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Abstract

In this paper, the existence of smooth positive solutions to a Robin
boundary-value problem with non-homogeneous differential operator
and reaction given by a nonlinear convection term plus a singular one
is established. Proofs chiefly exploit sub-super-solution and truncation
techniques, set-valued analysis, recursive methods, nonlinear regular-
ity theory, as well as fixed point arguments. A uniqueness result is
also presented.
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1 Introduction

Let Ω ⊆ RN (N ≥ 3) be a bounded domain with a C2-boundary ∂Ω and let
f : Ω×R×RN → [0,+∞), g : Ω× (0,+∞)→ [0,+∞) be two Carathéodory
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functions. In this paper, we study existence and uniqueness of solutions to
the following Robin problem:

− diva(∇u) = f(x, u,∇u) + g(x, u) in Ω,
u > 0 in Ω,
∂u

∂νa
+ βup−1 = 0 on ∂Ω,

(P)

where a : RN → RN denotes a continuous strictly monotone map having
suitable properties, which basically stem from Liebermann’s nonlinear regu-
larity theory [12] and Pucci-Serrin’s maximum principle [19]; see Section 2
for details. Moreover, β > 0, 1 < p < +∞, while ∂

∂νa
denotes the co-normal

derivative associated with a.
This problem gathers together several hopefully interesting technical fea-

tures, namely:

• The involved differential operator appears in a general form that in-
cludes non-homogeneous cases.

• f depends on the solution and its gradient. So, the reaction exhibits
nonlinear convection terms.

• g can be singular at zero, i.e., lim
s→0+

g(x, s) = +∞.

• Robin boundary conditions are imposed instead of (much more fre-
quent) Dirichlet ones.

All these things have been extensively investigated, although separately. For
instance, both differential operator and Robin conditions already appear in
[8] where, however, the problem has a fully variational structure, whilst [15]
falls inside non-variational settings. The paper [4] addresses the presence of
convection terms; see also [14, 15, 20], which exhibit more general contexts.
Last but not least, singular problems were considered especially after the
seminal works of Crandall-Rabinowitz-Tartar [2] and Lazer-McKenna [10].
Among recent contributions on this subject, we mention [7, 16]. Finally, [13]
treats a p-Laplacian Dirichlet problem whose right-hand side has the same
form as that in (P). It represented the starting point of our research.

Several issues arise when passing from Dirichlet to Robin boundary condi-
tions. Accordingly, here, we try to develop some useful tools in this direction,
including the location of solutions to an auxiliary variational problem inside
an opportune sublevel of its energy functional, constructed for preserving
some compactness and semicontinuity properties (cf. Section 3).
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Our main result, Theorem 3.1, establishes the existence of a regular so-
lution to (P) chiefly via sub-super-solution and truncation techniques, set-
valued analysis, recursive methods, nonlinear regularity theory, as well as
Schaefer’s fixed point theorem. Uniqueness is also addressed, but only when
p = 2 (vide Section 4).

Usually, linear problems possess only one solution, whereas multiplicity
is encountered in nonlinear phenomena. Hence, it might be of interest to
seek hypotheses on f and g that yield uniqueness even if p 6= 2. As far as we
know, this is still an open problem.

Let us finally note that replacing the constant β with a nontrivial non-
negative function β ∈ L∞(Ω) does not invalidate our results.

2 Preliminaries

Let X be a set and let C ⊆ X. We denote by χC the characteristic function
of C. If C 6= ∅ and Γ : C → C then

Fix(Γ) := {x ∈ C : x = Γ(x)}

is the fixed point set of Γ. The following result, usually called Schaefer’s
theorem [6, p. 827] or Leray-Schauder’s alternative principle, will play a
basic role in the sequel.

Theorem 2.1. Let X be a Banach space, let C ⊆ X be nonempty convex,
and let Γ : C → C be continuous. Suppose Γ maps bounded sets into relatively
compact sets. Then either {x ∈ C : x = tΓ(x) for some t ∈ (0, 1)} turns out
unbounded or Fix(Γ) 6= ∅.

Given a partially ordered set (X,≤), we say that X is downward directed
when for every x1, x2 ∈ X there exists x ∈ X such that x ≤ xi, i = 1, 2. The
notion of upward directed set is analogous.

If Y is a real function space on a set Ω ⊆ RN and u, v ∈ Y , then u ≤ v
means u(x) ≤ v(x) for almost every x ∈ Ω. Moreover, Y+ := {u ∈ Y : u ≥ 0},
Ω(u ≤ v) := {x ∈ Ω : u(x) ≤ v(x)}, etc.

Let X, Y be two metric spaces and let S : X → 2Y . The multifunction
S is called lower semicontinuous when for every xn → x in X, y ∈ S (x)
there exists a sequence {yn} ⊆ Y having the following properties: yn → y in
Y ; yn ∈ S (xn) for all n ∈ N.

Finally, if X is a Banach space and J ∈ C1(X), then

Crit(J) := {x ∈ X : J ′(x) = 0}
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is the critical set of J .
The monograph [1] represents a general reference on these topics.
Given any s > 1, the symbol s′ will indicate the conjugate exponent of s,

namely s′ := s
s−1

.
Henceforth, for 1 < p < +∞, β > 0, Ω as in the Introduction, and

u : Ω→ R appropriate, the notation below will be adopted:

‖u‖∞ := ess sup
x∈Ω

|u(x)| ; ‖u‖C1(Ω) := ‖u‖∞ + ‖∇u‖∞ ;

‖u‖p :=

(ˆ
Ω

|u|pdx
) 1

p

; ‖u‖p,∂Ω :=

(ˆ
∂Ω

|u|pdσ
) 1

p

;

‖u‖1,p :=
(
‖u‖pp + ‖∇u‖pp

) 1
p ; ‖u‖β,1,p :=

(
β‖u‖pp,∂Ω + ‖∇u‖pp

) 1
p .

