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ABSTRACT. — In this paper we derive weighted extrapolation results in grand Morrey spaces. In
particular, the main statements say that if for a class of pairs of measurable functions the one-weight
inequality holds in the classical weighted L?° space for some po and for all Muckenhoupt 4,
weights, then the one-weight inequality is also true in weighted grand Morrey space L2 with A,
weights for all p. The spaces under consideration are defined on quasi-metric measure spaces. The
obtained results are applied to derive one-weight estimates for some operators of Harmonic Analysis
and to study regularity properties of solutions of second order partial differential equations with dis-
continuous coefficients.

KEy worps:  Extrapolation, grand Morrey spaces, spaces of homogeneous type, weighted inequal-
ity, singular integrals, fractional integrals, commutators

MATHEMATICS SUBJECT CLASSIFICATION (primary; secondary): 42B20; 42B25, 42B35, 47B38

1. INTRODUCTION

Rubio de Francia’s extrapolation result (see [39]) dealing with classical weighted
Lebesgue spaces is one of the most powerful tool in modern Harmonic Analy-
sis. In this paper extrapolation theorems in weighted grand Morrey spaces are
established. From these results we obtain new one-weight inequalities in these
spaces for operators of Harmonic Analysis for which the L? bounddeness holds
under the Muckenhoupt 4, condition for w. The derived results for commutators
of Harmonic Analysis are applied to study regularity properties of solutions of
second order partial differential equations (PDEs for short) with discontinuous
coefficients. Integral transforms and function spaces are defined on quasi-metric
measure spaces (X,d,u) with doubling measure . We are interested in the
weighted grand Morrey space L{C)’r"()(X ) with a weight function w defined by the
norm:

&t

||f||LW(B) ‘= sup 80||f||Lﬁ’“(X>’

O<e<p—1

(1.1) ||f||L‘,:>,,4.a(X) ‘= sup sup

0<e<p—1 B (W( ﬁ—&-r
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where 1 < p < o0, —1/p<r<0 and 6 > 0. We are stimulated to investigate
the extrapolation problem in such a type of grand Morrey space because of the
paper [11], where the extrapolation problem was studied in the classical weighted
Morrey spaces L2"(R"). The study of the one-weight problem for integral oper-
ators in weighted classical Morrey spaces with Muckenhoupt weights defined on
R" was initiated in the paper [28]. The same problem for sublinear operators in-
volving maximal, Calderéon-Zygmund and fractional integrals, etc in classical
weighted Morrey spaces with A, weights was investigated in [34], [42], [20], [35]
(see also references cited therein and [40] for related topics). It should be em-
phasize that the one-weight boundedness problem for sublinear operators involv-
ing their commutators in grand Morrey spaces were explored in [25] and [24].
In those papers the authors deal with weighted grand Morrey spaces . 7),0, 4(X)

and M,{" )6, )( X)) defined with respect to the norms:

n
12) Wl ypoiz = sup sup W),
where | < p < o0,0< A< 1/p, >0, and

L
09 Wl o= 302 sup s (¢ f L7 “w(u) ™

where l < p< o0, 0<i<1,0>0.

Grand Morrey spaces were introduced in the paper [30]. In that paper the
author obtained the appropriate boundedness for operators of Harmonic Analy-
sis. The spaces introduced and studied in [30] are defined as follows:

%P)AH,;»(X) = {f X —R: ||f||(/{p),ﬂ,/‘.(x)

p=e)
sup | d )) } < 0.
O<e<p—1 B
Later, H. Rafeiro [37] introduced generalized grand Morrey space defined by
the norm including the “grandification” taken not only with respect to p but also
for 4. Those spaces are defined with respect to the norm:

0
||.f‘||//017?4 7) (X) = Sup Py |

f||Lp—ﬁ.Z—/i(f,)(X), Smax = min{p - 17a},
0<e<Smax

where A4 be a non-decreasing real-valued non-negative function with lim,_+ A(x)
=0 and a = sup{x > 0: 4A(x) < A}. We refer also to the paper [25] for mapping
properties of sublinear operators in .#, ;1'1 (X).

Weighted extrapolation results in grand Lebesgue spaces were proved in [21],
[22]. For the classical Morrey spaces defined on R” such results were derived by
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J. Duoandikoetxea and M. Rosental [11] (see also the paper by M. Rosental and
H.-J. Schmeisser [38] for related topics).

One of the aims of this paper is to obtain regularity properties of solutions
of second order PDEs with discontinuous coefficients in M‘f)"r’e(X ) spaces. We
consider PDEs of elliptic type having coefficients that can be discontinuous and
show that if the known term belongs to weighted grand Morrey spaces, then
the highest order derivatives of the solutions of the equations are in the same
class.

Finally we emphasize the regularity and inner estimates for the solution of sec-
ond order elliptic PDEs in grand Morrey spaces M, )/’12)(9) defined on a bounded
domain Q C R”" were studied in Chapter 16 of [27].

Let (X,d, 1) be a quasi-metric measure space (QMMS briefly) with a quasi-
metric d and measure 4. A quasi-metric d is a function d : X x X — [0, co) which
satisfies the following conditions:

(a) d(x,y)=0if and only if x = y.

(b) d(x,y) =d(y,x) forall x,y € X.

(c) There is a constant x > 0 such that d(x,y) < x(d(x,z) +d(z,y)) for all
X, y,z€e X.

If u satisfies the doubling condition, i.e., if there is a positive constant Cy. such
that for all x € X and r > 0,

(1.4) uB(x,2r) < CyepB(x, 1),

then QMMS (X, d, u) is called a space of homogeneous type (SHT briefly).

It is known (see [29]) that for any quasi-metric space (X,d), there is a con-
tinuous quasi-metric p on X which is equivalent to d such that all balls corre-
sponding to p are open in the topology induced by p, and there exist constants
C and 0 € (0,1) such that for all x, y,z € X,

p(x,2) — p(y,2)] < Cp(x, »)(p(x,2) + p(,2)) "

Without loss of generality we assume that d is continuous and all balls are open
with respect to d.

