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Abstract. — In this paper we derive weighted extrapolation results in grand Morrey spaces. In

particular, the main statements say that if for a class of pairs of measurable functions the one-weight
inequality holds in the classical weighted Lp0

w space for some p0 and for all Muckenhoupt Ap0

weights, then the one-weight inequality is also true in weighted grand Morrey space L
pÞ; r; y
w with Ap

weights for all p. The spaces under consideration are defined on quasi-metric measure spaces. The

obtained results are applied to derive one-weight estimates for some operators of Harmonic Analysis
and to study regularity properties of solutions of second order partial di¤erential equations with dis-

continuous coe‰cients.
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1. Introduction

Rubio de Francia’s extrapolation result (see [39]) dealing with classical weighted
Lebesgue spaces is one of the most powerful tool in modern Harmonic Analy-
sis. In this paper extrapolation theorems in weighted grand Morrey spaces are
established. From these results we obtain new one-weight inequalities in these
spaces for operators of Harmonic Analysis for which the Lp

w bounddeness holds
under the Muckenhoupt Ap condition for w. The derived results for commutators
of Harmonic Analysis are applied to study regularity properties of solutions of
second order partial di¤erential equations (PDEs for short) with discontinuous
coe‰cients. Integral transforms and function spaces are defined on quasi-metric
measure spaces ðX ; d; mÞ with doubling measure m. We are interested in the
weighted grand Morrey space L

pÞ; r;y
w ðX Þ with a weight function w defined by the

norm:

k f k
L

pÞ; r; y
w ðXÞ :¼ sup

0<e<p�1
sup
B

ey

ðwðBÞÞ
1

p�eþr
k f kLp�e

w ðBÞ :¼ sup
0<e<p�1

eyk f kLp�e; r
w ðXÞ;ð1:1Þ



where 1 < p < l, �1=p < r < 0 and y > 0. We are stimulated to investigate
the extrapolation problem in such a type of grand Morrey space because of the
paper [11], where the extrapolation problem was studied in the classical weighted
Morrey spaces Lp; r

w ðRnÞ. The study of the one-weight problem for integral oper-
ators in weighted classical Morrey spaces with Muckenhoupt weights defined on
Rn was initiated in the paper [28]. The same problem for sublinear operators in-
volving maximal, Calderón–Zygmund and fractional integrals, etc in classical
weighted Morrey spaces with Ap weights was investigated in [34], [42], [20], [35]
(see also references cited therein and [40] for related topics). It should be em-
phasize that the one-weight boundedness problem for sublinear operators involv-
ing their commutators in grand Morrey spaces were explored in [25] and [24].

In those papers the authors deal with weighted grand Morrey spaces M pÞ;y;l
w ðXÞ

and M
pÞ;y;l
w ðXÞ defined with respect to the norms:

k f k
M

pÞ; y; l
w ðX Þ :¼ sup

0<e<p�1
sup
B�X

� ey

ðwðBÞÞl
Z
B

j f ðxÞjp�e
wðxÞmðxÞ

� 1
p�e

;ð1:2Þ

where 1 < p < l, 0 < l < 1=p, y > 0, and

k f k
M

pÞ; y; l
w ðX Þ :¼ sup

0<e<p�1
sup
B�X

1

ðwðBÞÞl
�
ey

Z
B

j f ðxÞjp�e
wðxÞmðxÞ

� 1
p�e

;ð1:3Þ

where 1 < p < l, 0 < l < 1, y > 0.
Grand Morrey spaces were introduced in the paper [30]. In that paper the

author obtained the appropriate boundedness for operators of Harmonic Analy-
sis. The spaces introduced and studied in [30] are defined as follows:

M pÞ;y;lðXÞ ¼
(
f : X 7! R : k f kM pÞ; y; lðXÞ

:¼ sup
0<e<p�1

sup
B

� ey

ðmðBÞÞl
Z
B

j f ðyÞjp�e
dmðyÞ

�1=ðp�eÞ
)

< l:

Later, H. Rafeiro [37] introduced generalized grand Morrey space defined by
the norm including the ‘‘grandification’’ taken not only with respect to p but also
for l. Those spaces are defined with respect to the norm:

k f k
M

pÞ; lÞ
y;A

ðXÞ :¼ sup
0<e<smax

e
y

p�ek f kLp�e; l�AðeÞðXÞ; smax ¼ minfp� 1; ag;

where A be a non-decreasing real-valued non-negative function with limx!0þ AðxÞ
¼ 0 and a ¼ supfx > 0 : AðxÞa lg. We refer also to the paper [25] for mapping
properties of sublinear operators in M

pÞ;lÞ
y;A ðXÞ.

Weighted extrapolation results in grand Lebesgue spaces were proved in [21],
[22]. For the classical Morrey spaces defined on Rn such results were derived by
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J. Duoandikoetxea and M. Rosental [11] (see also the paper by M. Rosental and
H.-J. Schmeisser [38] for related topics).

One of the aims of this paper is to obtain regularity properties of solutions

of second order PDEs with discontinuous coe‰cients in M
pÞ; r;y
w ðX Þ spaces. We

consider PDEs of elliptic type having coe‰cients that can be discontinuous and
show that if the known term belongs to weighted grand Morrey spaces, then
the highest order derivatives of the solutions of the equations are in the same
class.

Finally we emphasize the regularity and inner estimates for the solution of sec-
ond order elliptic PDEs in grand Morrey spaces M

pÞ;lÞ
y;A ðWÞ defined on a bounded

domain W � Rn were studied in Chapter 16 of [27].
Let ðX ; d; mÞ be a quasi-metric measure space (QMMS briefly) with a quasi-

metric d and measure m. A quasi-metric d is a function d : X � X ! ½0;lÞ which
satisfies the following conditions:

(a) dðx; yÞ ¼ 0 if and only if x ¼ y.
(b) dðx; yÞ ¼ dðy; xÞ for all x; y a X .
(c) There is a constant k > 0 such that dðx; yÞa kðdðx; zÞ þ dðz; yÞÞ for all

x; y; z a X .

If m satisfies the doubling condition, i.e., if there is a positive constant Cdc such
that for all x a X and r > 0,

mBðx; 2rÞaCdcmBðx; rÞ;ð1:4Þ

then QMMS ðX ; d; mÞ is called a space of homogeneous type (SHT briefly).
It is known (see [29]) that for any quasi-metric space ðX ; dÞ, there is a con-

tinuous quasi-metric r on X which is equivalent to d such that all balls corre-
sponding to r are open in the topology induced by r, and there exist constants
C and y a ð0; 1Þ such that for all x; y; z a X ,

jrðx; zÞ � rðy; zÞjaCryðx; yÞðrðx; zÞ þ rðy; zÞÞ1�y:

Without loss of generality we assume that d is continuous and all balls are open
with respect to d.

For the definition, examples and some properties of an SHT see, e.g., mono-
graph [43].

If Cdc is the doubling constant, then the constant

Dm :¼ log2 Cdcð1:5Þ

is called the doubling order of m.
Let l :¼ diamðX Þ ¼ supx;y AX dðx; yÞ. Notice that the condition l < l im-

plies that mðXÞ < l.

Definition 1.1. The triple ðX ; d; mÞ is called an RD-space if it is an SHT and
m satisfies the reverse doubling condition (RDC briefly): there exist constants
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a; b > 1 such that for all x a X and 0 < r < l=a,

bmðBðx; rÞÞa mBðx; arÞ:

Throughout the paper we assume that ðX ; d; mÞ is an RD-space and that
mðX Þ < l.

Remark 1.2. It is known that ðX ; d; mÞ is an RD-space if and only if it is an
SHT and there is a constant c such that for all x a X and 0 < r < l

c
,

Bðx; crÞnBðx; rÞA j; x a X ;ð1:6Þ

(for the proof we refer to see, e.g., [43, p. 11, Lemma 20]).