Here, σ denotes the (N − 1)-dimensional Hausdorff measure on ∂Ω. If ν(x)
is the outward unit normal vector to ∂Ω at its point x then ∂

∂νa
stands

for the co-normal derivative associated with a, defined extending the map
u 7→ 〈a(∇u), ν〉 from C1(Ω) to W 1,p(Ω).

Remark 2.1. The trace inequality ensures that ‖u‖p,∂Ω makes sense when-
ever u ∈ W 1,p(Ω); see for instance [3] or [9].

Remark 2.2. It is known [5] that

int(C1(Ω)+) =
{
u ∈ C1(Ω) : u(x) > 0 ∀x ∈ Ω

}
.

Remark 2.3. ‖ · ‖β,1,p is a norm on W 1,p(Ω) equivalent to ‖ · ‖1,p. In par-
ticular, there exists c1 = c1(p, β,Ω) ∈ (0, 1) such that

c1‖u‖1,p ≤ ‖u‖β,1,p ≤
1

c1

‖u‖1,p ∀u ∈ W 1,p(Ω) . (2.1)

For the proof we refer to [17].

Let ω ∈ C1(0,+∞) satisfy

C1 ≤
tω′(t)

ω(t)
≤ C2 , C3t

p−1 ≤ ω(t) ≤ C4(1 + tp−1)

in (0,+∞), with Ci suitable positive constants. We say that the operator
a : RN → RN fulfills assumption H(a) when:

(a1) a(ξ) = a0(|ξ|)ξ for all ξ ∈ RN , where a0 : (0,+∞) → (0,+∞) is C1,
t 7→ ta0(t) turns out strictly increasing, and

lim
t→0+

ta0(t) = 0, lim
t→0+

ta′0(t)

a0(t)
> −1.

4



(a2) |Da(ξ)| ≤ C5
ω(|ξ|)
|ξ|

in RN \ {0}.

(a3) 〈Da(ξ)y, y〉 ≥ ω(|ξ|)
|ξ|
|y|2 for every y, ξ ∈ RN , ξ 6= 0.

Example 2.1. Various differential operators comply with H(a). Three clas-
sical examples are listed below.

• The so-called p-Laplacian: ∆pu := div (|∇u|p−2∇u), which stems from
a0(t) := tp−2.

• The (p, q)-Laplacian: ∆pu + ∆qu, where 1 < q < p < +∞. In this
case, a0(t) := tp−2 + tq−2.

• The generalized p-mean curvature operator:

u 7→ div
[
(1 + |∇u|2)

p−2
2 ∇u

]
,

corresponding to a0(t) := (1 + t2)
p−2
2 .

Finally, define

G0(t) :=

ˆ t

0

sa0(s)ds ∀ t ∈ R as well as G(ξ) := G0(|ξ|) ∀ ξ ∈ RN .

Proposition 2.1. Under hypothesis H(a), there exists c2 ∈ (0, 1) such that

|a(ξ)| ≤ 1

c2

(1 + |ξ|p−1) and c2|ξ|p ≤ 〈a(ξ), ξ〉 ≤ 1

c2

(1 + |ξ|p)

for all ξ ∈ RN . In particular,

c2|ξ|p ≤ G(ξ) ≤ 1

c2

(1 + |ξ|p) , ξ ∈ RN .

Proof. See [8, Lemmas 2.1–2.2] or [17, Lemma 2.2 and Corollary 2.3].

3 Existence

Throughout this section, the convection term f and the singularity g will
fulfill the assumptions below where, to avoid unnecessary technicalities, ‘for
all x’ takes the place of ‘for almost all x’.
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H(f) f : Ω × R × RN → [0,+∞) is a Carathéodory function. Moreover, to
every M > 0 there correspond cM , dM > 0 such that

f(x, s, ξ) ≤ cM + dM |s|p−1 ∀ (x, s, ξ) ∈ Ω× R× RN with |ξ| ≤M.

H(g) g : Ω × (0,+∞) → [0,+∞) is a Carathéodory function having the
properties:

(g1) g(x, ·) turns out nonincreasing on (0, 1] whatever x ∈ Ω, and g(·, 1) 6≡ 0.

(g2) There exist c, d > 0 such that

g(x, s) ≤ c+ dsp−1 ∀ (x, s) ∈ Ω× (1,+∞).

(g3) With appropriate θ ∈ int(C1(Ω)+) and ε0 > 0, the map x 7→ g(x, εθ(x))
belongs to Lp

′
(Ω) for any ε ∈ (0, ε0).

The paper [13] contains meaningful examples of functions g that satisfy H(g).
A very simple case is g(x, s) := s−γ for all (x, s) ∈ Ω× (0,+∞), where γ > 0,
and θ(·) ≡ 1.

Fix w ∈ C1(Ω). We first focus on the singular problem (without convec-
tion terms) 

−div a(∇u) = f(x, u,∇w) + g(x, u) in Ω,
u > 0 in Ω,
∂u

∂νa
+ βup−1 = 0 on ∂Ω.

(Pw)

Definition 3.1. u ∈ W 1,p(Ω) is called a subsolution to (Pw) whenˆ
Ω

〈a(∇u),∇v〉dx+ β

ˆ
∂Ω

|u|p−2uvdσ ≤
ˆ

Ω

[f(·, u,∇w) + g(·, u)]vdx (3.1)

for all v ∈ W 1,p(Ω)+. The set of subsolutions will be denoted by Uw.
We say that u ∈ W 1,p(Ω) is a supersolution to (Pw) ifˆ

Ω

〈a(∇u),∇v〉dx+ β

ˆ
∂Ω

|u|p−2uvdσ ≥
ˆ

Ω

[f(·, u,∇w) + g(·, u)]vdx (3.2)

for every v ∈ W 1,p(Ω)+, and indicate with Uw the supersolution set.
Finally, u ∈ W 1,p(Ω) is called a solution of (Pw) providedˆ

Ω

〈a(∇u),∇v〉dx+ β

ˆ
∂Ω

|u|p−2uvdσ =

ˆ
Ω

[f(·, u,∇w) + g(·, u)]vdx

for all v ∈ W 1,p(Ω)+. The corresponding solution set will be denoted by Uw.
Obviously, Uw = Uw ∩ Uw.
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Lemma 3.1. If u1, u2 ∈ Uw (resp. u1, u2 ∈ Uw), then min{u1, u2} ∈ Uw

(resp. max{u1, u2} ∈ Uw). In particular, the set Uw (resp. Uw) is downward
(resp. upward) directed.

