+∞. Hypothesis (f4) reveals the presence of a concave nonlinearity near 0+.

In turn, g : � × R → R is a Carathéodory function such that
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(g1) one has

g(z, 0) = 0 for a.a. z ∈ �;

(g2) there exists a positive function α ∈ L∞(�) such that

|g(z, x)| ≤ α(z)(1 + x p−1)

for a.a. z ∈ � and all x ≥ 0;
(g3) there exists η̂ > λ̂1 such that

η̂ ≤ lim inf
x→+∞

g(z, x)

x p−1 ,

uniformly for a.a. z ∈ �;
(g4) there exist c2, c3, c4, δ1 > 0 and r ∈]p, p∗[ such that

−c2x
p−1 ≤ g(z, x)

for a.a. z ∈ �, all x ∈ [0, δ1] and

g(z, x) ≤ c3x
r−1 − c4x

p−1

for a.a. z ∈ �, all x ≥ 0.

Remark 2.8 As we did for f (z, ·), without any loss of generality, we may assume that

g(z, x) = 0 for a.a. z ∈ �, all x ≤ 0 (2.7)

Hypotheses (g2), (g3) imply that, for a.a. z ∈ �, g(z, ·) is (p − 1)-linear near +∞
and, asymptotically as x → +∞, the quotient

g(z, x)

x p−1 stays above λ̂1.

So, in the present work the competition is between a concave term and a (p − 1)-
linear perturbation. Evidently in hypothesis (g4), by appropriately modifying c2, we
can always assume that c4 > ‖ξ‖L∞ .

Finally, for every ρ > 0 and every B ⊆]0,+∞[ bounded, we can find ξ̂ B
ρ > 0

such that for all λ ∈ B and a.a. z ∈ �, the function

x → λ f (z, x) + g(z, x) + ξ̂ B
ρ x p−1 (2.8)

is nondecreasing on [0, ρ].
If p = 2, then this hypothesis is a one-sided local Lipschitz condition on the

reaction. If for a.a. z ∈ �, f (z, ·) and g(z, ·) are both differentiable and for every
ρ > 0 and every B ⊆]0,+∞[ bounded, we can find ξ̂ B

ρ > 0 such that

[
λ f ′

x (z, x) + g′
x (z, x)

]
x2 ≥ −ξ̂ B

ρ x p

for a.a. z ∈ �, all x ∈ [0, ρ], all λ ∈ B, then hypothesis (2.8) is satisfied.
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348 S. Leonardi, N. S. Papageorgiou

Examples The following functions satisfy hypotheses ( f 1)–( f 4) and (g1)–(g4). For
the sake of simplicity we drop the z-dependence.

f1(x) = xq−1 for all x ≥ 0, with 1 < q < p < +∞,

g1(x) =
{

η̂(2xr−1 − x p−1) if x ∈ [0, 1]
η̂x p−1 if x > 1

with η̂ > λ̂1, r > p;

f2(x) =
⎧
⎨

⎩

xq−1 if x ∈ [0, 1]
x p−1

ln(1 + x)
+ ln 2 − 1

ln 2
if x > 1

g2(x) =
{
c(2xr−1 − x p−1) if x ∈ [0, 1]
η̂(x p−1 − xτ−1) if x > 1

with c > 0, η > η̂1, τ < p < r .

3 Positive solutions of problem (1.1)

We introduce the following two sets

L = {λ > 0 : problem (1.1) admits a positive solution},
S(λ) = {positive solutions of problem (1.1)}.

Also, we define

λ∗ = supL .

Proposition 3.1 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, thenL �= ∅
and, for every λ ∈ L , S(λ) ⊆ D+.

Proof We leave at the end the proof thatL �= ∅ and we start proving the second part
of the statement.

Let λ ∈ L . Then we can find u ∈ S(λ) such that

⎧
⎨

⎩

−�pu(z) + ξ(z)u(z)p−1 = λ f (z, u(z)) + g(z, u(z)) for a.a. x ∈ �
∂u

∂n p
+ β(z)u p−1 = 0 on ∂�

(3.1)

(see Papageorgiou–Radulescu [16]).
Form (3.1) and Proposition 7 of Papageorgiou–Radulescu [17], we deduce

u ∈ L∞(�) .

Let ρ = ‖u‖L∞ , B = {λ} and let ξ̂ B
ρ be as postulated by hypothesis (2.8).
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Positive solutions for nonlinear Robin problems with… 349

From (3.1) and hypothesis (2.8), for a.a. z ∈ �, we have

�pu(z) ≤
[
‖ξ‖L∞ + ξ̂ B

ρ

]
u(z)p−1

⇒ u ∈ D+ (see [6], p. 738)
⇒ S(λ) ⊆ D+ .

Next we show that L �= ∅.
Let F(z, x) =

∫ x

0
f (z, s) ds, G(z, s) =

∫ x

0
g(z, s) ds, μ > ‖ξ‖L∞ and consider

the C1-functional

ϕ̂λ(u) = 1

p
γp(u) + μ

p
‖u−‖p

L p −
∫

�

λ F(z, u) dz−
∫

�

G(z, u) dz, ∀ u ∈ W 1,p(�) .