For the definition, examples and some properties of an SHT see, e.g., mono-
graph [43].

If C,. 1s the doubling constant, then the constant

(1.5) D, :=1log, Cy,

is called the doubling order of p.
Let / :=diam(X) = sup, ,.y d(x, p). Notice that the condition / < oo im-
plies that u(X) < co.

DEerFINITION 1.1. The triple (X, d, u) is called an RD-space if it is an SHT and
u satisfies the reverse doubling condition (RDC briefly): there exist constants
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a,b > 1 such that for all x e X and 0 < r < //a,
bu(B(x,r)) < uB(x,ar).

Throughout the paper we assume that (X,d,u) is an RD-space and that
u(X) < oo.

REMARK 1.2. It is known that (X,d, 1) is an RD-space if and only if it is an
SHT and there is a constant ¢ such that forall x e X and 0 < r < f,

(1.6) B(x,ér)\B(x,r) #0, xe X,
(for the proof we refer to see, e.g., [43, p. 11, Lemma 20]).

There are many interesting and useful for applications examples of an SHT.
Among them it is a bounded domain Q in R” together with induced Lebesgue
measure satisfying so called .7 condition: there is a positive constant C such
that for all x € Q and p € (0,¢),

(1.7) #(B(x,p)) = Cp",

where / is a diameter of Q and B(x, p) :== Q N B(x, p).

In 1992 T. Iwaniec and C. Sbordone [18], in their studies related with the
integrability properties of the Jacobian in a bounded open set Q, introduced a
new type of function spaces L?)(Q), called grand Lebesgue spaces. A generalized
version of them, L?)%(Q) appeared in L. Greco, T. Iwaniec and C. Sbordone
[13].

Harmonic Analysis related to these spaces and their associate spaces (called
small Lebesgue spaces), was intensively studied during last years due to various
applications, we mention e.g. the papers by G. Anatriello, C. Capone, M. R.
Formica, G. Di Fratta, A. Fiorenza, T. Futamura, B. Gupta, T. Iwaniec, P.
Jain, G. E. Karadzhov, R. E. Castillo, V. Kokilashvili, P. Koskela, M. Krbec,
A. Mercaldo, A. Meskhi, M. Milman, Y. Mizuta, T. Ohno, J. M. Rakotoson,
H. Rafeiro, C. Sbordone, X. Zhong, S. Samko, Y. Sawano, X. Ye, etc (see also
the monographs [26], [27] and references cited therein).

Throughout the paper, we will say that a constant C,,,c > 0 is a structural con-
stant if it depends only on the quasi-metric constants x, and the doubling con-
stant Cy. The results of this manuscript are true for any quasi-metric space
constants but for simplicity, sometimes in the proofs we will assume that x = 1.
In this case the structural constant C, , will be denoted by C,,.

Morrey spaces L”* were introduced in 1938 by C. Morrey [33] in relation to
regularity problems of solutions to PDEs, and provided a useful tool in the regu-
larity theory of PDEs.

Let u(X) < o0, 1 < p< o0, —%< r <0, 0> 0. Suppose that w is a weight
function on X, i.e. w is u- a.e. positive integrable function on X. We denote by
LP)79(X) the space defined with respect to the norm (1.1). The symbol L (X)
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(1 < s < ) denotes the classical weighted Lebesgue space defined by:

. / 7w dut) < .

If 0 = 0, then L?"Y(X) is the classical weighted Morrey space defined on an
SHT which is denoted by L”"(X) (see [11] for the definition of this type of the
Morrey spaces norm). It is easy to see that LP"(X) — LI"(x).

We say that a weight function w belongs to the Muckenhoupt class A,(X)
(or 4,) 1 < s < o0, if

where the supremum is taken over all balls B C X. The symbol [w] , is called the
characteristic of w. Further, a weight w belongs to 4;(X) if Mw(x) < Cw(x) a.e.,
where

(18) M) = sup s | w(y) du),

Bax U

The characteristic [w] (x) is defined as the essential supremum of Mw/w.
Since the A4(X) X) classes are increasing with respect to s one can define the class
A, (X) in the natural way 4. (X) = (J,., 4,. Further (see [16] and [17]),

Wy, = s%p(ﬂ(lB) w d,u) exp(ﬁ/}glog wl d,u).

There exists also another 4., characteristic due to [12]:

1
M(
[W}A © Sgp W(B) / WXB

It can be checked (see also [17]) that [W]K < Cy u[w],, with some structural con-
stant G ;.

LEMMA 1.3. Let 1 < p < oo and let w be a weight such that w € A,(X). Then the
measure E — w(E) is doubling with doubling constant Cy,, . , := CLZ’[W]AP(X)'

The proof is straightforward; therefore it is omitted (see also [15], Proposition
7.1.5).

To prove the main results of the paper we need some auxiliary statements. The
following statement is known as Kolmogorov’s theorem which we need because
of the value of constant there (see [15], Exercise 2.1.5 for Euclidean spaces). The
proof is similar to that in the case of Euclidean spaces but we mention the main
idea of the proof for completeness.
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LEMMA 1.4. Let 0 <y < 1 and let E be a y measurable set with finite measure.
Suppose that S is a sublinear operator of weak (1,1) type with the operator norm
ST == [|S|| 1 o p1.- Then the following inequality holds:

(u(IE)/E|Sf(x)I"fdﬂ>1/y < Jf'!}(ﬂ(lE)/E|f(x)|dﬂ(x))_

PrROOF. The proof follows from the representation

/ SO dp = / i e X (S)) > 2 d2
E 0

ISHI1, 1
) «
= o ()di+ | I, (---)d2
H(E)
and the weak (1, 1) type inequality for S in the second integral. |

The next statement probably is known but since we deal with quasi-metric
measure space and are interested in quantitative estimates we give the proof for
completeness.

LEMMA 1.5. Let 0 <y < 1 and let [ be a u- a.e. positive locally integrable func-
tion. Then (Mf)" € A1(X). Moreover,

Cx,y
1—y’

[(Mf)'],, <

where C , is a structural constant.