Proof. This proof is patterned after that of [13, Lemma 10] (see also [1]).
Thus, we only sketch it. Pick u1, u2 ∈ Uw, set u := min{u1, u2}, and define,
for every t ∈ R,

ηε(t) :=


0 when t < 0,
t
ε

if 0 ≤ t ≤ ε,
1 for t > ε,

where ε > 0. Further, to shorten notation, write η̄ε(x) := ηε(u2(x)− u1(x)).
Evidently, both η̄ε ∈ W 1,p(Ω)+ and

∇η̄ε = η′ε(u2 − u1)∇(u2 − u1).

Let v̂ ∈ C1(Ω)+. Since ui fulfills (3.2), one has

ˆ
Ω

〈a(∇ui),∇v〉dx+ β

ˆ
∂Ω

|ui|p−2uivdσ ≥
ˆ

Ω

[f(·, ui,∇w) + g(·, ui)]vdx

whatever v ∈ W 1,p(Ω)+. Choosing v := η̄ε v̂ when i = 1, v := (1 − η̄ε)v̂ if
i = 2, and adding term by term produces

ˆ
Ω

〈a(∇u1)− a(∇u2),∇(u2 − u1)〉η′ε(u2 − u1)v̂dx

+

ˆ
Ω

〈a(∇u1),∇v̂〉 η̄εdx+

ˆ
Ω

〈a(∇u2),∇v̂〉(1− η̄ε)dx

+ β

(ˆ
∂Ω

|u1|p−2u1η̄εv̂dσ +

ˆ
∂Ω

|u2|p−2u2(1− η̄ε)v̂dσ

)
≥
ˆ

Ω

[f(·, u1,∇w) + g(·, u1)]η̄εv̂dx

+

ˆ
Ω

[f(·, u2,∇w) + g(·, u2)](1− η̄ε)v̂dx.

(3.3)

The strict monotonicity of a, combined with η′ε(u2 − u1)v̂ ≥ 0, lead to

ˆ
Ω

〈a(∇u1)− a(∇u2),∇(u2 − u1)〉η′ε(u2 − u1)v̂dx ≤ 0.

For almost every x ∈ Ω we have

∇u(x) =

{
∇u1(x) if u1(x) < u2(x),
∇u2(x) otherwise,
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as well as
lim
ε→0+

η̄ε(x) = χΩ(u1<u2)(x).

Hence, letting ε → 0+ and using the dominated convergence theorem, in-
equality (3.3) becomes

ˆ
Ω

〈a(∇u),∇v̂〉dx+ β

ˆ
∂Ω

|u|p−2uv̂dσ ≥
ˆ

Ω

[f(·, u,∇w) + g(·, u)]v̂dx;

see [13, Lemma 10] for more details. Since v̂ ∈ C1(Ω)+ was arbitrary, by
density one arrives at u ∈ Uw.

Lemma 3.2. Let H(f) and H(g) be satisfied. Then there exists a subsolution
u ∈ int(C1(Ω)+) to (Pw) independent of w and such that ‖u‖∞ ≤ 1.

Proof. Given any δ > 0, consider the problem −div a(∇u) = g̃(x, u) in Ω,
∂u

∂νa
+ β|u|p−2u = 0 on ∂Ω,

(3.4)

where
g̃(x, s) := min{g(x, s), δ} , (x, s) ∈ Ω× (0,+∞) . (3.5)

Standard arguments yield a nontrivial solution u ∈ W 1,p(Ω) to (3.4), because
g̃ is bounded. Testing with −u− we get

−
ˆ

Ω

〈a(∇u),∇u−〉dx− β
ˆ

Ω

|u|p−2uu−dσ = −
ˆ

Ω

g̃(x, u)u−dx ≤ 0,

whence, by Proposition 2.1,

c2‖u−‖pβ,1,p ≤
ˆ

Ω

〈a(∇u−),∇u−〉dx+ β

ˆ
Ω

(u−)pdσ ≤ 0.

Therefore, u ≥ 0. Regularity up to the boundary [12] and strong maximum
principle [19] then force u ∈ int(C1(Ω)+). Now, if uδ ∈ C1,α(Ω)+ satisfies −div a(∇u) = δ in Ω,

∂u

∂νa
+ β|u|p−2u = 0 on ∂Ω,

(3.6)

then, by compactness of the embedding C1,α(Ω)) ↪→ C1(Ω), we can find
u ∈ C1(Ω) such that lim

δ→0+
uδ = u in C1(Ω) up to subsequences. One evidently
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has u ≡ 0, because uδ solves (3.6). Thus, 0 ≤ uδ ≤ 1 once δ is small enough.
Using (3.5), the comparison principle finally entails

‖u‖∞ ≤ ‖uδ‖∞ ≤ 1. (3.7)

Let θ and ε0 be as in (g3). Since u, θ ∈ int(C1(Ω)+), there exists ε ∈ (0, ε0)
such that u− εθ ∈ int(C1(Ω)+). Via (g1), (3.7), and (g3), we thus infer

0 ≤ g(·, u) ≤ g(·, εθ) ∈ Lp′(Ω). (3.8)

The conclusion is achieved by verifying that u ∈ Uw for any w ∈ C1(Ω). Pick
such a w, test (3.4) with v ∈ W 1,p(Ω)+, and recall (3.5), to arrive at

ˆ
Ω

〈a(∇u),∇v〉dx+ β

ˆ
∂Ω

up−1vdσ =

ˆ
Ω

g̃(·, u)vdx

≤
ˆ

Ω

g(·, u)vdx ≤
ˆ

Ω

[f(·, u,∇w) + g(·, u)]vdx,

as desired.