On account of hypotheses (f2), (f3) and (f4), we see we can find a constant c5 > 0
such that

F(z, x) ≤ c5 x
q + x p for a.a. z ∈ �, all x ≥ 0 . (3.2)

Also, from hypothesis (g4) we have

G(z, x) ≤ c3
r
xr − c4

p
x p for a.a. z ∈ �, all x ≥ 0 . (3.3)

Recall that we can take c4 > ‖ξ‖L∞ . We have

ϕ̂λ(u) ≥ c6‖u−‖p + 1

p

[
γp(u+) + c4‖u+‖p

L p

] − λ‖u+‖p

− c7
[
λ‖u+‖q + c4‖u+‖r ]

(3.4)

for some c6, c7 > 0 (see (2.6), (2.7), (3.2), (3.3) and recall that μ > ‖ξ‖L∞ )
Since c4 > ‖ξ‖L∞ , choosing λ > 0 sufficiently small, we have

c6‖u−‖p + 1

p

[
γp(u

+) + c4‖u+‖p
L p

] − λ‖u+‖p ≥ c8‖u‖p (3.5)

for some c8 > 0.
Merging (3.5) in (3.4), we obtain for λ > 0 sufficiently small

ϕ̂λ(u) ≥ c8‖u‖p − c7
[
λ‖u‖q + c4‖u‖r ]

= [
c8 − c7

(
λ‖u‖q−p + c4‖u‖r−p

)] ‖u‖p (3.6)

for all u ∈ W 1,p(�).
We now set

θλ(t) = λtq−p + tr−p for all t ≥ 0
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and we observe that we can find t0 > 0 such that

θλ(t0) = inf t≥0 θλ(t) ⇒ θ ′
λ(t0) = 0

⇒ λ(p − q)tq−p−1
0 = (r − p)tq−p−1

0

⇒ t0 =
[
λ(p − q)

r − p

] 1
r−q

.

It follows that

θλ(t0) → 0+ as λ → 0+.

So, we can find λ0 > 0 small enough such that

c8 > c7θλ(t0) for all λ ∈]0, λ0[
⇒ inf

{
ϕ̂λ(u) : ‖u‖ = ρλ = t0(λ)

} = m̂λ > 0 = ϕ̂λ(0)
(3.7)

for all λ ∈]0, λ0[ [see (3.6)].
Hypotheses (f3) and (g3) imply that

ϕ̂λ(t û1) → −∞ as t → +∞ (recall η̂ > λ̂1). (3.8)

We now claim that the functional ϕ̂λ satisfies the C–condition.
We consider a sequence {un} ⊂ W 1,p(�) such that {ϕ̂λ(un)} ⊂ R is bounded and

(1 + ‖un‖)ϕ̂′
λ(un) → 0 in W 1,p(�)∗ as n → +∞.

So, we have

∣
∣
∣
∣< A(un), h > +

∫

�

ξ(z)|un|p−2unh dz +
∫

∂�

β(z)|un|p−2unh dσ

−
∫

�

μ(u−
n )p−1h dz −

∫

�

[λ f (z, un) + g(z, un)] h dz

∣
∣
∣
∣

≤ εn‖h‖
1 + ‖un‖

(3.9)

for all h ∈ W 1,p(�) with εn → 0+.
In (3.9) we choose h = −u−

n ∈ W 1,p(�). Then

γp(u−
n ) + μ‖u−

n ‖p
L p ≤ εn [see(2.6)and(2.7)]

⇒ c9‖u−
n ‖p ≤ εn for some constant c9 > 0, all n ∈ N (recall that μ > ‖ξ‖L∞)

⇒ u−
n → 0 in W 1,p(�).

(3.10)
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We plug (3.10) in (3.9). Then

∣
∣
∣
∣< A(u+

n ), h > +
∫

�

ξ(z)(u+
n )p−1h dz +

∫

∂�

β(z)(u+
n )p−1h dσ

−
∫

�

[
λ f (z, u+

n ) + g(z, u+
n )

]
h dz

∣
∣
∣
∣

≤ ε′
n‖h‖

(3.11)

for all h ∈ W 1,p(�), with ε′
n → 0+.

We show that {u+
n } ⊆ W 1,p(�) is bounded.

Arguing indirectly, suppose that, at least for a subsequence, we have

‖u+
n ‖ → +∞. (3.12)

Let yn = u+
n

‖u+
n ‖ for all n ∈ N. We have ‖yn‖ = 1, yn ≥ 0 for all n ∈ N. So we

may assume that

yn
w→ y in W 1,p(�) andyn → y in L p(�) and in L p(∂�), y ≥ 0. (3.13)

From (3.11), we obtain

∣
∣
∣
∣< A(yn), h > +

∫

�

ξ(z)y p−1
n h dz +

∫

∂�

β(z)y p−1
n h dσ

−
∫

�

[
λN f (u+

n ) + Ng(u+
n )

]

‖u+
n ‖p−1

h dz

∣
∣
∣
∣
∣

≤ ε′
n‖h‖

‖u+
n ‖p−1

(3.14)

for all h ∈ W 1,p(�), all n ∈ N.
Hypotheses (f2) and (f3) imply that

{
N f (u+

n )

‖u+
n ‖p−1

}

⊆ L p′
(�) is bounded (1/p + 1/p′ = 1). (3.15)

Similarly hypothesis (g2) and (3.12) imply that

{
Ng(u+

n )

‖u+
n ‖p−1

}

⊆ L p′
(�) is bounded. (3.16)

So, if in (3.14) we choose h = yn − y ∈ W 1,p(�), we pass to the limit as n → +∞
and use (3.13), (3.15) and (3.16), then we obtain
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limn→+∞ < A(yn), yn − y >= 0
⇒ yn → y in W 1,p(�)(see Proposition 2.2)
⇒ ‖y‖ = 1, y ≥ 0 .