Proor. We follow the proof of [15], Theorem 9.2.7. Taking into account the
definition of the A4, class, it is enough to prove that

1 , C
1.9 —/Mfwdﬂz < O
(19) B, M0 dut) < £

(Mf)'(x)

for u- a.e. x € B. To prove (1.9) we use the representation f = f; g+ f>, p, Where
fl,B = fXSKB and f2,B = fX(SICB)"'
By using Lemma 1.4 and the fact that 0 < y < 1 we find that

_1 Y ||M|| s Lo 7 1 Y
[y anto) < (Mo (L )
C )
< {5 (MF )

for a.e. x € B with positive structural constant C,flz, Further, due to simple geo-
metric observations we have that for all y, x € B,

M(f,5)(y) < CEL(MF)(x),
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with another structural positive constant C;EZ;Z Combining these estimate we get
the desired result. O

LEMMA 1.6. Let 1 <y < p < oo and let w € Ay),. Then there is qq € (7, p), such
that for all q € [y, qo] and all s € (1,s0(q, w)) with constant sy(q,w) depending on q
and w the inequality

_ 11
sup [Wl pZ]A s < Cpﬁ,qu,u[w]ﬁ” .
O<e<o el

holds, where p, = q , 0 is a constant such that 0 < a < p — qo and the constant
Cp,0,q0,,u 1S defined by
p—ny

(1.10) Coovq0,00 = 2 _1(4,()(%)/% [2p/y—1(4K)(p/y)Cdc](pa)’—1‘

PrROOF. Letw € A4,,,(X). Then (see Theorem 1.2 of [17])

) — ) Cue
[W]Aumw(}() < 2PN (4) (p/7)Ca [W}AI,N(X)’

where 5 := Tho - iﬁf” W,
(1.11) Ty = 6(32i% (41 + 1) %) .

Let n, = IHW[W(K (/I//)})_,]l o Observe that 7#7; < 7. Consequently,

' Appy'*

(1.12) (W] Agyen <V, < 2P/ (4yc) (p/7)Cac [W]Ap/y(X)'

Further let us choose ¢ <y and 0 < o < p — g so that p —n = . Then

2% < p, for all ¢ and ¢ satisfying the conditions y < ¢ < qo, ¢ < a. Moreover by
(1 12) we have that

(113) [W]A,,.(X) < [W]A( < 2(1’/)’)*1(4K)(Pcdc)/"/[w]

r-olay Ay (X)

Further, taking (1.13) and simple observations into account we find that

rCye

(1.14) WP = D < 277 () W] )

)24 APS (X) 7

2C4e

<27 (dr)

1 -1
)l

Applying again Theorem 1.2 of [17] we get the inequality

(1.15) D! Py <27 () P

) :

Py
p—o

< 2= 1(4;c) %) Ciepy=r)

A/(X)

Py
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holds, where

p.—1

1+ TK,u[W]AMX)

=
and 7, , is defined by (1.11). Further, due to (1.13) we have that

(1.16) W, ) < Wl

That is why,

" < 2r-1 (4r) (pCac)/y [w]

(p/7=0)/40 o (X)*

p -1
1+ 7 22/ (4K) (PCac)/ "[w] Ay (X)

Ny = =: 7.

Consequently, summarazing (1.14)—(1.16) we find that

-1
(X)

IA

[Wl_p;]A x) = Co.o,q0.1, u[W]p

1-p;
w724 (X) -

pl-ng Apy

Let us choose 1 < sy < 5o = (g0, 0, w) so that 5, > p” . Then for all O<e<o

and 1 < s < 50, 179 > p./s’. Consequently, for all such ¢ and s we get -~ Pe s, Pl — 1.
Hence,

1yt 1-p, 1
w00 < WL, o) < o, "”[W]AJ/ X)° -

LeMMA 1.7. Let conditions of Lemma 1.6 be satisfied for y, p and w. Then for all
balls B and all measurable sets E C B,

w(E) _ = [wE)]™
(117) W(B) < CRH|:,u(B):| ,
where
(1.18) Cri = 2(4x) Cdr[céﬂc/y [W]Al)ﬁ]2+logz .
(1.19) 7= 1

Tl 00

and T, is defined by (1.11).

PrOOF. By using Theorem 1.1 in [17] we have that for all balls B

1 NV 1

1.20 —/w””d < 2(4x) G / wdu),

N e A 49 (58 oy ™)

where 77 := % Since W], (x) < [W]4,, (x)> We find that (1.20) holds for 7

replaced by 7 deﬁhed by (1.19). Hence,
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1/(14n)
w(E) = /XEWd,u < (/ w7 d,u) ! ()1
B B

: / I 1/il+m) 1/(1+n) /(1)
= w M du w(B Du(EYTET
(,u(B) B ) (B) (E)

< 2(4x) C(

1
#(2KB) - Wdﬂ)/l(B) 1/(1+77>Iu<E>;1/(1+,1)

(4 ) lz(»W(QKB) (B)—n/(lw)lu( )'7/(1+'7)
(4x) “[CL7w), ), )= w(B) [(E) /(B .

In the last inequality we used Lemma 1.3. O

IA

2
2

IA

It is well-known the Muckenhoupt’s theorem for an SHT (see e.g., [43]) stat-
ing that M is bounded in L?(X) if and only if w € 4,(X), where 1 < p < 0.
There exists a sharper result of Buckley [3] type:

THEOREM A [17]. Let 1 < p < 0. Then there is a structural constant C, . such
that the following inequality holds:

1 1
1M1 00y < Cund' W 5V

with the structural constant C, .

2. MAIN RESULTS

X. Duoandikoetxea and M. Rosental in their recent paper [11] proved the follow-
ing extrapolation results:

THEOREM A. Let 1 < py < oo and let 7 (X)) be a collection of non-negative mea-
surable pairs of functions defined on X. Suppose that for all (f,g) € 7 (X) and for
all w e Ay, (X), the inequality

(2.1) gl 203y < ClIf oy,

holds, where the constant C does not depend on w. Then for every 1 < p < oo,
—1/p<r<0,0>0andw e A,(X), we have

(2.2) ||g||L{,’>’(X) < CHfHLﬁ"‘(X)v (f,9) € 7(X),
where C is the positive constant independent of (f,g) € F (X).