There are many interesting and useful for applications examples of an SHT .
Among them it is a bounded domain W in Rn together with induced Lebesgue
measure satisfying so called A condition: there is a positive constant C such
that for all x a W and r a ð0; lÞ,

mð ~BBðx; rÞÞbCrn;ð1:7Þ

where l is a diameter of W and ~BBðx; rÞ :¼ WBBðx; rÞ.
In 1992 T. Iwaniec and C. Sbordone [18], in their studies related with the

integrability properties of the Jacobian in a bounded open set W, introduced a
new type of function spaces LpÞðWÞ, called grand Lebesgue spaces. A generalized
version of them, LpÞ;yðWÞ appeared in L. Greco, T. Iwaniec and C. Sbordone
[13].

Harmonic Analysis related to these spaces and their associate spaces (called
small Lebesgue spaces), was intensively studied during last years due to various
applications, we mention e.g. the papers by G. Anatriello, C. Capone, M. R.
Formica, G. Di Fratta, A. Fiorenza, T. Futamura, B. Gupta, T. Iwaniec, P.
Jain, G. E. Karadzhov, R. E. Castillo, V. Kokilashvili, P. Koskela, M. Krbec,
A. Mercaldo, A. Meskhi, M. Milman, Y. Mizuta, T. Ohno, J. M. Rakotoson,
H. Rafeiro, C. Sbordone, X. Zhong, S. Samko, Y. Sawano, X. Ye, etc (see also
the monographs [26], [27] and references cited therein).

Throughout the paper, we will say that a constant Cm;k > 0 is a structural con-
stant if it depends only on the quasi-metric constants k, and the doubling con-
stant Cdc. The results of this manuscript are true for any quasi-metric space
constants but for simplicity, sometimes in the proofs we will assume that k ¼ 1.
In this case the structural constant Ck;m will be denoted by Cm.

Morrey spaces Lp;l were introduced in 1938 by C. Morrey [33] in relation to
regularity problems of solutions to PDEs, and provided a useful tool in the regu-
larity theory of PDEs.

Let mðX Þ < l, 1 < p < l, � 1
p
< r < 0, y > 0. Suppose that w is a weight

function on X , i.e. w is m- a.e. positive integrable function on X . We denote by
LpÞ; r;yðX Þ the space defined with respect to the norm (1.1). The symbol Ls

wðXÞ
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ð1a s < lÞ denotes the classical weighted Lebesgue space defined by:

k f kLs
wðX Þ ¼

�Z
X

j f ðxÞjswðxÞ dmðxÞ
�1=s

< l:

If y ¼ 0, then LpÞ; r;yðX Þ is the classical weighted Morrey space defined on an
SHT which is denoted by Lp; rðXÞ (see [11] for the definition of this type of the
Morrey spaces norm). It is easy to see that Lp; r

w ðXÞ ,! L
pÞ; r;y
w ðXÞ.

We say that a weight function w belongs to the Muckenhoupt class AsðX Þ
(or As) 1 < s < l, if

½w�As
:¼ sup

B

� 1

mðBÞ

Z
B

wðxÞ dmðxÞ
�� 1

mðBÞ

Z
B

w1�s 0 ðxÞ dmðxÞ
�s�1

< l;

where the supremum is taken over all balls B � X . The symbol ½w�As
is called the

characteristic of w. Further, a weight w belongs to A1ðXÞ if MwðxÞaCwðxÞ a.e.,
where

MwðxÞ ¼ sup
B C x

1

mðBÞ

Z
B

wðyÞ dmðyÞ:ð1:8Þ

The characteristic ½w�A1ðXÞ is defined as the essential supremum of Mw=w.
Since the AsðX Þ classes are increasing with respect to s one can define the class

AlðX Þ in the natural way AlðXÞ ¼
S

s>1 As. Further (see [16] and [17]),

½w�Al
:¼ sup

B

� 1

mðBÞwdm
�
exp

� 1

mðBÞ

Z
B

logw�1 dm
�
:

There exists also another Al characteristic due to [12]:

½w�WAl
:¼ sup

B

1

wðBÞ

Z
B

MðwwBÞ dm:

It can be checked (see also [17]) that ½w�WAl
aCk;m½w�Al

with some structural con-
stant Ck;m.

Lemma 1.3. Let 1 < p < l and let w be a weight such that w a ApðXÞ. Then the
measure E 7! wðEÞ is doubling with doubling constant Ck;m;w;p :¼ C

p
dc½w�ApðX Þ.

The proof is straightforward; therefore it is omitted (see also [15], Proposition
7.1.5).

To prove the main results of the paper we need some auxiliary statements. The
following statement is known as Kolmogorov’s theorem which we need because
of the value of constant there (see [15], Exercise 2.1.5 for Euclidean spaces). The
proof is similar to that in the case of Euclidean spaces but we mention the main
idea of the proof for completeness.
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Lemma 1.4. Let 0 < g < 1 and let E be a m measurable set with finite measure.
Suppose that S is a sublinear operator of weak ð1; 1Þ type with the operator norm
kSk :¼ kSkL1 7!L1;l . Then the following inequality holds:� 1

mðEÞ

Z
E

jSf ðxÞjg dm
�1=g

a
kSk
1� g

� 1

mðEÞ

Z
E

j f ðxÞj dmðxÞ
�
:

Proof. The proof follows from the representationZ
E

jSð f Þjg dm ¼
Z l

0

glg�1mfx a X : ðSf ÞðxÞ > lg dl

¼
Z kSk k f k

L1

mðEÞ

0

ð� � �Þ dlþ
Z l

kSk k f k
L1

mðEÞ

ð� � �Þ dl

and the weak ð1; 1Þ type inequality for S in the second integral. r

The next statement probably is known but since we deal with quasi-metric
measure space and are interested in quantitative estimates we give the proof for
completeness.

Lemma 1.5. Let 0 < g < 1 and let f be a m- a.e. positive locally integrable func-
tion. Then ðMf Þg a A1ðX Þ. Moreover,

½ðMf Þg�A1
a

Ck;m

1� g
;

where Ck;m is a structural constant.

Proof. We follow the proof of [15], Theorem 9.2.7. Taking into account the
definition of the A1 class, it is enough to prove that

1

mðBÞ

Z
B

Mf ðyÞg dmðtÞa Ck;m

1� g
ðMf ÞgðxÞð1:9Þ

for m- a.e. x a B. To prove (1.9) we use the representation f ¼ f1;B þ f2;B, where
f1;B ¼ f w5kB and f2;B ¼ f wð5kBÞ c .

By using Lemma 1.4 and the fact that 0 < g < 1 we find that

1

mðBÞ

Z
B

ðMf1;BðyÞÞg dmðyÞa
�kMkL1 7!L1;l

1� g

�g� 1

mðBÞ

Z
X

f1;BðyÞ dmðyÞ
�g

a
C

ð1Þ
k;m

1� g
ðMf ðxÞÞg;

for a.e. x a B with positive structural constant C
ð1Þ
k;m. Further, due to simple geo-

metric observations we have that for all y; x a B,

Mð f2;BÞðyÞaC ð2Þ
k;mðMf ÞðxÞ;
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with another structural positive constant C
ð2Þ
k;m. Combining these estimate we get

the desired result. r

Lemma 1.6. Let 1a g < p < l and let w a Ap=g. Then there is q0 a ðg; pÞ, such
that for all q a ½g; q0� and all s a ð1; s0ðq;wÞÞ with constant s0ðq;wÞ depending on q
and w the inequality

sup
0<e<s

½w1�p 0
e �Ap 0e=s

aCp;s;q0;k;m½w�
p 0
s�1

Ap 0e=g

holds, where pe :¼ p�e

q
, s is a constant such that 0 < s < p� q0 and the constant

Cp;s;q0;k;m is defined by

Cp;s;q0;k;m :¼ 2
ðp�s

q0
Þ 0�1ð4kÞð

p�s

q0
Þ 0Cdc ½2 p=g�1ð4kÞðp=gÞCdc �ðpsÞ

0�1:ð1:10Þ

Proof. Let w a Ap=gðX Þ. Then (see Theorem 1.2 of [17])