(3.17)

From (3.15), (3.16) and by passing to a subsequence if necessary, we deduce

N f (u+
n )

‖u+
n ‖p−1

w→ 0 in L p′
(�) (see hypotheses (f1) and (f3)) (3.18)

Ng(u+
n )

‖u+
n ‖p−1

w→ η0(z)y
p−1 in L p′

(�) (3.19)

with η̂ ≤ η0(z) ≤ c10 for a.a. z ∈ �, some constant c10 > 0 (see hypotheses (g1),
(g3) and [1], proof of Proposition 16).

So, if in (3.14) we pass to the limit as n → +∞ and we use (3.17), (3.18) and
(3.19) then we obtain

< A(y), h > +
∫

�

ξ(z)y p−1h dz +
∫

∂�

β(z)y p−1h dσ

=
∫

�

η0(z)y
p−1h dz, ∀ h ∈ W 1,p(�)

⇒
⎧
⎨

⎩

−�p y(z) + ξ(z)y(z)p−1 = η0(z)y(z)p−1 for a.a.z ∈ �
∂ y

∂n p
+ β(z)y p−1 = 0 on ∂�

(3.20)

(see [16]).
From Lemma 2.6 we know that

λ̃1(η0) ≤ λ̃1(η̂) < λ̃1(λ̂1) = 1 [see(3.19)]
⇒ y must be nodal or zero [see(3.20)].

This contradicts (3.17). Hence we have proved that

{u+
n } ⊆ W 1,p(�) is bounded
⇒ {un} ⊆ W 1,p(�) is bounded [see(3.10)].

So we may assume that

un
w→ u in W 1,p(�) and un → u in L p(�) and in L p(∂�). (3.21)

We return to (3.9), we choose h = un−u ∈ W 1,p(�), we pass to the limit as n → +∞
and use (3.21). Then we get

limn→+∞ < A(un), un − u >= 0
⇒ un → u in W 1,p(�)(see Proposition2.2)
⇒ ϕ̂λ satisfies the C-condition.
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This proves the claim.
Thus, (3.7), (3.8) and the claim permit the use of Theorem 2.1 on ϕ̂λ, λ ∈]0, λ0[.

So, we can find uλ ∈ W 1,p(�) such that

uλ ∈ Kϕ̂λ
and m̂λ ≤ ϕ̂λ(uλ). (3.22)

From (3.22) and (3.7), we have

uλ �= 0 and ϕ̂′
λ(uλ) = 0. (3.23)

Then

< A(uλ), h>+
∫

�

ξ(z)|uλ|p−2uλh dz+
∫

∂�

β(z)|uλ|p−2uλh dσ −
∫

�

μ(u−
λ )p−1h dz

=
∫

�

[λ f (z, uλ) + g(z, uλ)] h dz.

(3.24)

In (3.24) we choose h = −u−
λ ∈ W 1,p(�). Then

γp(u
−
λ ) + μ‖u−

λ ‖p
L p = 0 [see (2.6) and (2.7)]

⇒ c11‖u−
λ ‖p ≤ 0 for some constant c11 > 0(recall that μ > ‖ξ‖L∞)

⇒ uλ ≥ 0, uλ �= 0 [see (3.23)]
⇒ uλ ∈ S(λ) ⊆ D+ ∀ λ ∈]0, λ0[
⇒]0, λ0[⊆ L
⇒ L �= ∅.

��
Proposition 3.2 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, then λ∗ <

+∞.

Proof On account of hypothesis (g3), we can find η̃ > λ1 and a constant M > 0 such
that

g(z, x) ≥ η̃x p−1 for a.a. z ∈ �, all x ≥ M (3.25)

Also by hypothesis (g4) we have

g(z, x) ≥ −c2x
p−1 for a.a. z ∈ �, all x ∈ [0, δ1]. (3.26)

Finally hypotheses (f2) and (f3) imply that we can find a constant c12 > 0 such
that

g(z, x) ≥ −c12x
p−1 for a.a. z ∈ �, all x ∈ [δ1, M]. (3.27)

Then on account of hypothesis (f4) and since q < p, using (3.25), (3.26) and (3.27)
we see that for λ̄ > 0 big enough we can have that
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λ̄ f (z, x) + g(z, x) ≥ η̃x p−1 for a.a. z ∈ �, all x ≥ 0. (3.28)

Let λ > λ̄ and suppose that λ ∈ L .The we can find uλ ∈ S(λ) ⊆ D+ (see
Proposition 3.1). We have

−�puλ(z) + ξ(z)u p−1
λ = λ f (z, uλ(z)) + g(z, uλ(z))

> λ̄ f (z, uλ(z)) + g(z, uλ(z)) (since λ > λ̄)

≥ η̃uλ(z)p−1 for a.a. z ∈ � [(see (3.28)].
(3.29)

We consider the Carathéodory function kλ((z, x) defies by

kλ(z, x) =
⎧
⎨

⎩

0 if x < 0
(η̃ + μ)x p−1 if 0 ≤ x ≤ uλ(z)
(η̃ + μ)uλ(z)p−1 if x > uλ(z).

(3.30)

We set

Kλ(z, x) =
∫ x

0
kλ(z, s) ds

and introduce the C1-functional ψλ : W 1,p(�) → R defined by

ψλ(u) := 1

p
γp(u) + μ

p
‖u‖p

L p −
∫

�

Kλ(z, u) dz, ∀ u ∈ W 1,p(�).

Using (3.30) and the fact that μ > ‖ξ‖L∞ , we see that

ψλ(·) is coercive.

Also, using the Sobolev embedding theorem and the compactness of the trace map,
we infer that

ψλ(·) is sequentially weakly lower semicontinuous.