THEOREM B. Let 7 (X) be a family of pairs of functions (f,g), where f and g
are defined on X. Suppose that for some py € (0, 0), and for all w € A, we have

(2.3) 9120wy < CllA Lo xys (f59) € 7(X)
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for some positive constant C independent of w and (f,g). Then for every 1 < p <
o0, —1/p<r<0,0>0andwe A, (X), we have,

(2.4) 19llzz7 ) < ClA gy, (f9) € 7(X),

where the positive constant C is independent of (f, g).
One of the main results of this paper states:

THEOREM 2.1. Let 1 < py < oo and let F(X) be a collection of non-negative
measurable pairs of functions defined on X. Suppose that for all (f,g) € 7 (X)
and for all w € Ap,(X), the inequality

(2.5) 1AW 2oy < CN(Lg, e IS Mo oy

holds, where N is a non-decreasing function and the constant C does not depend on
(f,g) and w. Then for every 1 < p < o0, —1/p<r<0,0>0andw e A,(X) we
have,

(26) ||g||L‘l:{)~’v(’(X) < Cé”f”L‘l:)”v”()Q’ (fa g) € ‘gj(XL
where C is the constant from (2.5), and the constant C is independent of (f,g).
Extrapolation statement regarding 4., class of weights reads as follows:

THEOREM 2.2. Let F(X) be a family of pairs of functions (f,g), where f and g
are defined on X. Suppose that for some po € (0, o), and for all w € A., we have

(2.7) ||9HL{;0(X) = CN([W]A,(X))HfHL,fo(X)v (f,9) e 7(X),

for some | > 1, where N is non-decreasing function, and the constant C does not
depend on w and (f,g). Then for every 1 < p < oo, —=1/p<r<0,0>0andw e
A, (X) we have

(28) ||g||L‘1‘f)~"v”(X) < C6||f||L‘/£).h()(X), (fa g) € g;(X)v

where C is the same constant as in (2.7) and C is independent of (f, g).

3. PROOFS OF THE MAIN RESULTS

In this section we prove the main results of this paper. First we formulate and
prove the following statement:

PrROPOSITION 3.1. Let 1 <y < p < oo and let w e A,;,(X). Then there is qo €
(7, p) such that for all q € [y, qo], all s € (1,50(q,w)), where so(q, w) is the constant
depending on q and w, all balls B and functions h € L' (B) with ||h||L<p/q)/<B) =1,
the inequality

1/(p—e)+r
(3.1) ||f||L(qHW),B(X) < C(u(B)) /(p—e)+ Hf”L{j’“(X)
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holds, where

(HW), 5(x) = M(h'w'y5) " (x),
and the constant C is independent of f, B and e.

PRroOOF. For simplicity assume that x = 1. Let w € 4,,/,(X). Then by the open-
ness property of the 4, class, there are ¢ € (1, p) and ¢ € (0, p — go) such that
w € A(p_g)/q- Hence, w e A(,_ ), for all g € [y, q]. Fix ¢ and set p; := p;'s,
where 0 <& <o. Let s be such a number that 1 <s < p) and that w! e
Apr/s(X). Such an s exists because w € 4, (X) and, consequently, wlri e 4 ()

Let /1 be a function such that ||/]] = =1. Observe that the weight (HW), B( X)

= M (h*w* )(B)l/ * is well defined because Jy *wypdu < oo and, consequently,
(HW)S_’B( x) < o a.e.. Let us check that h*w'ygz e L'(X). We w111 see that the

inequality holds:

1/s , }
(32) (/X Wy d”) < Wl w(B)Pu(B) M < 0.

Pgls

Indeed, by Holder’s inequality with respect to the exponent p//s and the fact

that w!'™7 € A/, we find that

’
Py—S

(/XhSWSXBd,u)I/S < (/B hl’a{wdlu)l/p; (/B W(é ])p, + d,u) ol

1/p! s /! 71/[’;

1295

< [W]L/l/’f//</gwlwdﬂ) (/BWI,,X/ d/J)—l/p;ﬂ(B),l/s,

1 i I/Pé ol 71/]75,{ —1/s’
<y ([t rta) " ([ wrrt ) )

= (w7 w(B) u(B) ™ < 0.

Let now f e L?7%"(X) and let f is non-negative. We have to estimate the

norm of f in L(HW B( ). Using the representation f = fi p+ f2 p, where
fi.8= fx2p> fo.p = f = fi.p and B has sufficiently small radius, we get:

1/q

([ rmm), )" < (| #00EW), o0 dut)

([ AW, ) du)
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Due to Holder’s inequality with respect to the exponents p, and p/, the
doubling condition, Theorem A, Lemma 1.6 for x = 1 we find that

L < ( /2 ) du(y))l/(m) ( /2 B(HW)gjéB( Pyl dﬂ(y))‘/ (ar:)
wBP= w8 7 ([ 77w au(y)”

([ o' au)

otr / . 1/(pia)
< 1 lag=re B (| I )

Ay s/ 1 / 1/(ap;)
1/ & Pe—s . Pa/é 1— ! €
< ¢ () i (/BWWS) Wi dp)
Y 1 — r 1 — r
X [C;c/ [W]Al,/,(X)] /(p—e)+ w(B) /(p—e)+ ”f”L,{T’“(X)

] 1/(p—e)+r
de

1 1/(p—e)+r
X llageriy 1) e (B) 72

T
= C/i/q(Cp,o,qoﬂﬂ[w]jz/y(x))” N [Cp/y[ 14

I’/V(X

U N et ) 1/(p—o
= C/yq(Cp,a,qo.,u[w]i/;,(x))“’ ‘ [sz/}[W]Ap/,(X)] / )||f||L‘{f*”="(X)v

where C, 5 4, . 18 defined by (1.10). Thus, /; < C’I(,ﬁl,),‘,‘,, with constant ‘,E}LW de-
fined by

(3.3) c(!