Remark 3.1. This proof shows that the subsolution u constructed in Lemma
3.2 enjoys the further property:

ˆ
Ω

〈a(∇u),∇v〉dx+β

ˆ
∂Ω

|u|p−2uvdσ ≤
ˆ

Ω

g(·, u)vdx ∀ v ∈ W 1,p(Ω)+. (3.9)

Given w ∈ C1(Ω), consider the truncated problem
−div a(∇u) = f̂(x, u) + ĝ(x, u) in Ω,
u > 0 in Ω,
∂u

∂νa
+ βup−1 = 0 on ∂Ω,

(3.10)

where

f̂(x, s) :=

{
f(x, u(x),∇w(x)) if s ≤ u(x),
f(x, s,∇w(x)) otherwise,

(3.11)

ĝ(x, s) :=

{
g(x, u(x)) if s ≤ u(x),
g(x, s) otherwise.

(3.12)

The energy functional corresponding to (3.10) writes

Ew(u) :=
1

p

ˆ
Ω

G(∇u)dx+
β

p

ˆ
∂Ω

|u|pdσ −
ˆ

Ω

F̂ (·, u)dx−
ˆ

Ω

Ĝ(·, u)dx
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for all u ∈ W 1,p(Ω), with

F̂ (x, s) :=

ˆ s

0

f̂(x, t)dt, Ĝ(x, s) :=

ˆ s

0

ĝ(x, t)dt.

Hypotheses H(f)–H(g) ensure that Ew is of class C1 and weakly sequentially
lower semicontinuous; see, e.g., [8, Lemma 3.1]. Under the additional condi-
tion

dM + d < cp1c2 ∀M > 0, (3.13)

it turns out also coercive, as the next lemma shows.

Lemma 3.3. Let B be a nonempty bounded set in C1(Ω). If H(f), H(g),
and (3.13) hold true then there exist α1 ∈ (0, 1), α2 > 0 such that

Ew(u) ≥ α1

p
‖u‖p1,p − α2(1 + ‖u‖1,p) ∀ (u,w) ∈ W 1,p(Ω)×B.

Proof. Put M̂ := sup
w∈B
‖w‖C1(Ω). By (3.11)–(3.12), Proposition 2.1 entails

Ew(u) ≥ c2

p
‖∇u‖pp +

β

p
‖u‖pp,∂Ω −

ˆ
Ω

[f(·, u,∇w) + g(·, u)]udx

−
ˆ

Ω(u>u)

(ˆ u

u

f(·, t,∇w)dt

)
dx−

ˆ
Ω(u>u)

(ˆ u

u

g(·, t)dt
)

dx.

Hypothesis H(f) along with Hölder’s inequality implyˆ
Ω(u>u)

(ˆ u

u

f(·, t,∇w)dt

)
dx ≤

ˆ
Ω(u>u)

(ˆ u

0

f(·, t,∇w)dt

)
dx

≤ cM̂ |Ω|
1
p′ ‖u‖p +

dM̂
p
‖u‖pp

≤ cM̂ |Ω|
1
p′ ‖u‖1,p +

dM̂
p
‖u‖p1,p.

Exploiting (3.7), (g1), (g2), and Hölder’s inequality again, we haveˆ
Ω(u>u)

(ˆ u

u

g(·, t)dt
)

dx

≤
ˆ

Ω(u>u)

(ˆ 1

u

g(·, t)dt
)

dx+

ˆ
Ω(u>1)

(ˆ u

1

g(·, t)dt
)

dx

≤
ˆ

Ω(u>u)

g(·, u)dx+

ˆ
Ω(u>1)

(ˆ u

1

(c+ dtp−1)dt

)
dx

≤
ˆ

Ω

g(·, u)dx+ c|Ω|
1
p′ ‖u‖p +

d

p
‖u‖pp

≤
ˆ

Ω

g(·, u)dx+ c|Ω|
1
p′ ‖u‖1,p +

d

p
‖u‖p1,p.
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Hence, through (2.1) we easily arrive at

Ew(u) ≥ c2

p
‖u‖pβ,1,p −

dM̂ + d

p
‖u‖p1,p − (cM̂ + c)|Ω|

1
p′ ‖u‖p −K

≥ cp1c2 − dM̂ − d
p

‖u‖p1,p − (cM̂ + c)|Ω|
1
p′ ‖u‖1,p −K

≥ cp1c2 − dM̂ − d
p

‖u‖p1,p −max{(cM̂ + c)|Ω|
1
p′ , K}(1 + ‖u‖1,p),

where

K :=

ˆ
Ω

[f(·, u,∇w)] + g(·, u)]udx+

ˆ
Ω

g(·, u)dx

≤
ˆ

Ω

(cM̂ + dM̂)dx+ 2

ˆ
Ω

g(·, εθ)dx ≤ (cM̂ + dM̂)|Ω|+ 2‖g(·, εθ)‖p′|Ω|
1
p

due to H(f) and (3.7)–(3.8). Now, the conclusion follows from (3.13).

Remark 3.2. A standard application of Moser’s iteration technique [11]
shows that any solution to (3.10) lies in L∞(Ω). By Liebermann’s regularity
theory [12], it actually is Hölder continuous up to the boundary.

Lemma 3.4. Let H(f), H(g), and (3.13) be satisfied. Then

∅ 6= Crit(Ew) ⊆ Uw ∩ {u ∈ C1(Ω) : u ≥ u}.