So, by the Weierstrass–Tonelli theorem, we can find ũ ∈ W 1,p(�) such that

ψλ(ũ) = inf{ψλ(u) : u ∈ W 1,p(�)}. (3.31)

We choose t ∈]0, 1[ small enough such that

t û1 ∈ [0, uλ] (recall that û1 ∈ D+).
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Then we have

ψλ(t û1) = t p

p
[γp(ũ1) − η̃] [see (3.30)]

= t p

p
[λ̂1 − η̃] < 0

⇒ ψλ(ũ) < 0 = ψλ(0) [see (3.31)]
⇒ ũ �= 0.

From (3.31) we have

ψ ′
λ(ũ) = 0

⇒< A(ũ), h > +
∫

�

[ξ(z) + μ]|ũ|p−2ũh dz +
∫

∂�

β(z)|ũ|p−2ũh dσ

=
∫

�

kλ(z, ũ)h dz, ∀ h ∈ W 1,p(�).

(3.32)

In (3.32) we choose h = ũ− ∈ W 1,p(�). Then

γp(ũ−) + μ‖ũ−‖p
L p = 0 [see(3.29)]

⇒ ũ ≥ 0, ũ �= 0 (recall that μ > ‖ξ‖L∞).

Next in (3.32) we choose h = (ũ − uλ)
+ ∈ W 1,p(�). Then

< A(ũ), (ũ−uλ)
+ >+

∫

�

[ξ(z) + μ]ũ p−1(ũ−uλ)
+ dz +

∫

∂�

β(z)ũ p−1(ũ−uλ)
+ dσ

=
∫

�

[η̃ + μ]u p−1
λ (ũ − uλ)

+ dz [see (3.30)]

≤
∫

�

[
λ̄ f (z, uλ) + g(z, uλ) + μu p−1

λ

]
(ũ − uλ)

+ dz [see (3.29)]

≤
∫

�

[
λ f (z, uλ) + g(z, uλ) + μu p−1

λ

]
(ũ − uλ)

+ dz (since λ > λ̄, f ≥ 0)

=< A(uλ), (ũ − uλ)
+ > +

∫

�

[ξ(z) + μ]u p−1
λ (ũ − uλ)

+ dz

+
∫

∂�

β(z)u p−1
λ (ũ − uλ)

+ dσ (since uλ ∈ S(λ))

⇒ ũ ≤ uλ (since μ > ‖ξ‖L∞ and using hypothesis(β)).

So we have proved that

ũ ∈ [0, uλ], ũ �= 0. (3.33)

From (3.30), (3.32) and (3.33), we obtain
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< A(ũ), h >+
∫

�

ξ(z)ũ p−1h dz+
∫

∂�

β(z)ũ p−1h dσ =
∫

�

η̃ũ p−1h dz, ∀ h ∈ W 1,p(�)

⇒
⎧
⎨

⎩

−�pũ(z) + ξ(z)ũ(z)p−1 = η̃ũ(z)p−1 for a.a. z ∈ �

∂ ũ

∂n p
+ β(z)ũ p−1 = 0 on ∂�.

(3.34)

Recall that η̃ > λ̂1. Then from (3.34) and Lemma 2.6, we infer that ũ must be
nodal, a contradiction to (3.33). Therefore λ /∈ L and so

λ∗ = supL ≤ λ̄ < +∞.

��
Proposition 3.3 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, λ ∈ L and
τ ∈]0, λ[ then τ ∈ L .

Proof Since λ ∈ L , we can find uλ ∈ S(λ) ⊆ D+ (see Proposition 3.1).
Let eτ : � × R → R be the Carathéodory function defined by

eτ (z, x) =
⎧
⎨

⎩

0 if x < 0
τ f (z, x) + g(z, x) + μx p−1 if 0 ≤ x ≤ uλ(z)
τ f (z, uλ(z)) + g(z, uλ(z)) + μuλ(z)p−1 if x > uλ(z).

(3.35)

We set Eτ (z, x) =
∫ x

0
eτ (z, s) ds and consider the C1-functional ψ̂τ :

W 1,p(�) → R defined by

ψ̂τ (u) := 1

p
γp(u) + μ

p
‖u‖p

L p −
∫

�

Eτ (z, u) dz, ∀ u ∈ W 1,p(�).

From (3.30) and since μ > ‖ξ‖L∞(�), we see that ψ̂τ (·) is coercive.
Also, it is sequentiallyweakly lower semicontinuous. So,wecanfinduτ ∈ W 1,p(�)

such that

ψ̂τ (uτ ) = inf{ψ̂τ (u) : u ∈ W 1,p(�)}. (3.36)

Let u ∈ D+ and choose t ∈]0, 1[ small enough such that

0 < tu(z) ≤ δ for a.a. z ∈ �̄, (3.37)

with δ = min{δ0, δ1} [see (f4) and (g4)]. Then on account of hypotheses (g2) and (g4),
we have

ψ̂τ (tu) ≤ t p

p
[γp(u) + c13]‖u‖p

L p − τc1tq

q
‖u‖qLq (3.38)
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for some constant c13 > μ > ‖ξ‖L∞ [see (3.37)].
Since q < p, if in (3.38) we choose t ∈]0, 1[ even smaller, we deduce that

ψ̂τ (tu) < 0
⇒ ψ̂τ (uτ ) < 0 = ψ̂τ (0) [see (3.36)]
⇒ uτ �= 0.

From (3.36) we have

ψ̂ ′
τ (uτ ) = 0

⇒< A(uτ ), h > +
∫

�

[ξ(z) + μ]|uτ |p−2uτh dz +
∫

∂�

β(z)|uτ |p−2uτh dσ

=
∫

�

eτ (z, uτ )h dz, ∀ h ∈ W 1,p(�).