N | )
1(7-, = Cplt/q(cpmqo,ﬂ[ ]p” ) [Ci//[LV]A

]1/(1)%)
App(X) ) :

)
a,w (X

Now we estimate . First observe that if x € 2/*!B\2/B, j € Z, then

C
Mg(x) < K / du,
g(x) Z2B) 2]_B|g| i

with a structural constant C,,.
Using this observation, (3.2), Holder’s inequality, the fact that w € 4, (X) and
Lemma 1.7 we find that

fq(HW>s B d:u
X\2B ’

S 1 N s 1/S
< Cl/ Z//+IB\2J+IB )(,u(ZfB) 2th w d,u)

1
E / fAIwrew e du
T J2i+1B\2it1B

< C/i/s [Wlfpg’]llll/,l’é

pl/s




WEIGHTED EXTRAPOLATION IN GRAND MORREY SPACES 79

w(B)' " u(B) " u(2/B)

wuB)"

1/p.
<Cl/s 1p, /Pé / =y, d
[w Ay Z 2/+le wdu
x (w! P2/ ) P (B) T w(B) P (B) T (2 B)

Hf||Lp o Zw<2./'+18)(1/(p73)+r)q
J

X [W171]£ (2]+IB)} 1/p£‘v(B)1/pr, (2]B)—1/AIM(B)—1/A/
1/sp, 1=p/11/p; 1/p:
= Cy/ [W P} [ ] If ||fHL1’ “

1/sp, 1-pl11/p;
SCﬂ[ Py

11//Y

XD W(2f+13) "‘fu(zf“B)mzf“B)*l/wB)*”’w(B)“"s
7

N 1 & 1 & 1 (3
< P DTS g (B)

> Z w(2-/+lB) ""/1(2-”1B),u(ZHIB)_l/S,u(B)_I/S/W(B)l/p”
J

< Cl/scd {W/ —pr]l/pa[ ]lips

f”LI’ C’ ZW(21+1B)”]C£!J (M}(B) l//’u)

J
1p! 1 11/p, = \r Jrrtils' rg+1/p,
< CLCalw L L Iy (Corn) ™ S (o iy
J
pa 1
s pé -, 3 1 &
< C*CacCpoo. gy W l4,), [w! p’]Ailf)/x[ }A//P (Cr)"™
+”1'7
CAIL " rq+1/p.
5 d S W(B) q+1/p: f”I({ﬁ""'(X)’
1+Cy

where C, 5,4, 1s defined by (1.10). Here we assumed that s can be chosen so
small that the sum/series with respect to j is convergent. Thus, we conclude that
L < CIE,C w, Where

E CA/+77rj~nl 1/!1
C T noll/pe
(34) 1(,,2()77”, = CI/YCJC(CRH) Cp,a,qo [W]Ap//_/ [W]A{f de -

L4y
Finally we conclude that (3.3) and (3.3) imply

C2)
+ Cp, a,w

(3.5) L+L<CW

p,o,W

= Cp,o,w-

This completes the proof of the proposition. O
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PrOOF OF THEOREM 2.1. For simplicity assume that x = 1. It is enough to
show that

(1 /(pt)tr B 1/(p—e)
sup &(u(B)) -/ >+>< /B g7 ewdﬂ) < Cuswllf 1l pra g,

O<e<o

for some sufficiently small positive o because by Holder’s inequality we have that
forc<e<p-—1,

. RNV W porer NV
(u(B))~ 7 )”(/g” wdp) < (u(B)" " >+)(/g” wdu)

B B

As before, we denote: (MH)p = (MhSwSXB)l/S. Suppose that 1 < p < 0.
By the classical extrapolation theorem (see [10] for Euclidean spaces and [21] for
an SHT) we have that

(3.6) ) < ColDL, ) ez, w e Ap(X),

for all (f,g) € #, where C is the constant independent of (f,g) and w, and
X — ¢(x) is an increasing function. Fix w € 4,(X). Choose ¢ € (1, p) and s > 1
so that inequality (3.1) holds. We set p, := p ¢ Let us fix a ball BC X. It is
obvious that

1/(p—e) 1/(peq) 1/q
(/ gf’*gwdu) = (/ g””qwd,u) = sup (/ g‘%wdu)
B B ]y B

w

Let us fix such an 4. By Lemma 1.5 we have that [(MH)g ], <[(MH)g ], <
(3.6) implies that '

(/ ngd,u> <CH¢ /f"wd,u V/a
X

forall (f,g) € # and all w € 4,(X), where x — ¢(x) is non-decreasing function.
Consequently, by Proposition 3.1 and Lemma 1.5,

(/X gqhw}(gdﬂ)l/q < (/ng(MH)B,sdﬂ)l/q

< Coll(MH)y ) ([ 1M, dn) "

14
I—s1

< CCponp([(MH) g ) 4 0 )B) Y| £l ey

< CCpon((MH) g )4y 0 J1(B) " e 1]
= Cl —&)+r —
<C p}g)w(p(l _';71)/1(3)1/(17 )+ & 0Hf||L‘[:>'r'()(X),

where C, ,.,, is defined by (3.5).
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Thus,

_ o) tr . 1/(p—e)
80(/1(3)) (1/(p 8)+)</ng ‘Wdu) < C”fHL,{’)"“”(X)

The theorem has been proved. O

PrOOF OF THEOREM 2.2. Let (2.7) hold for some py > 0. Then by the classical
A, extrapolation result (see [9] for Euclidean spaces and [23], Theorem A, for an
SHT) we have that

(3.7) 191l xy < G (WL S Ny

forall 1 < p < oo, all w e 4,, for some constant C, and increasing function .
Let 1 < p < oo and let w € A,,. We will show that (2.8) holds for this w and
all (f,g) e #.1f p > ¢q, then A, C A4,, and by (3.7) and Theorem 2.1 we get that
(2.8) holds for that w and all (f,g) € &
Let now p < g. Since w € 4, we have that w € 4,_, for some small positive o.
Consequently, w € 4,, for all # satisfying 0 < # < . Hence, by (3.7) we find
that