½w�Að p=gÞ�hðXÞ a 2ðp=gÞ�1ð4kÞðp=gÞCdc ½w�Ap=gðX Þ;

where h :¼ ðp=gÞ�1

1þtk; m½w1�ð p=gÞ 0 �Al
,

tk;m ¼ 6ð32k2ð4k2 þ kÞ2ÞCdc :ð1:11Þ

Let h1 ¼
ðp=gÞ�1

1þtk; m½w1�ð p=gÞ 0 �Að p=gÞ 0 ðX Þ
. Observe that h1 a h. Consequently,

½w�Að p=gÞ�h1
a½w�Að p=gÞ�h

a 2ðp=gÞ�1ð4kÞðp=gÞCdc ½w�Ap=gðXÞ:ð1:12Þ

Further, let us choose qa g and 0 < s < p� q0 so that
p

g
� h1 ¼

p�s

q0
. Then

p�s
q0

< pe for all q and e satisfying the conditions ga qa q0, ea s. Moreover, by

(1.12) we have that

½w�Ape ðXÞ a ½w�Að p�sÞ=q0
a 2ðp=gÞ�1ð4kÞðpCdcÞ=g½w�Ap=gðXÞ:ð1:13Þ

Further, taking (1.13) and simple observations into account we find that

½w1�p 0
e �Ap 0e

ðXÞ ¼ ½w� pe�1
ApeðX Þ

a ½2
p

g�1ð4kÞ
pCdc
g ½w�A p

g
ðX Þ�

p 0
e�1ð1:14Þ

a ½2
p

g�1ð4kÞ
pCdc
g � p

0
e�1½w� p

0
s�1

A p
g

:

Applying again Theorem 1.2 of [17] we get the inequality

½w1�p 0
e �Ap 0e�h2

ðX Þ a 2 p 0
e�1ð4kÞ p

0
eCdc ½w1�p 0

e �Ap 0e
ðX Þð1:15Þ

a 2
ð p�s

q0
Þ 0�1ð4kÞð

p�s

q0
Þ 0Cdc ½w1�p 0

e �Ap 0e
ðX Þ
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holds, where

h2 ¼
p 0
e � 1

1þ tk;m½w�ApeðX Þ

and tk;m is defined by (1.11). Further, due to (1.13) we have that

½w�Ape ðX Þ a ½w�Að p=g�sÞ=q0 ðX Þ a 2 p�1ð4kÞðpCdcÞ=g½w�Aps ðXÞ:ð1:16Þ

That is why,

h2 b
p 0 � 1

1þ tk;m2 p=g�1ð4kÞðpCdcÞ=g½w�Aps ðX Þ
¼: h0:

Consequently, summarazing (1.14)–(1.16) we find that

½w1�p 0
e �Ap 0e�h0

ðXÞ a ½w1�p 0
e �Ap 0e�h2

ðX Þ aCp;s;q0;k;m½w�
p 0
s�1

Ap=gðXÞ:

Let us choose 1 < s0 < s0 ¼ ðq0; s;wÞ so that h0 >
p 0
s

s 0
0

. Then for all 0 < e < s

and 1 < s < s0, h0 > p 0
e=s

0. Consequently, for all such e and s we get
p 0
e

s
> p 0

e � h0.
Hence,

½w1�p 0
e �Ap 0e=s

ðXÞ a ½w1�p 0
e �Ap 0e�h0

ðXÞ a cp;s;q0;k;m½w�
p 0
s�1

Ap=gðX Þ: r

Lemma 1.7. Let conditions of Lemma 1.6 be satisfied for g, p and w. Then for all
balls B and all measurable sets E � B,

wðEÞ
wðBÞ aCRH

mðEÞ
mðBÞ

� � h

hþ1

;ð1:17Þ

where

CRH ¼ 2ð4kÞCdc ½C p=g
dc ½w�Ap=g

�2þlog2 k;ð1:18Þ

h ¼ 1

tk;m½w�Ap=gðXÞ
ð1:19Þ

and tk;m is defined by (1.11).

Proof. By using Theorem 1.1 in [17] we have that for all balls B,

� 1

mðBÞ

Z
B

w1þh dm
�1=ð1þhÞ

a 2ð4kÞCdc

� 1

mð2kBÞ

Z
2kB

w dm
�
;ð1:20Þ

where h :¼ 1
tk; m½w�AlðXÞ

. Since ½w�AlðX Þ a ½w�Ap=gðX Þ, we find that (1.20) holds for h

replaced by h defined by (1.19). Hence,
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wðEÞ ¼
Z
B

wEw dma
�Z

B

w1þh dm
�1=ð1þhÞ

mðEÞh=ð1þhÞ

¼
� 1

mðBÞ

Z
B

w1þh dm
�1=ð1þhÞ

mðBÞ1=ð1þhÞmðEÞh=ð1þhÞ

a 2ð4kÞCdc

� 1

mð2kBÞ

Z
2kB

w dm
�
mðBÞ1=ð1þhÞ

mðEÞh=ð1þhÞ

a 2ð4kÞCdcwð2kBÞmðBÞ�h=ð1þhÞmðEÞh=ð1þhÞ

a 2ð4kÞCdc ½C p=g
dc ½w�p=g�

2þlog2 kwðBÞ½mðEÞ=mðBÞ�h=ð1þhÞ:

In the last inequality we used Lemma 1.3. r

It is well-known the Muckenhoupt’s theorem for an SHT (see e.g., [43]) stat-
ing that M is bounded in Lp

wðXÞ if and only if w a ApðXÞ, where 1 < p < l.
There exists a sharper result of Buckley [3] type:

Theorem A [17]. Let 1 < p < l. Then there is a structural constant Cm;k such
that the following inequality holds:

kMkLp
wðXÞ aCm;kp

0½w�1=ðp�1Þ
ApðXÞ

with the structural constant Cm;k.

2. Main results

X. Duoandikoetxea and M. Rosental in their recent paper [11] proved the follow-
ing extrapolation results:

Theorem A. Let 1a p0 < l and let FðX Þ be a collection of non-negative mea-
surable pairs of functions defined on X. Suppose that for all ð f ; gÞ a FðXÞ and for
all w a Ap0ðXÞ, the inequality

kgkLp0
w ðXÞ aCk f kLp0

w ðX Þð2:1Þ

holds, where the constant C does not depend on w. Then for every 1 < p < l,
�1=pa r < 0, y > 0 and w a ApðX Þ, we have

kgkLp; r
w ðXÞ aCk f kLp; r

w ðXÞ; ð f ; gÞ a FðX Þ;ð2:2Þ

where C is the positive constant independent of ð f ; gÞ a FðXÞ.

Theorem B. Let FðXÞ be a family of pairs of functions ð f ; gÞ, where f and g
are defined on X. Suppose that for some p0 a ð0;lÞ, and for all w a Al, we have

kgkLp0
w ðXÞ aCk f kLp0

w ðXÞ; ð f ; gÞ a FðXÞð2:3Þ
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for some positive constant C independent of w and ð f ; gÞ. Then for every 1 < p <
l, �1=pa r < 0, y > 0 and w a AlðX Þ, we have,

kgkLp; r
w ðX Þ aCk f kLp; r

w ðX Þ; ð f ; gÞ a FðX Þ;ð2:4Þ

where the positive constant C is independent of ð f ; gÞ.