(3.39)

As before, choosing in (3.39) first h = −u−
τ ∈ W 1,p(�) and then h = (uτ −uλ)

+ ∈
W 1,p(�), we show that

uτ ∈ [0, uλ], uτ �= 0. (3.40)

From (3.35), (3.39) and (3.40) we conclude that

uτ ∈ S(τ ) ⊆ D+ ⇒ τ ∈ L .

��
An interesting byproduct of this proof is the following corollary.

Corollary 1 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, λ ∈ L , τ ∈
]0, λ[ and uλ ∈ S(λ), then τ ∈ L and there exists uτ ∈ S(τ ) such that

uλ − uτ ∈ C+\{0}.

In fact, using Proposition 2.5, we can improve the conclusion of this corollary. The
following stronger version will be used in the analysis of the minimal solution map
which we conduct later.

Proposition 3.4 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, λ ∈ L ,
τ ∈]0, λ[ and uλ ∈ S(λ), then τ ∈ L and there exists uτ ∈ S(τ ) such that

uλ − uτ ∈ intĈ+.

Proof From Corollary 1 we already know that τ ∈ L and that we can find uτ ∈ S(τ )

such that

uλ − uτ ∈ C+\{0}.
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Let ρ = ‖uλ‖L∞ , B = [τ, λ] and let ξ̂ B
ρ > 0 be as postulated by hypothesis (2.8).

We have

−�puτ + [ξ(z) + ξ̂ B
ρ ]u p−1

τ

= τ f (z, uτ ) + g(z, τ ) + ξ̂ B
ρ u p−1

τ

= λ f (z, uτ ) + g(z, uτ ) + ξ̂ B
ρ u p−1

τ − (λ − τ) f (z, uτ ).

(3.41)

Since uτ ∈ D+, mτ = min�̄ uτ > 0 and then from hypothesis (g4) we have

0 < η̃τ = c1m
q−1
τ ≤ f (z, uτ (z)) foe a.a z ∈ �.

Therefore

λ f (z, uτ ) + g(z, uτ ) + ξ̂ B
ρ u p−1

τ − (λ − τ) f (z, uτ )

≤ λ f (z, uτ ) + g(z, uτ ) + ξ̂ B
ρ u p−1

τ − (λ − τ)η̃τ

≤ λ f (z, uλ) + g(z, uλ) + ξ̂ B
ρ u p−1

λ [since uτ ≤ uλ, see hypothesis(2.8)]
= −�puλ + [ξ(z) + ξ̂ B

ρ ]u p−1
λ for a.a. z ∈ �

(3.42)

Since (λ − τ)η̃mτ > 0, from (3.41), (3.42) and Proposition 2.5, we deduce that

uλ − uτ ∈ intĈ+.

��
Nextwe show that for allλ ∈]0, λ∗[ problem (1.1) has at least two positive solutions.

Proposition 3.5 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, λ ∈]0, λ∗[,
then problem (1.1) has at least two positive solutions

u0, û ∈ D+, u0 �= û.

Proof Let 0 < τ < λ < θ < λ∗. We know that τ, θ ∈ L (see Proposition 3.3).
According to Proposition 3.4, we can find uθ ∈ S(θ) ⊆ D+ and uτ ∈ S(τ ) ⊆ D+
such that uθ − uτ ∈ intC+. Using these two solutions we introduce the Carathéodory
function lλ : � × R → R define by

lλ(z, x) =
⎧
⎨

⎩

λ f (z, uτ (z)) + g(z, uτ (z)) + μuτ (z)p−1 if x < uτ (z)
λ f (z, x) + g(z, x) + μx p−1 if uτ (z) ≤ x ≤ uθ (z)
λ f (z, uθ (z)) + g(z, uθ (z)) + μuθ (z)p−1 if x > uθ (z).

(3.43)

As always μ > ‖ξ‖L∞ . We set Lλ(z, x) =
∫ x

0
lλ(z, s) ds and consider the C1-

functional ϕ̃λ : W 1,p(�) → R defined by

ϕ̃λ(u) := 1

p
γp(u) + μ

p
‖u‖p

L p −
∫

�

Lλ(z, u) dz, ∀ u ∈ W 1,p(�).
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This functional is coercive [see (3.43)] and sequentially weakly lower semicontin-
uous. So, we can find u0 ∈ W 1,p(�) such that

ϕ̃λ(u0) = inf{ψ̃λ(u) : u ∈ W 1,p(�)}
⇒ ϕ̃′

λ(u0) = 0 (3.44)

⇒< A(u0), h > +
∫

�

[ξ(z) + μ]|u0|p−2u0h dz +
∫

∂�

β(z)|u0|p−2u0h dσ

=
∫

�

lλ(z, u0)h dz, ∀ h ∈ W 1,p(�). (3.45)

In (3.45) we choose h = (u0 − uθ )
+ ∈ W 1,p(�) and h = (uτ − u0)+ ∈ W 1,p(�),

and using (3.43) we show that

u0 ∈ [uτ , uθ ] ∩ D+, u0 ∈ S(λ) [see (3.43)].

In fact, as in the proof of Proposition 3.4, exploiting Proposition 2.5, we obtain

u0 ∈ intC1(�)[uτ , uθ ], u0 ∈ S(λ) (3.46)

We consider the following Carathéodory function

rλ(z, x) =
{

λ f (z, uτ (z)) + g(z, uτ (z)) + μuτ (z)p−1 if x ≤ uτ (z)
λ f (z, x) + g(z, x) + μx p−1 if x > uτ (z).