Proof. Since Ew is coercive (cf. Lemma 3.3), the Weierstrass-Tonelli theorem
produces Crit(Ew) 6= ∅. Pick any u ∈ Crit(Ew), test (3.10) with (u − u)+,
and exploit (3.11)–(3.12), besides (3.9), to achieve

ˆ
Ω

〈a(∇u),∇(u− u)+〉dx+ β

ˆ
∂Ω

|u|p−2u(u− u)+dσ

=

ˆ
Ω

[f̂(·, u) + ĝ(·, u)](u− u)+dx

≥
ˆ

Ω

ĝ(·, u)(u− u)+dx =

ˆ
Ω

g(·, u)(u− u)+dx

≥
ˆ

Ω

〈a(∇u),∇(u− u)+〉dx+ β

ˆ
∂Ω

|u|p−2u(u− u)+dσ.

Rearranging terms we get

ˆ
Ω

〈a(∇u)− a(∇u),∇(u− u)+〉dx+ β

ˆ
∂Ω

(|u|p−2u− |u|p−2u)(u− u)+dσ ≤ 0.
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The strict monotonicity of a, combined with [18, Lemma A.0.5], entail

∇(u− u)+ = 0 in Ω, (u− u)+ = 0 on ∂Ω.

So, ‖(u − u)+‖β,1,p = 0, which means u ≥ u. Finally, by (3.11)–(3.12) one
has u ∈ Uw, while u ∈ C1(Ω) according to Remark 3.2.

For every w ∈ C1(Ω) we define

S (w) := {u ∈ C1(Ω) : u ∈ Uw, u ≥ u, Ew(u) < 1}.

Lemma 3.5. Under assumptions H(f), H(g), and (3.13), the multifunction

S : C1(Ω) → 2C
1(Ω) takes nonempty values and maps bounded sets into

relatively compact sets.

Proof. If w ∈ C1(Ω), then there exists ûw ∈ Crit(Ew) such that

ûw ∈ C1(Ω), ûw ≥ u, Ew(ûw) = inf
W 1,p(Ω)

Ew ≤ Ew(0) = 0 < 1;

cf. the proof of Lemma 3.4. Hence, S (w) 6= ∅, because ûw ∈ S (w). Let
B ⊆ C1(Ω) nonempty bounded. From Lemma 3.3 it follows

α1

p
‖u‖p1,p − α2(1 + ‖u‖1,p) ≤ Ew(u) < 1 ∀u ∈ S (w), w ∈ B,

whence S (B) turns out bounded in W 1,p(Ω). By nonlinear regularity theory
[12], the same holds when C1,α(Ω), with suitable α ∈ (0, 1), replaces W 1,p(Ω).
Recalling that C1,α(Ω) ↪→ C1(Ω) compactly yields the conclusion.

To see that S is lower semicontinuous, we shall employ the next technical
lemma.

Lemma 3.6. Let α, β, γ > 0, let 1 < p < +∞, and let {ak} ⊆ [0,+∞)
satisfy the recursive relation

αapk ≤ βak + γapk−1 ∀ k ∈ N. (3.14)

If γ < α, then the sequence {ak} is bounded.

Proof. Using the obvious inequality

ak ≤ T + T 1−papk, T > 0,

(3.14) becomes (
α− βT 1−p) apk ≤ βT + γapk−1 ∀ k ∈ N.

12



Since σ := 1/p < 1, this entails(
α− βT 1−p)σ ak ≤ (βT + γapk−1

)σ ≤ (βT )σ + γσak−1

or, equivalently,

ak ≤
(

βT

α− βT 1−p

)σ
+

(
γ

α− βT 1−p

)σ
ak−1, k ∈ N, (3.15)

provided T > 0 is large enough. Choosing T >
(

β
α−γ

) 1
p−1

, the coefficient of

ak−1 turns out strictly less than 1. A standard computation based on (3.15)
completes the proof.

Lemma 3.7. Suppose H(f)–H(g) hold and, moreover,

dM + d <
cp1c2

p
∀M > 0. (3.16)

Then the multifunction S : C1(Ω)→ 2C
1(Ω) is lower semicontinuous.

Proof. The proof is patterned after that of [13, Lemma 20]. So, some details
will be omitted. Let

wn → w in C1(Ω). (3.17)

We claim that to each ũ ∈ S (w) there corresponds a sequence {un} ⊆ C1(Ω)
enjoying the following properties:

un ∈ S (wn), n ∈ N; un → ũ in C1(Ω).

Fix ũ ∈ S (w). For every n ∈ N, consider the auxiliary problem
−div a(∇u) = f(x, ũ,∇wn) + ĝ(x, ũ) in Ω,
u > 0 in Ω,
∂u

∂νa
+ βup−1 = 0 on ∂Ω,

(Pũ,wn)

with ĝ(x, s) given by (3.12). One has ĝ(x, ũ) = g(x, ũ), because ũ ∈ S (w),
while the associated energy functional writes

Eũ,wn(u) :=
1

p

ˆ
Ω

G(∇u)dx+ β

ˆ
∂Ω

|u|pdσ

−
ˆ

Ω

f(x, ũ,∇wn)udx−
ˆ

Ω

ĝ(x, ũ)udx, u ∈ W 1,p(Ω).