One of the main results of this paper states:

Theorem 2.1. Let 1a p0 < l and let FðXÞ be a collection of non-negative
measurable pairs of functions defined on X. Suppose that for all ð f ; gÞ a FðXÞ
and for all w a Ap0ðX Þ, the inequality

k f kLp0
w ðXÞ aCNð½w�Ap0

ðXÞÞk f kLp0
w ðX Þð2:5Þ

holds, where N is a non-decreasing function and the constant C does not depend on
ð f ; gÞ and w. Then for every 1 < p < l, �1=pa r < 0, y > 0 and w a ApðX Þ we
have,

kgk
L

pÞ; r; y
w ðX Þ aCCk f k

L
pÞ; r; y
w ðX Þ; ð f ; gÞ a FðX Þ;ð2:6Þ

where C is the constant from (2.5), and the constant C is independent of ð f ; gÞ.

Extrapolation statement regarding Al class of weights reads as follows:

Theorem 2.2. Let FðXÞ be a family of pairs of functions ð f ; gÞ, where f and g
are defined on X. Suppose that for some p0 a ð0;lÞ, and for all w a Al we have

kgkLp0
w ðX Þ aCNð½w�AlðX ÞÞk f kLp0

w ðXÞ; ð f ; gÞ a FðX Þ;ð2:7Þ

for some lb 1, where N is non-decreasing function, and the constant C does not
depend on w and ð f ; gÞ. Then for every 1 < p < l, �1=pa r < 0, y > 0 and w a
AlðX Þ we have

kgk
L

pÞ; r; y
w ðX Þ aCCk f k

L
pÞ; r; y
w ðX Þ; ð f ; gÞ a FðX Þ;ð2:8Þ

where C is the same constant as in (2.7) and C is independent of ð f ; gÞ.

3. Proofs of the main results

In this section we prove the main results of this paper. First we formulate and
prove the following statement:

Proposition 3.1. Let 1a g < p < l and let w a Ap=gðX Þ. Then there is q0 a
ðg; pÞ such that for all q a ½g; q0�, all s a ð1; s0ðq;wÞÞ, where s0ðq;wÞ is the constant
depending on q and w, all balls B and functions h a L

ðp=qÞ 0
w ðBÞ with khk

L
ð p=qÞ 0
w ðBÞ ¼ 1,

the inequality

k f kLq

ðHW Þs;B
ðX Þ aCðmðBÞÞ1=ðp�eÞþrk f kLp�e; r

w ðXÞð3:1Þ
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holds, where

ðHWÞs;BðxÞ :¼ MðhswswBÞ
1=sðxÞ;

and the constant C is independent of f , B and e.

Proof. For simplicity assume that k ¼ 1. Let w a Ap=gðXÞ. Then by the open-
ness property of the Ap class, there are q0 a ð1; pÞ and s a ð0; p� q0Þ such that
w a Aðp�sÞ=q0 . Hence, w a Aðp�sÞ=q for all q a ½g; q0�. Fix q and set pe :¼ p�e

q
,

where 0 < e < s. Let s be such a number that 1 < s < p 0
0 and that w1�p 0

e a
Ap 0

e=s
ðX Þ. Such an s exists because w a ApeðXÞ and, consequently, w1�p 0

e a Ap 0
eðX Þ.

Let h be a function such that khk
L

p 0e
w ðBÞ

¼ 1. Observe that the weight ðHWÞs;BðxÞ
:¼ MðhswswBÞ

1=s is well defined because
R
X
hswswB dm < l and, consequently,

ðHWÞs;BðxÞ < l a.e.. Let us check that hswswB a L1ðXÞ. We will see that the

inequality holds:�Z
X

hswswB dm
�1=s

a ½w�1=p
0
e

Ap 0e=s
wðBÞ1=pemðBÞ�1=s 0 < l:ð3:2Þ

Indeed, by Hölder’s inequality with respect to the exponent p 0
e=s and the fact

that w1�p 0
e a Ap 0

e=s
we find that

�Z
X

hswswB dm
�1=s

a

�Z
B

h p 0
ewdm

�1=p 0
e
�Z

B

w
ðs�1Þ p 0e

p 0e�s
þ1

dm
�p 0e�s

p 0e s

a ½w�1=p
0
e

Ap 0e=g
ðXÞmðBÞ

1=s
�Z

B

w1�p 0
e dm

��1=p 0
e

a ½w�1=p
0
e=g

Ap 0e

�Z
B

w�1wdm
��Z

B

w1�p 0
e dm

��1=p 0
e

mðBÞ�1=s 0

a ½w�1=p
0
e

Ap 0e=g

�Z
B

w1�p 0
e dm

�1=p 0
e
�Z

B

w1�p 0
e dm

��1=p 0
e

wðBÞ1=pemðBÞ�1=s 0

¼ ½w�1=p
0
e

Ap 0e=g
wðBÞ1=pemðBÞ�1=s 0 < l:

Let now f a Lp�e; r
w ðX Þ and let f is non-negative. We have to estimate the

norm of f in L
q

ðHW Þs;B
ðXÞ. Using the representation f ¼ f1;B þ f2;B, where

f1;B ¼ f w2B, f2;B ¼ f � f1;B and B has su‰ciently small radius, we get:�Z
X

f qðyÞðHWÞs;BðyÞ dmðyÞ
�1=q

a

�Z
X

f
q
1;BðyÞðHWÞs;BðyÞ dmðyÞ

�1=q
þ
�Z

X

f
q
2;BðyÞðHW Þs;BðyÞ dmðyÞ

�1=q
¼: I1 þ I2:
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Due to Hölder’s inequality with respect to the exponents pe and p 0
e, the

doubling condition, Theorem A, Lemma 1.6 for k ¼ 1 we find that

I1 a
�Z

2B

f p�eðyÞwðyÞ dmðyÞ
�1=ðp�eÞ�Z

2B

ðHWÞ p
0
e

s;BðyÞw1�p 0
e dmðyÞ

�1=ðqp 0
eÞ

awð2BÞ
1

p�eþr
wð2BÞ�

1
p�eþr

�Z
2B

f p�eðyÞwðyÞ dmðyÞ
� 1

p�e

�
�Z

2B

ðHWÞ p
0
e

s;BðyÞw1�p 0
e dmðyÞ

� 1

ðqp 0e Þ

a k f kLp�e; r
w ðXÞwð2BÞ

1=ðp�eÞþr
�Z

X

ðHWÞ p
0
e

s;BðyÞw1�p 0
e dmðyÞ

�1=ðp 0
eqÞ

aC1=q
m

�p 0
e

s

�0
½w1�p 0

e �
½ s

p 0e�s
�1�=q

Ap 0e=s
ðXÞ

�Z
B

ðhswsÞ p
0
e=sw1�p 0

e dm
�1=ðqp 0

eÞ

� ½C p=g
dc ½w�Ap=gðXÞ�

1=ðp�eÞþr
wðBÞ1=ðp�eÞþrk f kLp�e; r

w ðXÞ

aC1=q
m ðCp;s;q0;m½w�

p 0
s�1

Ap=gðX ÞÞ
s

p 0e�s
�1½C p=g

dc ½w�Ap=gðX Þ�
1=ðp�eÞþr

� k f kLp�e; r
w ðX Þkhk

1=q

L
p 0e ðBÞ
w

mðBÞ1=ðp�eÞþr

aC1=q
m ðCp;s;q0;m½w�

p 0
s�1

Ap=gðX ÞÞ
s

p 0e�s
�1½C p=g

dc ½w�Ap=gðX Þ�
1=ðp�sÞk f kLp�e; r

w ðX Þ;

where Cp;s;q0;m is defined by (1.10). Thus, I1 aC
ð1Þ
p;s;w, with constant C

ð1Þ
p;s;w de-

fined by

C ð1Þ
p;s;w :¼ C1=q

m ðCp;s;q0;m½w�
p 0
s�1

Ap=gðX ÞÞ
s

p 0e�s
�1½C p=g

dc ½w�Ap=gðXÞ�
1=ðp�sÞ:ð3:3Þ

Now we estimate I2. First observe that if x a 2 jþ1Bn2 jB, j a Z, then

MgðxÞa Cm

mð2 jBÞ

Z
2 jB

jgj dm;

with a structural constant Cm.
Using this observation, (3.2), Hölder’s inequality, the fact that w a ApeðXÞ and