(3.47)

We set Rλ(z, x) =
∫ x

0
rλ(z, s) ds and consider theC1-functional ψ̃λ : W 1,p(�) →

R defined by

ψ̃λ(u) := 1

p
γp(u) + μ

p
‖u‖p

L p −
∫

�

Rλ(z, u) dz, ∀ u ∈ W 1,p(�).

From (3.43) and (3.47) we see that

ϕ̃λ|[uτ ,uθ ] = ψ̃λ

∣
∣
∣[uτ ,uθ ]

⇒ u0 is a local C1-minimizer of ψ̃λ[see (3.44) and (3.46)]
⇒ u0 is a local W 1,p(�)-minimizer ofψ̃λ(see Proposition 2.4).

(3.48)

Using (3.47) we can show that

Kψ̃λ
⊆ [uτ [∩D+. (3.49)

On account of (3.47) and (3.49), we see that we may assume that Kψ̃λ
is finite.

Otherwise we already have an infinity of positive solutions for problem (1.1).
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The (3.48) implies that we can find ρ ∈]0, 1[ small enough such that

ψ̃λ(u0) < inf{ψ̃λ(u) : ‖u − u0‖ = ρ} = m̃λ (see [1]) (3.50)

Hypotheses (f3) and (g3) imply that

ψ̃λ(t û) → −∞ as t → +∞. (3.51)

Moreover, as in the proof of Proposition 3.1, we show that

ψ̃λ(·) satisfies the C-condition. (3.52)

Then (3.50), (3.51) and (3.52) permit the use of Theorem 2.1. So we can find
û ∈ W 1,p(�) such that

û ∈ Kψ̃λ
and m̃λ ≤ ψ̃λ(û) [see (3.50)]. (3.53)

From (3.49), (3.50) and (3.53) we conclude that

û ∈ S(λ) ⊆ D+ and û �= u0.

��
Next we show that the critical parameter value λ∗ is admissible and hence L =

[0, λ∗].
Proposition 3.6 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, then λ∗ ∈
L .

Proof Consider a sequence {λn} ⊆]0, λ∗[ such that λn → (λ∗)−. Let un ∈ S(λn) ⊆
D+, ∀ n ∈ N. From the proof of Proposition 3.5, we see that we can have that the
sequence {un} is increasing. Thus we get

< A(un), h > +
∫

�

ξ(z)u p−1
n h dz +

∫

∂�

β(z)u p−1
n h dσ =

∫

�

[λn f (z, un)
+g(z, un)]h dz, (3.54)

∀ h ∈ W 1,p(�), ∀ n ∈ N.
Reasoning as in the claim in the proof of Proposition 3.1, we show that

{un} ⊆ W 1,p(�) is bounded.

So we may assume that

un
w→ u∗ in W 1,p(�) and un → u∗ in L p(�) and in L p(∂�). (3.55)
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In (3.54) we choose h = un − u∗ ∈ W 1,p(�), we pass to the limit as n → +∞
and we use (3.55). Then

limn→ < A(un), un − u∗ >= 0
⇒ un → u∗ in W 1,p(�), u∗ �= 0(since u1 ≤ un for all n ∈ N).

(3.56)

Passing to the limit as n → +∞ in (3.54) and using (3.56), we conclude that

u∗ ∈ S(λ∗) ⊆ D+ ⇒ λ∗ ∈ L .

��
Now we turn our attention to the existence of minimal positive solutions (that is, a

function ūλ ∈ S(λ) ⊆ D+ such that ūλ ≤ u for all u ∈ S(λ)). After establishing the
existence of such a minimal positive solution ūλ, we will examine the monotonicity
and continuity properties of the map λ → ūλ.

Hypotheses (f1)–(f4) and (g1)–(g4) imply that we can find constants c14 > 0 and
c15 > ‖ξ‖L∞ such that

λ f (z, x) + g(z, x) ≥ λc14x
q−1 − c15x

p−1 for a.a. z ∈ �, all x ≥ 0, all λ ∈ L .

(3.57)

This unilateral growth restriction on the reaction of (1.1) suggests the following
auxiliary Robin problem

⎧
⎨

⎩

−�pu(z) + ξ(z)u(z)p−1 = λc14u(z)q−1 − c15u(z)p−1, u > 0 in �
∂u

∂n p
+ β(z)u p−1 = 0 on ∂�.

(3.58)

Proposition 3.7 If hypotheses (ξ ), (β) hold and λ > 0, then problem (3.58) admits a
unique positive solution ũλ ∈ D+.

Proof We consider the C1-functional âλ : ‖ → R defined by

âλ(u) := 1

p
γp(u) + μ

p
‖u−‖p

L p + c15‖u+‖p
L p − λc14

q
‖u+‖qLq , ∀ u ∈ W 1,p(�),

with μ > ‖ξ‖L∞ .

Since μ, c15 > ‖ξ‖L∞ , we see that âλ(·) is coercive. Also, it is sequentially lower
semicontinuous. So, we can find ũλ ∈ W 1,p(�) such that

âλ(ũλ) = inf{âλ(u) : u ∈ W 1,p(�)}. (3.59)

Since q < p, for u ∈ D+ and t ∈]0, 1[ small enough, we will have âλ(tu) < 0,
hence

âλ(ũλ) < 0 [see (3.59)]
⇒ ũλ �= 0.
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From (3.59) we have

âλ(ũλ) = 0

⇒< A(ũλ), h > +
∫

�

ξ(z)|ũλ|p−2ũλh dz +
∫

∂�

β(z)|ũλ|p−2ũλh dσ

−μ

∫

�

(ũ−
λ )p−1h dz =

∫

�

[λc14(ũ+
λ )q−1 − c15(ũ

+
λ )p−1]h dz, ∀ h ∈ W 1,p(�).