13



Since Eũ,wn turns out strictly convex, the same argument exploited to show
Lemma 3.4 yields here a unique solution u0

n ∈ int(C1(Ω)+) of (Pũ,wn) such
that

Eũ,wn(u0
n) ≤ 0. (3.18)

Via (3.17)–(3.18), reasoning as in Lemmas 3.3 and 3.5 (but for Eũ,w instead
of Ew and B := {wn : n ∈ N}), we deduce that {u0

n} ⊆ C1(Ω) is rel-
atively compact. Consequently, u0

n → u0 in C1(Ω), where a subsequence
is considered when necessary. By (3.17) again and Lebesgue’s dominated
convergence theorem, u0 solves problem (Pũ,w). Thus, a fortiori, u0 = ũ, be-
cause (Pũ,w) possesses one solution at most. An induction procedure provides
now a sequence {ukn} such that ukn solves problem (Puk−1

n ,wn
), the inequality

Euk−1
n ,wn

(ukn) ≤ 0 holds, and

lim
n→+∞

ukn = ũ in C1(Ω) for all k ∈ N. (3.19)

Claim: {ukn}k∈N ⊆ C1(Ω) is relatively compact.
In fact, recalling (3.17), pick M = sup

n∈N
‖wn‖C1(Ω). Through Hölder’s and

Young’s inequalities, besides (3.8), we obtain

1

p

ˆ
Ω

G(∇ukn)dx+
β

p

ˆ
∂Ω

|ukn|pdσ ≥
cp1c2

p
‖ukn‖

p
1,p, (3.20)

ˆ
Ω

f(·, uk−1
n ,∇wn)ukndx ≤ cM |Ω|

1
p′ ‖ukn‖p + dM

ˆ
Ω

|uk−1
n |p−1|ukn|dx

≤ cM |Ω|
1
p′ ‖ukn‖p + dM

(
1

p′
‖uk−1

n ‖pp +
1

p
‖ukn‖pp

)
,

(3.21)

as well asˆ
Ω

ĝ(·, uk−1
n )ukndx

=

ˆ
Ω(uk−1

n ≤1)

ĝ(·, uk−1
n )ukndx+

ˆ
Ω(uk−1

n >1)

ĝ(·, uk−1
n )ukndx

≤
ˆ

Ω(uk−1
n ≤1)

g(·, u)ukndx+

ˆ
Ω(uk−1

n >1)

g(·, uk−1
n )ukndx

≤ (‖g(·, u)‖p′ + c|Ω|
1
p′ )‖ukn‖p + d

ˆ
Ω

|uk−1
n |p−1|ukn|dx

≤ (‖g(·, u)‖p′ + c|Ω|
1
p′ )‖ukn‖p + d

(
1

p′
‖uk−1

n ‖pp +
1

p
‖ukn‖pp

)
.

(3.22)
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Since Euk−1
n ,wn

(ukn) ≤ 0, estimates (3.20)–(3.22) entail

cp1c2 − dM − d
p

‖ukn‖
p
1,p

≤
(
‖g(·, u)‖p′ + (cM + c)|Ω|

1
p′
)
‖ukn‖1,p +

dM + d

p′
‖uk−1

n ‖
p
1,p

for all k ∈ N. Thanks to (3.16), Lemma 3.6 applies, and the sequence {ukn}k∈N
turns out bounded in W 1,p(Ω). Standard arguments involving regularity up
to the boundary (cf. the proof of Lemma 3.5) yield the claim.

We may thus assume there exists {un} ⊆ C1(Ω) fulfilling

lim
k→∞

ukn = un in C1(Ω) (3.23)

whatever n ∈ N. By (3.23) and Lebesgue’s dominated convergence theorem
one has un ∈ Uwn . Moreover, as in the proof of Lemma 3.4, un ≥ u. Due to
(3.19) and (3.23), the double limit lemma [6, Proposition A.2.35] gives

un → ũ in C1(Ω). (3.24)

Thus, it remains to show that Ewn(un) < 1. From (3.17) we easily infer
Ewn(ũ) → Ew(ũ). Since Ewn is of class C1, via (3.17) and (3.24) one arrives
at

lim
n→+∞

(Ewn(un)− Ew(ũ)) = 0,

namely Ewn(un) → Ew(ũ). This completes the proof, because ũ ∈ S (w),
whence Ew(ũ) < 1.

Lemma 3.8. Under H(f), H(g), and (3.13), the set S (w), w ∈ C1(Ω), is
downward directed.

Proof. Let u1, u2 ∈ S (w) and let û := min{u1, u2}. By Lemma 3.1 we have
û ∈ Uw. Consider the problem

−div a(∇u) = h(x, u) in Ω,
u > 0 in Ω,
∂u

∂νa
+ βup−1 = 0 on ∂Ω,

(3.25)

where

h(x, s) =


f(x, u(x),∇w(x)) + g(x, u(x)) for s ≤ u(x),
f(x, s,∇w(x)) + g(x, s) if u(x) < s < û(x),
f(x, û(x),∇w(x)) + g(x, û(x)) when s ≥ û(x).

15



The associated energy functional writes

Ẽw(u) :=
1

p

ˆ
Ω

G(∇u)dx+ β

ˆ
∂Ω

|u|pdx−
ˆ

Ω

dx

ˆ u

0

h(·, t)dt, u ∈ W 1,p(Ω).

Arguing as in Lemma 3.5 produces a solution ũ ∈ C1(Ω) to (3.25) such that
Ẽw(ũ) ≤ 0. Next, adapt the proof of Lemma 3.4 and exploit the fact that û
is a supersolution of (3.25) to achieve u ≤ ũ ≤ û. Consequently, ũ ∈ Uw and

Ew(ũ) = Ẽw(ũ) ≤ 0 < 1.

This forces ũ ∈ S (w), besides ũ ≤ min{u1, u2}.

Lemma 3.9. If H(f), H(g), and (3.13) hold true then for every w ∈ C1(Ω)
the set S (w) possesses absolute minimum.

Proof. Fix w ∈ C1(Ω). We already know (see Lemma 3.8) that S (w) turns
out downward directed. If C ⊆ S (w) is a chain in S (w) then there exists
a sequence {un} ⊆ S (w) satisfying

lim
n→∞

un = inf C .

On account of Lemma 3.5 and up to subsequences, one has un → û in C1(Ω).
Thus, û = inf C . By Zorn’s Lemma, S (w) admits a minimal element uw.
It remains to show that uw = min S (w). Pick any u ∈ S (w). Through
Lemma 3.8 we get ũ ∈ S (w) such that ũ ≤ min{uw, u}. The minimality of
uw entails uw = ũ. Therefore, uw ≤ u, as desired.