E
68 g, < CoaeatOa

q-n

with the positive constant C, , ., and for some increasing function . Since
Wiy, < Wl , and sup,, Gy 4.y < o0 (see the proof of Theorem 2.1 for the
latter fact) we have that

sup Cp,q,s,nw([W]Aq_”) < 0,

&1
where the supremum is taken over all sufficiently small # and e. From (3.8) we
derive

pe

(3.9) gl ey < Gpaen¥ (W4, )
Raising both sides of (3.9) to the power -1 = 7 and multiplying on ¢’ we get the
desired result. 0

4. APPLICATIONS TO ONE-WEIGHT INEQUALITIES FOR COMMUTATORS
OF SINGULAR INTEGRALS

Theorems proved above give the one-weight boundedness in L5’ b ( ) spaces for
operators of Harmonic Analysis satisfying one-weight inequality in the classical
Lebesgue spaces under the Muckenhoupt condition. Such operators are, e.g., max-
imal, Calderon—-Zygmund, fractional integral operators and their commutators.
Here we are focused on some of these operators.

Below we denote by Z(f) the class of all essentially bounded functions on X.



82 V. KOKILASHVILI, A. MESKHI AND M. A. RAGUSA

Let us recall the definition of the Calderén—Zygmund kernel on quasi-metric
measure spaces.

Let k: X x X\{(x,x) : x € X} — R be a measurable function satisfying the
conditions:

uB(x,d(x, y))’

(1, 3) = K(ia, ¥)] + K, 00) = K(p,x2)] < co

lk(x, y)| < X, yeX, x#y;

d(Xz,Xl)) 1
d(x2,y)/ uB(x2,d(x2,y))

for all x;, x, and y with d(x;, y) > d(x,x2), where w is a positive, non-
decreasing function on (0, oo) satisfying A, condition (w(2¢) < cw(?), t > 0) and
the Dini condition fol o(t)/tdt < .
We also assume that for some py, 1 < py < oo, and all f € L7 (X,u) the
limit
(Zf)(x) = lim ke(x, )f (y) du(y)
eV JX\B(x,¢)

exists almost everywhere on X and that 7' is bounded in L7 (X, u).
It is known (see [36]) that there is a constant ¢ := ¢o([w], ) independent of f
and depending on [w], such that for all /' € Z(X).

||Tf||L£0(X,y) < C/:E)([W]A,)||Mf.||L,’;O(X,g)7 f € Q(X)v w e AOO(X)v
where / > 1, T is the Calderon—Zygmund singular integral defined on X and the

mapping x — ¢o(x) is non-decreasing on (1, c0).
Taking extrapolation Theorem 3.1 into account we have the next statement:

THEOREM 4.1. Let 1 < p < oo, —1/p <r < 0and let 0 > 0. Then there is a pos-
itive constant C such that for all f € 2(X) and all w € A, (X),

HTfHL{;)J'”(X) < C”MfHL‘f)"““(X)'
We say that a function b defined on X belongs to BMO if
Bllsso = =g [ 166x) — bal dux) < o=
= X) — ﬂ X 3
BMO " u(B) Js ?

where bp = ﬁb(y) du(y).
Leth e BMO(X), m € NuU {0} and let

TP (x) = /X 1b(x) — ()] "k (x, ¥).£ () du(y),

where k is the Calderon—Zygmund kernel.
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It is known (see [36]) that if 1 <r < oo and w € 4., then the one-weight
inequality

17" Lix) = CHb“BMO ||Mm+lf||L' (x) fe2(X),

where M™*! is the the Hardy-Littlewood maximal operator iterated m + 1
times. Thus we have

THEOREM 4.2. Let 1 <p< oo, —1/p<r<0 and let 0 > 0. Then there is a
positive constant C such that for all f € Z(X) and allw € A, (X),

T3 f N ooy < CUBIErroon 1M S Wl oy S € 2(X).

COROLLARY 4.3. Let 1l < p< oo, —1/p <r <0 and let 0 > 0. Then there is a
positive constant C such that for all [ € Z(X) and all w € A,(X),

1771l sy, < €IS

COROLLARY 44. Letl < p< oo, —1/p<r<0 and let 0 > 0. Then there is a
positive constant C such that for all f € Z(X) and all w € 4,(X),

VTN, < ClBIon I/l oy f € 2(X).

Lp rf) )

Let

9= [ Kl n)f0)duty), xe X,
be fractional integral operator defined on (X, d, i), where

oa—1
Ka(x, y) — ﬂ(Bxy) I X # ya
m{xt, x =y, u{x} >0,
0 <o < 1and By, := B(x,d(x, y)).
Suppose that

M, f(x) = sup /|f Ndu(y), 0<a<l.

It is obvious the pointwise inequality I,f(x) < C, ., Mf(x) for all non-
negative f.
It is known that (see [2]) if 0 < r < c0 and w € 4., (X), then the inequality

1S gy < CN(W]y )Mo S

Li(X)

holds for some positive constant C = C,, ., and increasing N. That is why
based on this result and Theorem 2.2 we have the next statement
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THEOREM 4.5. Let 1 <p< oo, —1/p<r<0 and let 0 >0. Let we A, (X).
Then there is a positive constant C such that

Further, for b € BMO(X), let
7 f(x) = / b(x) — BN Ky(x, ) duly), 0 <o <1,
A7) / 1b(x) — b()|"Kal, y) (), 0 << 1.

It is easy to see that, for />0, |1, f(x)| < 4", /(x). In the same paper [2]
the authors showed that if 0 < p< oo, 0 <a <1, me NU{0}, we A, (X),
b e BMO(X), then there is a constant C= Cy,m,p,x,n SUch that

/I«f‘ﬂf ()" w(x) du(x) < CN (W] )11 5arox /X[Ma(M"U’)(X)]”W(X) dp(x)

for some non-decreasing function N. Hence we have the following statement:

THEOREM 4.6. Let 1 < p<oo,me NuU{0}, —1/p <r<0,and let 0 > 0. Sup-
pose that w € Ay, (X). Then there is a positive constant C such that

Lpr{)(X), fe.@(X)

COROLLARY 4.7. Let 1 < p < oo, —1/p<r<O0andlet 0>0. Let we A,(X).
Then there is a positive constant C such that

||11f||L‘lz)~’~0(X) = CHfHLIf)-r"»”(X)? /e 9(X>

COROLLARY 4.8. Let 1 <p< oo, me Nu{0}, —1/p<r<0 and let 0> 0.
Let w € A,(X). Then there is a positive constant C such that

1T oy < CUB B0 1/ | oro xys S € D(X).