Lemma 1.7 we find thatZ
Xn2B

f qðHWÞs;B dm

aC1=s
m

�X
j

Z
2 jþ1Bn2 jþ1B

f q dm
�� 1

mð2 jBÞ

Z
2 jB

hsws dm
�1=s

aC1=s
m

X
j

Z
2 jþ1Bn2 jþ1B

f qw
1
pew� 1

pe dm

" #
½w1�p 0

e �1=p
0
e

Ap 0e=s
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� 1

mðBÞ1=s
wðBÞ1=pemðBÞ�1=s 0

mð2 jBÞ�1=s

aC1=s
m ½w1�p 0

e �1=p
0
e

Ap 0e=s

X
j

Z
2 jþ1B

f p�ewdm

" #1=pe
� ðw1�peð2 jþ1BÞÞ1=p

0
e mðBÞ�1=s

wðBÞ1=pemðBÞ�1=s 0
mð2 jBÞ�1=s

aC1=s
m ½w1�p 0

e �1=p
0
e

Ap 0e=s
k f kq

L
p�e; r
w ðXÞ

X
j

wð2 jþ1BÞð1=ðp�eÞþrÞq

� ½w1�p 0
e ð2 jþ1BÞ�1=p

0
ewðBÞ1=pemð2 jBÞ�1=s

mðBÞ�1=s 0

aC1=s
m ½w1�p 0

e �1=p
0
e

Ap 0e=s
½w�1=peApe

k f kq

L
p�e; r
w ðX Þ

�
X
j

wð2 jþ1BÞrqmð2 jþ1BÞmð2 jþ1BÞ�1=smðBÞ�1=s 0
wðBÞ1=pe

aC1=s
m ½w1�p 0

e �1=p
0
e

Ap 0e=s
½w�1=peApe

k f kq

L
p�e; r
w ðX ÞwðBÞ

1=pe

�
X
j

wð2 jþ1BÞrqmð2 jþ1BÞmð2 jþ1BÞ�1=s
mðBÞ�1=s 0

wðBÞ1=pe

aC1=s
m Cdc½w1�p 0

e �1=p
0
e

Ap 0e=s
½w�1=peApe

k f kq

L
p�e; r
w ðX Þ

X
j

wð2 jþ1BÞrqC j=s 0

dc ðwðBÞ1=peÞ

aC1=s
m Cdc½w1�p 0

e �1=p
0
e

Ap 0e=s
½w�1=peApe

k f kq

L
p�e; r
w ðX ÞðCRHÞrq

X
j

ðC
j
rqh

hþ1
þ j=s 0

dc ÞwðBÞrqþ1=pe

aC1=s
m CdcCp;s;q0;m½w�

p 0s�1

p 0e
Ap=g

½w1�p 0
e �1=p

0
e

Ap 0e=s
½w�1=peApe

ðCRHÞrq

� C
1
s 0þ

rqh

hþ1

dc

1þ C
1
s 0þ

rqh

hþ1

dc

wðBÞrqþ1=pek f kq

L
p�e; r
w ðXÞ;

where Cp;s;q0;m is defined by (1.10). Here we assumed that s can be chosen so
small that the sum/series with respect to j is convergent. Thus, we conclude that
I2 aC

ð2Þ
p; e;w, where

C ð2Þ
p;s;w :¼ C1=s

m CdcðCRHÞrqcp;s;q0;m½w�
p 0s�1

p 0e
Ap 0e=g

½w�1=peApe

C
1
s 0þ

rqh

hþ1

dc

1þ C
1
s 0þ

rqh

hþ1

dc

24 351=q:ð3:4Þ

Finally we conclude that (3.3) and (3.3) imply

I1 þ I2 aC ð1Þ
p;s;w þ C ð2Þ

p;s;w :¼ Cp;s;w:ð3:5Þ

This completes the proof of the proposition. r
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Proof of Theorem 2.1. For simplicity assume that k ¼ 1. It is enough to
show that

sup
0<e<s

eyðmðBÞÞ�ð1=ðp�eÞþrÞ
�Z

B

g p�ewdm
�1=ðp�eÞ

aCm; e;wk f kLpÞ; r; y
w ðX Þ

for some su‰ciently small positive s because by Hölder’s inequality we have that
for s < e < p� 1,

ðmðBÞÞ�ð1=ðp�eÞþrÞ
�Z

B

g p�ewdm
�1=ðp�eÞ

a ðmðBÞÞ�ð1=ðp�sÞþrÞ
�Z

B

g p�swdm
�1=ðp�sÞ

:

As before, we denote: ðMHÞB; s :¼ ðMhswswBÞ
1=s. Suppose that 1 < p < l.

By the classical extrapolation theorem (see [10] for Euclidean spaces and [21] for
an SHT) we have that

kgkLp
wðXÞ aCjð½w�ApðXÞÞk f kLp

wðXÞ; w a ApðXÞ;ð3:6Þ

for all ð f ; gÞ a F, where C is the constant independent of ð f ; gÞ and w, and
x 7! jðxÞ is an increasing function. Fix w a ApðXÞ. Choose q a ð1; pÞ and s > 1
so that inequality (3.1) holds. We set pe :¼ p�e

q
. Let us fix a ball B � X . It is

obvious that�Z
B

g p�ewdm
�1=ðp�eÞ

¼
�Z

B

g peqw dm
�1=ðpeqÞ

¼ sup
khk

L
p 0e
w ðXÞ

¼1

�Z
B

gqhw dm
�1=q

Let us fix such an h. By Lemma 1.5 we have that ½ðMHÞB; s�Aq
a ½ðMHÞB; s�A1

a
Cm

1�s�1 . Further, observe that (3.6) implies that�Z
X

gqw dm
�1=q

aCmjð½w�AqðXÞÞ
�Z

X

f qw dm
�1=q

for all ð f ; gÞ a F and all w a AqðXÞ, where x 7! jðxÞ is non-decreasing function.
Consequently, by Proposition 3.1 and Lemma 1.5,�Z

X

gqhwwB dm
�1=q

a

�Z
X

gqðMHÞB; s dm
�1=q

aCjð½ðMHÞB; s�AqðXÞÞ
�Z

X

f qðMHÞB; s dm
�1=q

aCCp; e;wjð½ðMHÞB; s�AqðXÞÞmðBÞ
1=ðp�eÞþrk f kLp�e; r

w ðXÞ

aCCp; e;wjð½ðMHÞB; s�A1ðXÞÞmðBÞ
1=ðp�eÞþre�yk f k

L
pÞ; r; y
w ðX Þ

aCCp;s;wj
� Cm

1� s�1

�
mðBÞ1=ðp�eÞþre�yk f k

L
pÞ; r; y
w ðXÞ;

where Cp;s;w is defined by (3.5).
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Thus,

eyðmðBÞÞ�ð1=ðp�eÞþrÞ
�Z

B

g p�ewdm
�1=ðp�eÞ

aCk f k
L

pÞ; r; y
w ðXÞ:

The theorem has been proved. r

Proof of Theorem 2.2. Let (2.7) hold for some p0 > 0. Then by the classical
Al extrapolation result (see [9] for Euclidean spaces and [23], Theorem A, for an
SHT) we have that

kgkLp
wðXÞ aCpcð½w�Ap

Þk f kLp
wðX Þð3:7Þ

for all 1 < p < l, all w a Ap, for some constant Cp and increasing function c.
Let 1 < p < l and let w a Al. We will show that (2.8) holds for this w and

all ð f ; gÞ a F. If pb q, then Aq � Ap, and by (3.7) and Theorem 2.1 we get that
(2.8) holds for that w and all ð f ; gÞ a F.