Remark 3.3. This proof is patterned after the one in [13, Theorem 23].

Lemma 3.9 allows to consider the function Γ : C1(Ω)→ C1(Ω) given by

Γ(w) := min S (w) ∀w ∈ C1(Ω).

Lemma 3.10. Under assumptions H(f), H(g), and (3.16), Γ is continuous
and maps bounded sets into relatively compact sets.

Proof. It is analogous to that of [13, Lemma 24]. So, we will omit details.
Let B ⊆ C1(Ω) be bounded. Since Γ(B) ⊆ S (B) and S (B) turns out
relatively compact (cf. Lemma 3.5), Γ(B) enjoys the same property. Next,
suppose wn → w in C1(Ω). Setting un := Γ(wn), one evidently has un → u
in C1(Ω), where a subsequence is considered when necessary. The function
u complies with u ≥ u and Ew(u) < 1 (see the proof of Lemma 3.7). Via the
Lebesgue dominated convergence theorem, from un ∈ Uwn it follows u ∈ Uw.
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Plugging all together, we get u ∈ S (w). It remains to verify that u = Γ(w).
Lemma 3.7 provides a sequence {vn} ⊆ C1(Ω) fulfilling both vn ∈ S (wn) for
all n ∈ N and vn → Γ(w) in C1(Ω). The choice of Γ entails un = Γ(wn) ≤ vn,
besides Γ(w) ≤ u. Letting n→ +∞ we thus arrive at

Γ(w) ≤ u = lim
n→+∞

un ≤ lim
n→+∞

vn = Γ(w),

i.e., u = Γ(w), which completes the proof.

To establish our main result, the stronger version below of H(f) will be
employed.

H′(f) f : Ω× R× RN → [0,+∞) is a Carathéodory function such that

f(x, s, ξ) ≤ c3 + c4|s|p−1 + c5|ξ|p−1 ∀ (x, s, ξ) ∈ Ω× R× RN ,

with appropriate c3, c4, c5 > 0.

Condition (3.13) is substituted by

c4 + (2p− 1)c5 + d < cp1c2 . (3.26)

Remark 3.4. Assumption H′(f) clearly implies H(f), with cM := c3+c5M
p−1

and dM := c4. Likewise, (3.26) forces (3.13) while (3.16) reads as

c4 + d <
cp1c2

p
. (3.27)

Theorem 3.1. Let H′(f), H(g), and (3.26)–(3.27) be satisfied. Then problem
(P) possesses a solution u ∈ int(C1(Ω)+). The set of solutions to (P) is
compact in C1(Ω).

Proof. Define

Λ(Γ) := {u ∈ C1(Ω) : u = τ Γ(u) for some τ ∈ (0, 1)}.
Claim: Λ(Γ) is bounded in W 1,p(Ω).
To see this, pick any u ∈ Λ(Γ). Since u

τ
= Γ(u) ∈ S (u), one has Eu

(
u
τ

)
< 1.

Assumption H′(f), combined with Young’s and Hölder’s inequalities, pro-
ducesˆ

Ω(uτ >u)

(ˆ u
τ

u

f(·, t,∇u)dt

)
dx ≤

ˆ
Ω

(ˆ u
τ

0

(c3 + c4t
p−1 + c5|∇u|p−1)dt

)
dx

≤ c3

∥∥∥u
τ

∥∥∥
1

+
c4

p

∥∥∥u
τ

∥∥∥p
p

+ c5

ˆ
Ω

|∇u|p−1
∣∣∣u
τ

∣∣∣ dx
≤ c3|Ω|

1
p′
∥∥∥u
τ

∥∥∥
p

+
c4

p

∥∥∥u
τ

∥∥∥p
p

+ c5

(∥∥u
τ

∥∥p
p

p
+
‖∇u‖pp
p′

)
≤ c3|Ω|

1
p′
∥∥∥u
τ

∥∥∥
1,p

+
c4 + c5

p

∥∥∥u
τ

∥∥∥p
1,p

+
c5

p′
‖u‖p1,p.
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Analogously, on account of (3.7),ˆ
Ω

f(·, u,∇u)udx ≤
ˆ

Ω

(
c3 + c4u

p−1 + c5|∇u|p−1
)
udx

≤
(
c3 + c4 +

c5

p

)
|Ω|+ c5

p′
‖∇u‖pp

≤
(
c3 + c4 +

c5

p

)
|Ω|+ c5

p′
‖u‖p1,p.

Reasoning as in Lemma 3.3 and recalling that τ ∈ (0, 1), we thus achieve

1 > Eu
(u
τ

)
≥ cp1c2 − c4 − (2p− 1)c5 − d

p

∥∥∥u
τ

∥∥∥p
1,p
− (c3 + c)|Ω|

1
p′
∥∥∥u
τ

∥∥∥
1,p
−K ′,

where

K ′ :=

(
c3 + c4 +

c5

p

)
|Ω|+ 2‖g(·, εθ)‖p′ |Ω|

1
p .

Thanks to (3.26), the above inequalities force

‖u‖1,p ≤
∥∥∥u
τ

∥∥∥
1,p
≤ K∗,

with K∗ > 0 independent of u and τ . Thus, the claim is proved.

By regularity [12], the set Λ(Γ) turns out bounded in C1(Ω). Hence,
due to Lemma 3.10, Theorem 2.1 applies, which entails Fix(Γ) 6= ∅. Let
u ∈ Fix(Γ). From u = Γ(u) ∈ S (u) we deduce both u ≥ u and u ∈ Uu.
Accordingly,

f̂(·, u) = f(·, u,∇u), ĝ(·, u) = g(·, u),

namely the function u solves problem (P). Further, u ∈ int(C1(Ω)+) because
of the strong maximum principle.

Finally, arguing as in Lemma 3.2 ensures that each solution to (P) lies in
C1,α(Ω). Since C1,α(Ω) ↪→ C1(Ω) compactly and the solution set of (P) is
closed in C1(Ω), the conclusion follows.