1251 | -5y < ClBl Brsox) | M (M™S)]

5. APPLICATIONS TO PDE

In the last thirty years a number of papers have been devoted to the study of
local and global regularity properties of strong solutions to elliptic equations
with discontinuous coefficients. To be more precise, let us consider the second
order equation

(5.1) Yu= Z a;j(X)Dy,u = f(x) for almost all x € Q,
ij=1
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where . is a uniformly elliptic operator over the bounded domain Q C R",
n>2.

We assume that a domain Q satisfies .o/ condition (see (1.7)). In this case Q
with induced Lebesgue measure and Euclidean metrics is an SHT. Hence, the
statements of Section 4 are valid for such domains.

Regularizing properties of % in Hélder spaces (i.e. Zu e C*(Q) implies u €
C***(Q)) have been well studied in the case of Holder continuous coefficients
a;j(x). Also, unique classical solvability of the Dirichlet problem for (5.1) has
been derived in this case (we refer to [14] and the references therein). In the case
of uniformly continuous coefficients @;;, an L”-Schauder theory has been elabo-
rated for the operator & ([1], [14]). In particular, Lu € L?(Q) always implies
that the strong solution to (5.1) belongs to the Sobolev space W?7(Q) for each
p e (l,00).

However, the situation becomes rather difficult if one tries to allow disconti-
nuity at the principal coefficients of .#. In general, it is well-known (cf. [31]) that
arbitrary discontinuity of a; implies that the L”-theory of # and the strong solv-
ability of the Dirichlet problem for (5.1) break down. A notable exception of that
rule is the two-dimensional case (Q C R?). It was shown by G. Talenti ([44])
that the solely condition on measurability and boundedness of the a;’s ensures
isomorphic properties of . considered as a mapping from W22(Q) N WOI’Z(Q)
into L?(Q). To handle with the multidimensional case (n > 3) requires that addi-
tional properties on a;(x) should be added to the uniform ellipticity in order to
guarantee that % possesses the regularizing property in Sobolev functional scales.
In particular, if a;;(x) € W1(Q) (cf. [32]), or if the difference between the largest
and the smallest eigenvalues of {a;(x)} is small enough (the Cordes condition),
then Lu e L*(Q) yields that u e W?2(Q) and these results can be extended to
W2r(Q) for p € (2 —¢,2 + ¢) with sufficiently small .

Later the Sarason class VMO of functions with vanishing mean oscillation
was used in the study of local and global Sobolev regularity of the strong solu-
tions to (5.1).

Next, we define the space BMO and then the smallest VMO class, where we
consider coefficients a; and later that one where we consider the known term f.

In the sequel let Q be an open bounded set in R”.

DEFINITION 5.1. Let /€ L] (Q). We define the integral mean f; z by

Y 1
R TN b oy
|Q N B(xa R)l QnNB(x,R)

J(y)dy,
where B(x, R) ranges in the class of balls centered in x with radius R and
|Q N B(x, R)| is the Lebesgue measure of Q N B(x, R).

If we are not interested in specifying which the center is, we just use the
notation fg.

We now give the definition of Bounded Mean Oscillation functions (BMO)
that appeared at first in the note by F. John and L. Nirenberg [19].
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DEFINITION 5.2. Let f € L} (Q). We say that f belongs to BMO(Q) if the
seminorm || f]|, is finite, where

111 += sop it o 0~ fenl

Next, we consider the definition of the space of Vanishing Mean Oscillation
functions, given at first by D. Sarason in [41].

DEFINITION 5.3. Let f € BMO(Q) and

10 R)= sup o 170 = ey

pP<R

where Bp ranges over the class of the balls of R” of radius p.
A function f € VMO(Q) if

lim »(f, R) = 0.

The Sarason class is then expressed as the subspace of the functions in the
John—Nirenberg class whose BMO norm over a ball vanishes as the radius of
the balls tends to zero. This property implies a number of good features of
VMO functions not shared by general BMO functions; in particular, they can
be approximated by smooth functions.

This class of functions was considered by many others. At first, we recall the
paper by F. Chiarenza, M. Frasca and P. Longo [6], where the authors answer a
question raised thirty years before by C. Miranda in [32]. In his paper he con-
siders a linear elliptic equation where the coefficients a;; of the higher order deriv-
atives are in the class W!"(Q) and asks whether the gradient of the solution is
bounded, if p > n. In [6] the authors suppose that a; € VMO and prove that Du
is Holder continuous for all p € |1, 4o0[.

We observe that W' c VMO, this fact follows by using Poincaré’s in-
equality

U0 = fal < e [ v )

and the term on the right-hand side tends to zero as |B| — 0.

We point out that C° is strictly contained in VMO.

Also, it is possible to check that bounded uniformly functions are in VMO as
well as functions of fractional Sobolev spaces W%, 0 €10, 1].

The study of Sobolev regularity of strong solutions of (5.1) was initiated
in 1991 with the pioneeristic work [6]. It was obtained that, if a;(x) € VMO n
L*(Q) and Zu e LP(Q), then ue W*?(Q) for each value of p in the range
(1, c0). Moreover, well-posedness of the Dirichlet problem for (5.1) in W27(Q) N
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WOl "’ (Q) was proved. As a consequence, Holder continuity of the strong solution
or of its gradient follows if the exponent p is sufficiently large.

Thanks to the fundamental accessibility of these two papers [6] and [7], F.
Chiarenza, M. Franciosi and M. Frasca in [8] and many other authors have
used this space VMO to obtain regularity results for PDEs and systems with dis-
continuous coefficients.