Let now p < q. Since w a Aq we have that w a Aq�s for some small positive s.
Consequently, w a Aq�h for all h satisfying 0 < h < s. Hence, by (3.7) we find
that

k jgj
p�e
q�hk

L
q�h;

rð p�eÞ
q�h ðXÞ

aCp;q; e;hcð½w�Aq�h
Þk j f j

p�e
q�hk

L
q�h;

rð p�eÞ
q�h ðX Þ

ð3:8Þ

with the positive constant Cp;q; e;h and for some increasing function c. Since
½w�Aq�h

a ½w�Aq�s
and supe;h Cp;q; e;h < l (see the proof of Theorem 2.1 for the

latter fact) we have that

sup
e;h

Cp;q; e;hcð½w�Aq�h
Þ < l;

where the supremum is taken over all su‰ciently small h and e. From (3.8) we
derive

kgk
p�e
q�h

Lp�e; rðXÞ aCp;q; e;hcð½w�Aq�h
Þk f k

p�e
q�h

Lp�e; rðX Þ:ð3:9Þ

Raising both sides of (3.9) to the power q�h
p�h

and multiplying on ey we get the
desired result. r

4. Applications to one-weight inequalities for commutators

of singular integrals

Theorems proved above give the one-weight boundedness in L
pÞ; r;y
w ðX Þ spaces for

operators of Harmonic Analysis satisfying one-weight inequality in the classical
Lebesgue spaces under the Muckenhoupt condition. Such operators are, e.g., max-
imal, Calderón–Zygmund, fractional integral operators and their commutators.
Here we are focused on some of these operators.

Below we denote by Dð f Þ the class of all essentially bounded functions on X .
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Let us recall the definition of the Calderón–Zygmund kernel on quasi-metric
measure spaces.

Let k : X � Xnfðx; xÞ : x a Xg ! R be a measurable function satisfying the
conditions:

jkðx; yÞja c

mBðx; dðx; yÞÞ ; x; y a X ; xA y;

jkðx1; yÞ � kðx2; yÞj þ jkðy; x1Þ � kðy; x2Þja co
�dðx2; x1Þ
dðx2; yÞ

� 1

mBðx2; dðx2; yÞÞ

for all x1, x2 and y with dðx2; yÞ > dðx1; x2Þ, where o is a positive, non-
decreasing function on ð0;lÞ satisfying D2 condition (oð2tÞa coðtÞ, t > 0) and
the Dini condition

R 1

0 oðtÞ=t dt < l.
We also assume that for some p0, 1 < p0 < l, and all f a Lp0ðX ; mÞ the

limit

ðTf ÞðxÞ ¼ lim
e!0

Z
XnBðx; eÞ

kðx; yÞ f ðyÞ dmðyÞ

exists almost everywhere on X and that T is bounded in Lp0ðX ; mÞ.
It is known (see [36]) that there is a constant ec0c0 :¼ ec0c0ð½w�Al

Þ independent of f
and depending on ½w�Al

such that for all f a DðX Þ.

kTf kLp0
w ðX ;mÞ a ec0c0ð½w�Al

ÞkMf kLp0
w ðX ;mÞ; f a DðXÞ; w a AlðX Þ;

where lb 1, T is the Calderón–Zygmund singular integral defined on X and the
mapping x ! ec0c0ðxÞ is non-decreasing on ð1;lÞ.

Taking extrapolation Theorem 3.1 into account we have the next statement:

Theorem 4.1. Let 1 < p < l, �1=pa r < 0 and let y > 0. Then there is a pos-
itive constant C such that for all f a DðX Þ and all w a AlðXÞ,

kTf k
L

pÞ; r; y
w ðX Þ aCkMf k

L
pÞ; r; y
w ðXÞ:

We say that a function b defined on X belongs to BMO if

kbkBMO ¼ 1

mðBÞ

Z
B

jbðxÞ � bBj dmðxÞ < l;

where bB ¼ 1
mðBÞ bðyÞ dmðyÞ.

Let b a BMOðX Þ, m a NA f0g and let

Tm
b f ðxÞ ¼

Z
X

½bðxÞ � bðyÞ�mkðx; yÞ f ðyÞ dmðyÞ;

where k is the Calderón–Zygmund kernel.

82 v. kokilashvili, a. meskhi and m. a. ragusa



It is known (see [36]) that if 1 < r < l and w a Al, then the one-weight
inequality

kTm
b f kLr

wðX Þ aCkbkm
BMOðXÞkMmþ1f kLr

wðX Þ; f a DðXÞ;

where Mmþ1 is the the Hardy–Littlewood maximal operator iterated mþ 1
times. Thus we have

Theorem 4.2. Let 1 < p < l, �1=pa r < 0 and let y > 0. Then there is a
positive constant C such that for all f a DðX Þ and all w a AlðXÞ,

kTm
b f k

L
pÞ; r; y
w ðX Þ aCkbkm

BMOðXÞkMmþ1f k
L

pÞ; r; y
w ðXÞ; f a DðX Þ:

Corollary 4.3. Let 1 < p < l, �1=pa r < 0 and let y > 0. Then there is a
positive constant C such that for all f a DðX Þ and all w a ApðX Þ,

kTf k
L

pÞ; r; y
w ðX Þ aCk f k

L
pÞ; r; y
w ðX Þ:

Corollary 4.4. Let 1 < p < l, �1=pa r < 0 and let y > 0. Then there is a
positive constant C such that for all f a DðX Þ and all w a ApðX Þ,

kTm
b f k

L
pÞ; r; y
w ðXÞ aCkbkm

BMOðX Þk f kLpÞ; r; y
w ðX Þ; f a DðXÞ:

Let

Ia f ðxÞ ¼
Z
X

Kaðx; yÞ f ðyÞ dmðyÞ; x a X ;

be fractional integral operator defined on ðX ; d; mÞ, where

Kaðx; yÞ ¼
mðBxyÞa�1; xA y;

mfxg; x ¼ y; mfxg > 0;

(

0 < a < 1 and Bxy :¼ Bðx; dðx; yÞÞ.
Suppose that

Ma f ðxÞ ¼ sup
B C x

1

mðBÞ1�a

Z
B

j f ðyÞj dmðyÞ; 0 < a < 1:

It is obvious the pointwise inequality Ia f ðxÞaCa;k;mMf ðxÞ for all non-
negative f .

It is known that (see [2]) if 0 < r < l and w a AlðX Þ, then the inequality

kIa f kLr
wðXÞ aCNð½w�Al

ÞkMa f kLr
wðX Þ;

holds for some positive constant CCCa; r;k;m and increasing N. That is why
based on this result and Theorem 2.2 we have the next statement
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Theorem 4.5. Let 1 < p < l, �1=p < r < 0 and let y > 0. Let w a AlðXÞ.
Then there is a positive constant C such that

kIa f kLpÞ; r; y
w ðXÞ aCkMa f kLpÞ; r; y

w ðX Þ; f a DðXÞ:

Further, for b a BMOðXÞ, let

I ma;b f ðxÞ ¼
Z
X

½bðxÞ � bðyÞ�mKaðx; yÞ dmðyÞ; 0 < a < 1;

Im
a;b f ðxÞ ¼

Z
X

jbðxÞ � bðyÞjmKaðx; yÞ dmðyÞ; 0 < a < 1:

It is easy to see that, for f b 0, jI ma;b f ðxÞjaIm
a;b f ðxÞ. In the same paper [2]

the authors showed that if 0 < p < l, 0 < a < 1, m a NA f0g, w a AlðXÞ,
b a BMOðXÞ, then there is a constant CCCa;m;p;k;m such thatZ