Remark 3.5. The same techniques can be applied for finding solutions to
the Neumann problem

− diva(∇u) + |u|p−2u = f(x, u,∇u) + g(x, u) in Ω,
u > 0 in Ω,
∂u

∂νa
= 0 on ∂Ω.

In fact, it is enough to replace the norm ‖·‖β,1,p with the standard one ‖·‖1,p.
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4 Uniqueness (for p = 2)

Throughout this section, p = 2, the operator a fulfills H(a), while the non-
linearities f and g comply with H(f) and H(g), respectively. The following
further conditions will be posited:

(a4) There exists c6 ∈ (0, 1] such that

〈a(ξ)− a(η), ξ − η〉 ≥ c6|ξ − η|2 ∀ ξ, η ∈ RN .

H′′(f) With appropriate c7, c8 > 0 one has

[f(x, s, ξ)− f(x, t, ξ)](s− t) ≤ c7|s− t|2 (4.1)

|f(x, t, ξ)− f(x, t, η)| ≤ c8|ξ − η| (4.2)

in Ω× R× RN .

H′(g) There is c9 > 0 such that

[g(x, s)− g(x, t)](s− t) ≤ c9|s− t|2 ∀x ∈ Ω, s, t ∈ [1,+∞). (4.3)

Moreover,
g(x, s) ≤ g(x, 1) in Ω× (1,+∞). (4.4)

Example 4.1. The parametric (2, q)-Laplacian ∆ + µ∆q, where 1 < q < 2,
µ ≥ 0, satisfies H(a) and (a4); cf. [18, Lemma A.0.5].

Theorem 4.1. Under the above assumptions, problem (P) admits a unique
solution provided

c7 + c1c8 + c9 < c2
1c6. (4.5)

Proof. Suppose u, v solve (P), test with u− v, and subtract to arrive at
ˆ

Ω

〈a(∇u)− a(∇v),∇(u− v)〉dx+ β

ˆ
∂Ω

|u− v|2dσ

=

ˆ
Ω

[f(·, u,∇u)− f(·, v,∇v)](u− v)dx

+

ˆ
Ω

[g(·, u)− g(·, v)](u− v)dx.

(4.6)

The left-hand side of (4.6) can easily be estimated from below via (a4) as
follows:ˆ

Ω

〈a(∇u)− a(∇v),∇(u− v)〉dx+ β

ˆ
∂Ω

|u− v|2dσ ≥ c6‖u− v‖2
β,1,2. (4.7)
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Using (4.1)–(4.2) and Hölder’s inequality we getˆ
Ω

[f(·, u,∇u)− f(·, v,∇v)](u− v)dx

=

ˆ
Ω

[f(·, u,∇u)− f(·, v,∇u)](u− v)dx

+

ˆ
Ω

[f(·, v,∇u)− f(·, v,∇v)](u− v)dx

≤ c7

ˆ
Ω

|u− v|2dx+ c8

ˆ
Ω

|∇u−∇v||u− v|dx

≤ c7‖u− v‖2
2 + c8‖∇(u− v)‖2‖u− v‖2

≤ c7

c2
1

‖u− v‖2
β,1,2 +

c8

c1

‖u− v‖2
β,1,2.

(4.8)

Observe now thatˆ
Ω

[g(·, u)− g(·, v)](u− v)dx

=

ˆ
Ω(max{u,v}≤1)

[g(·, u)− g(·, v)](u− v)dx

+

ˆ
Ω(min{u,v}>1)

[g(·, u)− g(·, v)](u− v)dx

+

ˆ
Ω(u≤1<v)

[g(·, u)− g(·, v)](u− v)dx

+

ˆ
Ω(v≤1<u)

[g(·, u)− g(·, v)](u− v)dx.

(4.9)

By hypothesis (g1) in H(g) one hasˆ
Ω(max{u,v}≤1)

[g(·, u)− g(·, v)](u− v)dx ≤ 0. (4.10)

Inequality (4.3) entailsˆ
Ω(min{u,v}>1)

[g(·, u)− g(·, v)](u− v)dx

≤ c9‖u− v‖2
2 ≤

c9

c2
1

‖u− v‖2
β,1,2.

(4.11)

Thanks to (g1) again and (4.4) we obtainˆ
Ω(u≤1<v)

[g(·, u)− g(·, v)](u− v)dx

≤
ˆ

Ω(u≤1<v)

[g(·, 1)− g(·, v)](u− v)dx ≤ 0.

(4.12)
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Likewise, ˆ
Ω(v≤1<u)

[g(·, u)− g(·, v)](u− v)dx ≤ 0. (4.13)

Plugging (4.10)–(4.13) into (4.9) and (4.7)–(4.9) into (4.6) yields

c6‖u− v‖2
β,1,2 ≤

(
c7

c2
1

+
c8

c1

+
c9

c2
1

)
‖u− v‖2

β,1,2.

On account of (4.5), this directly leads to u = v, as desired.

Remark 4.1. The conditions that guarantee existence or uniqueness, namely
(3.26), (3.27), and (4.5), represent a balance between data (growth or vari-
ation of reaction terms) and structure (driving operator and domain) of the
problem .

Remark 4.2. The choice p = 2 directly stems from the technical approach
adopted in proving Theorem 4.1. To treat the general case, a natural attempt
is to replace both |ξ − η|2 and |s − t|2 by |ξ − η|p and |s − t|p, respectively,
in hypotheses (a4), H′′(f), H′(g). However, if p > 2 then (4.1)–(4.3) imply
f(x, ·, ·) as well as g(x, ·) constants, whereas even the p-Laplacian would not
meet (a4) for 1 < p < 2.
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[20] S. Zeng, Z. Liu, and S. Migórski, Positive solutions to nonlinear non-
homogeneous inclusion problems with dependence on the gradient, J.
Math. Anal. Appl. 463 (2018), 432–448.

23