(3.60)

In (3.60) we choose h = −ũ−
λ − ε ∈ W 1,p(�). Then we have

γp(ũ
−
λ ) + μ‖ũ−

λ ‖p
L p = 0

⇒ c16‖ũ−
λ ‖p ≤ 0 for some constant c16 > 0

⇒ ũλ ≥ 0, ũλ �= 0.

Then from (3.60), the nonlinear regularity theory and the strongmaximumprinciple
, we infer that ũλ ∈ D+ is a positive solution of (3.58).

Next we show the uniqueness of the positive solution of (3.58).
So, we suppose that ṽλ is another positive solution of (3.58). Again, we have that

ṽλ ∈ D+. Let t > 0 be the biggest positive real number such that

t ṽλ ≤ ũλ. (3.61)

Suppose that t < 1 and let c17 > c15 > ‖ξ‖L∞ . We have

−�p(t ṽλ) + [ξ(z) + c17](t ṽλ)
p−1

= t p−1
[
−�p ṽλ + (ξ(z) + c17)ṽ

p−1
λ

]

= t p−1
[
λc14ṽ

q−1
λ + (c17 − c15)ṽ

p−1
λ

]

< λc14(t ṽλ)
q−1 + (c17 − c15)(t ṽλ)

p−1 (since t < 1, q < p)

≤ λc14ũ
q−1
λ + (c17 − c15)ũ

p−1
λ (see (3.61) and recall that c17 > c15)

= −�pũλ + [ξ(z) + c17]ũ p−1
λ for a.a. z ∈ �.

(3.62)

Since ṽλ ∈ D+, from (3.62) and Proposition 2.5 it follows that

ũλ − t ṽλ ∈ intĈ+ [see (3.61)].

This contradicts the maximality of t > 0. Therefore t ≥ 0 and so

ṽλ ≤ ũλ [see (3.61)].

Interchanging the roles of ũλ and ṽλ in the above argument, we obtain

ũλ ≤ ṽλ ⇒ ũλ = ṽλ.

��
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This unique solution ũλ ∈ D+ of problem (3.58) provides a lower bound for the
elements of S(λ), for all λ ∈ L =]0, λ∗].
Proposition 3.8 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold and λ ∈ L ,
then ũ ≤ u for all u ∈ S(λ).

Proof Let u ∈ S(λ) ⊆ D+. We introduce the following Carathéodory function

η̂λ(z, x) =
⎧
⎨

⎩

0 if x < 0
λc14xq−1 + (μ − c15)x p−1 if 0 ≤ x ≤ u(z)
λc14u(z)q−1 + (μ − c15)u(z)p−1 if x > u(z).

(3.63)

We set Ĥλ(z, x) =
∫ x

0
η̂λ(z, s) ds and consider theC1-functional τ̂λ : W 1,p(�) →

R defund by

τ̂λ(u) := 1

p
γp(u) + μ

p
‖u−‖p

L p −
∫

�

Ĥλ(z, u) dz, ∀ u ∈ W 1,p(�).

The functional τ̂λ(·) is coercive [see (3.63)] and sequentially weakly lower semi-
continuous. So, we can find ũ0 ∈ W 1,p(�) such that

τ̂λ(ũ0) = inf{τ̂λ(u) : u ∈ W 1,p(�)} < 0 = τ̂λ(0) (since q < p)
⇒ ũ0 �= 0 and τ̂ ′

λ(ũ0) = 0.
(3.64)

From the equality in (3.64), we have

< A(ũ0), h > +
∫

�

[ξ(z) + μ]|ũ0|p−2ũ0h dz +
∫

∂�

β(z)|ũ0|p−2ũ0h dσ

=
∫

�

η̂λ(z, ũ0)h dz, ∀ h ∈ W 1,p(�).
(3.65)

In (3.65) first we choose h = −ũ−
0 ∈ W 1,p(�) then we have

γp(ũ0) + μ‖ũ−
0 ‖p

L p = 0 [see (3.63)]
⇒ ũ0 ≥ 0, ũ0 �= 0.

Also in (3.65) we choose h = (ũ0 − u)+ ∈ W 1,p(�). We have

< A(ũ0), (ũ0 − u)+ > +
∫

�

[ξ(z) + μ]ũ p−1
0 (ũ0 − u)+ dz

+
∫

∂�

β(z)ũ p−1
0 (ũ0 − u)+ dσ

=
∫

�

[λc14uq−1 + (μ − c15u
p−1)](ũ0 − u)+ dz [see (3.63)]

≤
∫

�

[λ f (z, u) + g(z, u) + μu p−1)](ũ0 − u)+ dz [see (3.57)]
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=< A(u), (ũ0 − u)+ > +
∫

�

[ξ(z) + μ]u p−1(ũ0 − u)+ dz

+
∫

∂�

β(z)u p−1(ũ0 − u)+ dσ

⇒ ũ0 ≤ u (since μ > ‖ξ‖L∞).

So, we have proved that

ũ0 ∈ [0, u], ũ0 �= 0
⇒ ũ0 = ũλ (see (3.63), (3.65) and Proposition 3.7)
⇒ ũλ ≤ u for all u ∈ S(λ).