X

jIm
a;b f ðxÞj

p
wðxÞ dmðxÞaCNð½w�Al

Þkbkmp

BMOðXÞ

Z
X

½MaðMmf ÞðxÞ� pwðxÞ dmðxÞ

for some non-decreasing function N. Hence we have the following statement:

Theorem 4.6. Let 1 < p < l, m a NA f0g, �1=p < r < 0, and let y > 0. Sup-
pose that w a AlðXÞ. Then there is a positive constant C such that

kIm
a;b f kLpÞ; r; y

w ðX Þ aCkbkm
BMOðX ÞkMaðMmf Þk

L
pÞ; r; y
w ðX Þ; f a DðXÞ

Corollary 4.7. Let 1 < p < l, �1=p < r < 0 and let y > 0. Let w a ApðXÞ.
Then there is a positive constant C such that

kIa f kLpÞ; r; y
w ðX Þ aCk f k

L
pÞ; r; y
w ðX Þ; f a DðX Þ:

Corollary 4.8. Let 1 < p < l, m a NA f0g, �1=p < r < 0 and let y > 0.
Let w a ApðX Þ. Then there is a positive constant C such that

kIm
a;b f kLpÞ; r; y

w ðXÞ aCkbkm
BMOðXÞk f kLpÞ; r; y

w ðX Þ; f a DðXÞ:

5. Applications to PDE

In the last thirty years a number of papers have been devoted to the study of
local and global regularity properties of strong solutions to elliptic equations
with discontinuous coe‰cients. To be more precise, let us consider the second
order equation

LuC
Xn

i; j¼1

aijðxÞDxixj u ¼ f ðxÞ for almost all x a W;ð5:1Þ
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where L is a uniformly elliptic operator over the bounded domain W � Rn,
nb 2:

We assume that a domain W satisfies A condition (see (1.7)). In this case W
with induced Lebesgue measure and Euclidean metrics is an SHT. Hence, the
statements of Section 4 are valid for such domains.

Regularizing properties of L in Hölder spaces (i.e. Lu a C aðWÞ implies u a
C2þaðWÞÞ have been well studied in the case of Hölder continuous coe‰cients
aijðxÞ. Also, unique classical solvability of the Dirichlet problem for (5.1) has
been derived in this case (we refer to [14] and the references therein). In the case
of uniformly continuous coe‰cients aij, an Lp-Schauder theory has been elabo-
rated for the operator L ([1], [14]). In particular, Lu a LpðWÞ always implies
that the strong solution to (5.1) belongs to the Sobolev space W 2;pðWÞ for each
p a ð1;lÞ:

However, the situation becomes rather di‰cult if one tries to allow disconti-
nuity at the principal coe‰cients of L. In general, it is well-known (cf. [31]) that
arbitrary discontinuity of aij implies that the Lp-theory of L and the strong solv-
ability of the Dirichlet problem for (5.1) break down. A notable exception of that
rule is the two-dimensional case ðW � R2Þ: It was shown by G. Talenti ([44])
that the solely condition on measurability and boundedness of the aij’s ensures
isomorphic properties of L considered as a mapping from W 2;2ðWÞBW

1;2
0 ðWÞ

into L2ðWÞ: To handle with the multidimensional case ðnb 3Þ requires that addi-
tional properties on aijðxÞ should be added to the uniform ellipticity in order to
guarantee that L possesses the regularizing property in Sobolev functional scales.
In particular, if aijðxÞ a W 1;nðWÞ (cf. [32]), or if the di¤erence between the largest
and the smallest eigenvalues of faijðxÞg is small enough (the Cordes condition),
then Lu a L2ðWÞ yields that u a W 2;2ðWÞ and these results can be extended to
W 2;pðWÞ for p a ð2� e; 2þ eÞ with su‰ciently small e:

Later the Sarason class VMO of functions with vanishing mean oscillation
was used in the study of local and global Sobolev regularity of the strong solu-
tions to (5.1).

Next, we define the space BMO and then the smallest VMO class, where we
consider coe‰cients aij and later that one where we consider the known term f .

In the sequel let W be an open bounded set in Rn:

Definition 5.1. Let f a L1
locðWÞ: We define the integral mean fx;R by

fx;R :¼ 1

jWBBðx;RÞj

Z
WBBðx;RÞ

f ðyÞ dy;

where Bðx;RÞ ranges in the class of balls centered in x with radius R and
jWBBðx;RÞj is the Lebesgue measure of WBBðx;RÞ:

If we are not interested in specifying which the center is, we just use the
notation fR:

We now give the definition of Bounded Mean Oscillation functions (BMO)
that appeared at first in the note by F. John and L. Nirenberg [19].
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Definition 5.2. Let f a L1
locðWÞ: We say that f belongs to BMOðWÞ if the

seminorm k f k� is finite, where

k f k� :¼ sup
Bðx;RÞ

1

jBðx;RÞj

Z
Bðx;RÞ

j f ðyÞ � fx;Rj dy:

Next, we consider the definition of the space of Vanishing Mean Oscillation
functions, given at first by D. Sarason in [41].

Definition 5.3. Let f a BMOðWÞ and

hð f ;RÞ :¼ sup
raR

1

jBrj

Z
Br

j f ðyÞ � frj dy;

where Br ranges over the class of the balls of Rn of radius r.
A function f a VMOðWÞ if

lim
R!0

hð f ;RÞ ¼ 0:

The Sarason class is then expressed as the subspace of the functions in the
John–Nirenberg class whose BMO norm over a ball vanishes as the radius of
the balls tends to zero. This property implies a number of good features of
VMO functions not shared by general BMO functions; in particular, they can
be approximated by smooth functions.

This class of functions was considered by many others. At first, we recall the
paper by F. Chiarenza, M. Frasca and P. Longo [6], where the authors answer a
question raised thirty years before by C. Miranda in [32]. In his paper he con-
siders a linear elliptic equation where the coe‰cients aij of the higher order deriv-
atives are in the class W 1;nðWÞ and asks whether the gradient of the solution is
bounded, if p > n: In [6] the authors suppose that aij a VMO and prove that Du
is Hölder continuous for all p a �1;þl½:

We observe that W 1;n � VMO, this fact follows by using Poincaré’s in-
equality

1

jBj j f ðxÞ � fBja cðnÞ
�Z

B

j‘uj dx
�1

n

and the term on the right-hand side tends to zero as jBj ! 0:
We point out that C0 is strictly contained in VMO:
Also, it is possible to check that bounded uniformly functions are in VMO as

well as functions of fractional Sobolev spaces W y; n
y, y a �0; 1½:

The study of Sobolev regularity of strong solutions of (5.1) was initiated
in 1991 with the pioneeristic work [6]. It was obtained that, if aijðxÞ a VMOB
LlðWÞ and Lu a LpðWÞ, then u a W 2;pðWÞ for each value of p in the range
ð1;lÞ. Moreover, well-posedness of the Dirichlet problem for (5.1) in W 2;pðWÞB
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W
1;p
0 ðWÞ was proved. As a consequence, Hölder continuity of the strong solution

or of its gradient follows if the exponent p is su‰ciently large.
Thanks to the fundamental accessibility of these two papers [6] and [7], F.

Chiarenza, M. Franciosi and M. Frasca in [8] and many other authors have
used this space VMO to obtain regularity results for PDEs and systems with dis-
continuous coe‰cients.

Continuing the study of regularity of PDEs, we see that Hölder continuity can
be inferred for small p if one has more information on Lu, such as its belonging
to suitable Morrey class Lp;lðWÞ:

We now define the Morrey space Lp;lðWÞ.