Continuing the study of regularity of PDEs, we see that Holder continuity can
be inferred for small p if one has more information on Zu, such as its belonging
to suitable Morrey class L”*(Q).

We now define the Morrey space L”*(Q).

DEFINITION 5.4. Let 1 < p <400, 0 <1 <n, and let f be a real measurable
function on the open bounded set Q C R".
If | /] is summable in Q and the set described by the quantity

1
(5:2) - L)1 dy
P QN B,(x)

when changing of p in |0, diam Q[, x € Q, has an upper bound, then we say that
f belongs to the Morrey Space LP*(Q).

If f e LP*(Q), we define

(5.3) 11, = s o SO dy

xe P JQnB,(x)
0<p<diam Q

and the vector space naturally associated to the set of functions in L?(Q) such
that (5.3) is finite, endowed with the norm (5.3), is a normed space, which, as we
will see later, is complete.

The exponent 4 can take values that are not belonging to |0, n[ but the unique
cases of real interest are that one for which 4 € |0, n[. Indeed, from the definition
we immediately see that L”*(Q) = L?(Q), if 2 < 0. Sometimes later we will ex-
plicitly use the fact that L7°(Q) = L?(Q).

Moreover, if A = n, by applying the Lebesgue differentiation theorem, we find
that

lim i/ £ (»)|? dy = lim i/ fWIPdy = Clf (%)
QN B,(x) B, (x)

p—=0tp

for every Lebesgue point or, equivalently, almost everywhere in Q. Then, in order
that f(x) e L?"(Q) it is necessary and sufficient that f is bounded. It means that
LP"(Q) = L™ (Q).

If 2 > n, then the set described by (5.2) in general is not upper bounded, ex-
cept for f = 0 a.e. in Q. This means that L7*(Q) = {0}, for A > n.

Using the spaces defined above a natural problem arises namely to study the
regularizing properties of the operator .¥ in Morrey spaces in the case of VMO
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principal coefficients. In [4], L. Caffarelli proved that each W?7?-viscosity solu-
tion to (5.1) lies in C'**(Q) if f(x) belongs to the Morrey space L™"*(Q) with
€ (0,1).

Main result of the paper is to obtain local regularity, in grand Morrey Spaces,
for highest order derivatives of solutions of elliptic nondivergence form with co-
efficients, which can be discontinuous.

We recall that, in the case of continuous coefficients of the above kind of equa-
tion, the results obtained by S. Agmon, A. Douglis and L. Nirenberg in [1].
Later, discontinuous coefficients were considered by S. Campanato in [5].

Then, this paper can be regarded as a continuation of the study of L? regular-
ity of solutions of second order elliptic PDEs to the maximum order derivatives
of the solutions to a certain class of linear elliptic equations in nondivergence
form with discontinuous coefficients.

Let us consider the second order differential operator

L = a;(x)Dy, Dy =

Here we have adopted the usual summation convention on repeated indices.
In the sequel, we need the following regularity and ellipticity assumptions on
the coefficients of &, Vi, j=1...n:

a;j(x) € L*(Q)n VMO,
(5.4) a;j(x) = aj(x), a.a.xeQ
I >0k 1E)P < aij(x)&:& < k|é)?, VEeR" aa. xeQ.

Set ; for the M O-modulus of the function a;(x) and let n(r) = (37, nizj)l/ 2,

We denote by I'(x, 7) the normalized fundamental solution of %, i.e.,

T(x,¢) = —n)/2

—nwn\/W<ZA” ffj)

for a.a. x and all £ € R"\{0},

where A;(x) stand for the entries of the inverse matrix of the matrix

=1,...,

0

(X é) a_élr(x é) Fl](x f) aé aéj r(xa 5)7
M = max max 6“1",7(?, i .
iy j=1,....n o <2n o0& L*(Qx3)

It is well known that I';;(x, ¢) are Calderon—Zygmund kernels in the & variable.

THEOREM 5.5. Let (5.4) be true, | < p< o, 0<i<n, 8>0. Let Q be a do-
main satisfying </ condition (see (1.7)) and let w be a weight on Q such that
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w e A,(Q). Then there exist positive constants ¢ = c(n,x, p, A, 0, M,w) and o
Po(C, n) € (0,r) such thatfor every ball B, CC Q, p < py and every u € W ’(B,
such that Dyu € LY""(B,), we have

(5.5) ||D,,u||Lp gy < cH.ZuHLp 1oy Vi,j=1,...,n

(B,
PROOF. Our argument rest in two tools. The first one is to show the representa-
tion formula for the second order derivatives of a solution by commutators and
some singular integral operators with Calderon Zygmund kernels.

For second derivatives of functions in W ?(B), where B is an open ball in R",
the representation formula is the following (see [6], Sect. 3):

(B,)?

n

(5.6)  Dju(x) =P.V. /B Ty(x,x = y) D (an(x) — () Du(y) dy

h k=1

LPV. /B Ty x — ) Luly) dy + Lu(x) / Ti(x, &)¢ o,

<=1

Second tool is to derive the estimate (5.5). In order to do it we take the L?)*/-
norms of the both sides of (5.6). So, let us remark that

i) The first and the second integrals appearing in (5.6) are Principal Value ones
and we can use Corollary 4.4 and Corollary 4.3 respectively to obtain the
appropriate weighted inequality in L{”V)’A’H(Q), where w is the weight.

ii) f\élzl [i(x,¢)¢ dog € L*(B,) with a bound independent of p.

Now, taking the L(’V)’A’O(B,,) norms of both sides in (5.6) and applying Corol-
laries 4.4 and 4.3 we get

||DUM||L£T)'Z'()(BP) < 6(77(”)HDU'“HL{;%“’(B/,) + ||"(£u||L‘{T)';“’0(B,,))'

This way, in view of the MO assumption on the coefficients a;;(x), it is possible
to choose p so small that ¢n(p,) = 1/2 and then
for each p < py. O

1Dl i) < el 20l i

(B (By)
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