��
From Papageorgiou–Radulescu–Repovs [18] (see the proof of Proposition 7 in

[18]), we have that the solution set S(λ) is downward directed, that is, if u, û ∈ S(λ),
then we can find y ∈ S(λ) such that y ≤ u, y ≤ û. Using this fact, we can show that
S(λ) admits a minimal element.

Proposition 3.9 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold and λ ∈ L ,
then problem (1.1) admits a smallest positive solution ūλ ∈ S(λ) ⊆ D+ (that is,
ūλ ≤ u for all u ∈ S(λ)).

Proof On account of Lemma 3.10, p. 178 of Hu–Papageorgiou [9], we can find {un} ⊆
S(λ) decreasing such that

inf S(λ) = inf
n∈N un .

We then have

< A(un), h > +
∫

�

ξ(z)u p−1
n h dz +

∫

∂�

β(z)u p−1
n h dσ

=
∫

�

[λ f (z, un) + g(z, un)]h dz, (3.66)

∀ h ∈ W 1,p(�), ∀ n ∈ N.
Since 0 ≤ un ≤ u1, for all n ∈ N, if in (3.66) we choose h = un ∈ W 1,p(�), then

we see that

{un} ⊆ W 1,p(�) is bounded.

So, we may assume that

un
w→ ūλ in W 1,p(�) and un → ūλ in L p(�)and in L p(∂�). (3.67)

In (3.66) we choose h = un − ūλ ∈ W 1,p(�), we pass to the limit as n → +∞
and use (3.67). We deduce
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limn→+∞ < A(un), un − ūλ >= 0
⇒ un → ūλ in W 1,p(�)(see Proposition 2.2).

(3.68)

From Proposition 3.8 we have

ũλ ≤ un ∀ n ∈ N

⇒ ũλ ≤ ūλ.
(3.69)

Therefore, if in (3.66) we pass to the limit as n → +∞ and we use (3.68) and
(3.69) then we conclude that

ūλ ∈ S(λ) ⊆ D+ and ūλ = inf S(λ).

��
Next we examine the monotonicity and continuity properties of the map λ → ūλ

fromL =]0, λ∗] into C1(�̄).

Proposition 3.10 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, then the
map λ → ūλ fromL =]0, λ∗] into C1(�̄) satisfies

(a) it is strictly increasing that is,

0 < λ < θ ≤ λ∗ ⇒ ūθ − ūλ ∈ intĈ+;

(b) it is left continuous.

Proof (a) Let 0 < λ < θ ≤ λ∗. From Proposition 3.4 we know that we can find
uλ ∈ S(λ) ⊆ D+ such that

ūθ − uλ ∈ intĈ+
⇒ ūθ − ūλ ∈ intĈ+ (since ūθ ≤ uλ).

This proves the strictly monotonicity of the map λ → ūλ.
(a) Let {λn} ⊆ L and assume that λn → λ−. Evidently λ ∈ L . From (a) we have

ūλn ≤ ūλ ∀ n ∈ N

⇒ {ūλn } ⊆ W 1,p(�) is bounded.
(3.70)

From (3.62) and Proposition 3.2 of Papageorgiou–Radulescu [17] we know that we
can find a constant c18 > 0 such that

‖ūλn‖L∞ ≤ c18, ∀ n ∈ N.

Then, Theorem 2 of Lieberman [13] implies that we can find θ ∈]0, 1[ and a
constant c19 > 0 such that

ūλn ∈ C1,θ (�̄), ‖ūλn‖C1,θ (�̄) ≤ c19, ∀ n ∈ N.
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Exploiting the compact embedding of C1,θ (�̄) into C1(�̄) and the monotonicity
of {ūλn } (see (a)), we have

ūλn → ũλ in C1(�̄). (3.71)

Suppose that ũλ �= ūλ. Then we can find z0 ∈ �̄ such that

ūλ(z0) < ũλ(z0)
⇒ ūλ(z0) < ūλn (z0) for all n > n0.

This contradicts (a). Therefore ũλ = ūλ and so we can conclude that the map
λ → ūλ is left continuous. ��
Remark 3.11 A similar proof can show that the map λ → ũλ fromR into C1(�̄) (see
Proposition 3.7) is strictly increasing. This fact can be used to provide an alternative
proof that λ∗ ∈ L (see Proposition 3.6) .

We can state the following theorem which summarizes the dependence of the set
of positive solutions of (1.1) on the parameter λ.

Theorem 3.12 If hypotheses (ξ ), (β), (f1)–(f4), (g1)–(g4) and (2.8) hold, then there
exists λ∗ > 0 such that

(a) for all λ ∈]0, λ∗[ problem (1.1) has at least two positive solutions

u0, ū ∈ D+, u − 0 �= ū;

(b) for λ = λ∗ problem (1.1) has at least one positive solution u∗ ∈ D+;
(c) for all λ > λ∗ problem (1.1) has no positive solutions;
(d) for every λ ∈]0, λ∗] problem (1.1) has a smallest positive solution ūλ and the

map λ → ūλ from L =]0, λ∗] into C1(�̄) is

• strictly increasing
• left continuous.

Remark 3.13 Hypotheses ( f 3) and (g3) imply that the reaction of (1.1), asymptotically
at +∞, is uniformly nonresonant with resect to λ̂1. It is an interesting open problem
whether Theorem 3.12 above remains valid if we can have resonance with respect to
λ̂1 or even nonuniform nonresonance with respect to λ̂1, that is,

η̂(z) ≤ lim
x→+∞

g(z, x)

x p−1 uniformly for a.a. z ∈ �

with η̂ ∈ L∞(�), η̂(z) ≥ λ̂1, for a.a. z ∈ �, and the inequality is strict on a set of
positive Lebesgue measure.
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