Definition 5.4. Let 1 < p < þl, 0 < l < n, and let f be a real measurable
function on the open bounded set W � Rn:

If j f jp is summable in W and the set described by the quantity

1

rl

Z
WBBrðxÞ

j f ðyÞjp dyð5:2Þ

when changing of r in �0; diamW½, x a W, has an upper bound, then we say that
f belongs to the Morrey Space L p;lðWÞ:

If f a Lp;lðWÞ, we define

k f kp
p;l :¼ sup

x AW
0<r<diamW

1

rl

Z
WBBrðxÞ

j f ðyÞjp dyð5:3Þ

and the vector space naturally associated to the set of functions in LpðWÞ such
that (5.3) is finite, endowed with the norm (5.3), is a normed space, which, as we
will see later, is complete.

The exponent l can take values that are not belonging to �0; n½ but the unique
cases of real interest are that one for which l a �0; n½: Indeed, from the definition
we immediately see that Lp;lðWÞ ¼ LpðWÞ, if la 0: Sometimes later we will ex-
plicitly use the fact that Lp;0ðWÞ ¼ LpðWÞ:

Moreover, if l ¼ n, by applying the Lebesgue di¤erentiation theorem, we find
that

lim
r!0þ

1

rn

Z
WBBrðxÞ

j f ðyÞjp dy ¼ lim
r!0þ

1

rn

Z
BrðxÞ

j f ðyÞjp dy ¼ Cj f ðxÞjp

for every Lebesgue point or, equivalently, almost everywhere in W: Then, in order
that f ðxÞ a Lp;nðWÞ it is necessary and su‰cient that f is bounded. It means that
Lp;nðWÞ ¼ LlðWÞ:

If l > n, then the set described by (5.2) in general is not upper bounded, ex-
cept for f ¼ 0 a.e. in W: This means that Lp;lðWÞ ¼ f0g, for l > n:

Using the spaces defined above a natural problem arises namely to study the
regularizing properties of the operator L in Morrey spaces in the case of VMO
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principal coe‰cients. In [4], L. Ca¤arelli proved that each W 2;p-viscosity solu-
tion to (5.1) lies in C1þaðWÞ if f ðxÞ belongs to the Morrey space Ln;naðWÞ with
a a ð0; 1Þ:

Main result of the paper is to obtain local regularity, in grand Morrey Spaces,
for highest order derivatives of solutions of elliptic nondivergence form with co-
e‰cients, which can be discontinuous.

We recall that, in the case of continuous coe‰cients of the above kind of equa-
tion, the results obtained by S. Agmon, A. Douglis and L. Nirenberg in [1].
Later, discontinuous coe‰cients were considered by S. Campanato in [5].

Then, this paper can be regarded as a continuation of the study of Lp regular-
ity of solutions of second order elliptic PDEs to the maximum order derivatives
of the solutions to a certain class of linear elliptic equations in nondivergence
form with discontinuous coe‰cients.

Let us consider the second order di¤erential operator

LC aijðxÞDij; Dij C
q2

qxiqxj
:

Here we have adopted the usual summation convention on repeated indices.
In the sequel, we need the following regularity and ellipticity assumptions on

the coe‰cients of L, Ei; j ¼ 1 . . . n:

aijðxÞ a LlðWÞBVMO;

aijðxÞ ¼ ajiðxÞ; a:a: x a W

bk > 0 : k�1jxj2 a aijðxÞxixj a kjxj2; Ex a Rn; a:a: x a W:

8><>:ð5:4Þ

Set hij for the VMO-modulus of the function aijðxÞ and let hðrÞ ¼
�Pn

i; j¼1 h
2
ij

�1=2
:

We denote by Gðx; tÞ the normalized fundamental solution of L, i.e.,

Gðx; xÞ ¼ 1

nð2� nÞon

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detfaijðxÞg

p �Xn

i; j¼1

AijðxÞxixj
�ð2�nÞ=2

for a:a: x and all x a Rnnf0g;

where AijðxÞ stand for the entries of the inverse matrix of the matrix
faijðxÞgi; j¼1;...;n, and on is the measure of the unit ball in Rn: We set also

Giðx; xÞ ¼
q

qxi
Gðx; xÞ; Gijðx; xÞ ¼

q

qxiqxj
Gðx; xÞ;

M ¼ max
i; j¼1;...;n

max
jaja2n

qaGijðx; xÞ
qxa

���� ����
LlðW�SÞ

:

It is well known that Gijðx; xÞ are Calderón–Zygmund kernels in the x variable.

Theorem 5.5. Let (5.4) be true, 1 < p < l, 0 < l < n, y > 0. Let W be a do-
main satisfying A condition (see (1.7)) and let w be a weight on W such that
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w a ApðWÞ. Then there exist positive constants c ¼ cðn; k; p; l; y;M;wÞ and r0 ¼
r0ðC; nÞ a ð0; rÞ such that for every ball Br �� W, r < r0 and every u a W

2;p
0 ðBrÞ

such that Diju a L
pÞ;l;y
w ðBrÞ, we have

kDijukLpÞ; l; y
w ðBrÞ a ckLuk

L
pÞ; l; y
w ðBrÞ; Ei; j ¼ 1; . . . ; n:ð5:5Þ

Proof. Our argument rest in two tools. The first one is to show the representa-
tion formula for the second order derivatives of a solution by commutators and
some singular integral operators with Calderón–Zygmund kernels.

For second derivatives of functions in W
2;p
0 ðBÞ, where B is an open ball in Rn,

the representation formula is the following (see [6], Sect. 3):

DijuðxÞ ¼ P:V:

Z
B

Gijðx; x� yÞ
Xn

h;k¼1

ðahkðxÞ � ahkðyÞÞDhkuðyÞ dyð5:6Þ

þ P:V:

Z
B

Gijðx; x� yÞLuðyÞ dyþLuðxÞ
Z
jxj¼1

Giðx; xÞxj dsx;

Second tool is to derive the estimate (5.5). In order to do it we take the LpÞ;l;y-
norms of the both sides of (5.6). So, let us remark that

i) The first and the second integrals appearing in (5.6) are Principal Value ones
and we can use Corollary 4.4 and Corollary 4.3 respectively to obtain the
appropriate weighted inequality in L

pÞ;l;y
w ðWÞ, where w is the weight.

ii)
R
jxj¼1 Giðx; xÞxj dsx a LlðBrÞ with a bound independent of r:

Now, taking the L
pÞ;l;y
w ðBrÞ norms of both sides in (5.6) and applying Corol-

laries 4.4 and 4.3 we get

kDijukLpÞ; l; y
w ðBrÞ

a cðhðrÞkDijukLpÞ; l; y
w ðBrÞ

þ kLuk
L

pÞ; l; y
w ðBrÞ

Þ:

This way, in view of the VMO assumption on the coe‰cients aijðxÞ, it is possible
to choose r0 so small that chðr0Þ ¼ 1=2 and then

kDijukLpÞ; l; y
w ðBrÞ

a ckLuk
L

pÞ; l; y
w ðBrÞ

for each r < r0: r
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[43] J. O. Strömberg - A. Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math.
1381, Springer-Verlag, Berlin, 1989.

[44] G. Talenti, Equazioni lineari ellittiche in due variabili, Matematiche (Catania) 21
(1966), 339–376.

Received 5 June 2018,
and in revised form 22 July 2018.

Vakhtang Kokilashvili

Department of Mathematical Analysis

A. Razmadze Mathematical Institute

I. Javakhishvili Tbilisi State University

6 Tamarashvili Str.

Tbilisi 0177, Georgia

and

International Black Sea University

3 Agmashenebeli Ave.

Tbilisi 0131, Georgia

kokil@rmi.ge

Alexander Meskhi

Department of Mathematical Analysis

A. Razmadze Mathematical Institute

I. Javakhishvili Tbilisi State University

6 Tamarashvili Str.

Tbilisi 0177, Georgia

and

Department of Mathematics

Faculty of Informatics and Control Systems

Georgian Technical University

77 Kostava St.

Tbilisi 0175, Georgia

a.meskhi@gtu.ge

Maria Alessandra Ragusa

Dipartimento di Matematica e Informatica
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