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The first part of this paper deals with existence of solutions to the quasilinear
elliptic problem

—diva(z, Vu) = f(z,u, Vu) in £,
a(x,Vu) v =g(z,u) — Clu/P%u on R,

(P)
involving a general nonhomogeneous differential operator, namely diva, and
Carathéodory functions f : 2 xRxRN — R and g : 92xR — R. Under appropriate
conditions on the perturbations, we show that (P) possesses a bounded solution.
In the second part, we consider the special case when diva is the (p, ¢)-Laplacian
with a parameter p > 0, and study the asymptotic behavior of solutions as p goes
to zero or to infinity. A uniqueness result is also provided.
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1. Introduction

Let 2 C RY be a bounded domain with a C?-boundary 92. In this paper, we are interested in the
existence of solutions to the following quasilinear problem, driven by a nonhomogeneous differential operator

and with nonlinear boundary condition,

—diva(z, Vu) = f(z,u, Vu) in £2,
a(z,Vu) - v = g(z,u) — Jul"*u  on 1,

(1.1)

where v(z) denotes the outer unit normal of 2 at x € 92,1 < p < 00, ¢ > 0, and a : 2 x RV — RV
is a continuous strictly monotone map in the second variable satisfying appropriate regularity and growth

conditions, listed in hypotheses H(a) of Section 2.
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The nonlinearities f : 2 x R x RY — R and g : 92 x R — R are Carathéodory functions, that is,
i+ f(x,5,€), x — g(x,s) are measurable for all (s,&) € R x RN, while (s,&) — f(x,s,£), s — g(x,s) are
continuous for a.e. x € 2, respectively, for a.e. x € 9f2.

In the first part of this paper we prove that, under general growth conditions on the perturbations,
problem (1.1) admits a bounded weak solution. This result is obtained via the classical main theorem on
pseudomonotone operators. If div a coincides with the weighted (p, ¢)-Laplacian, namely

Apu~+ pAgu = div <|Vu\p72Vu + M|Vu|q72Vu> ) (1.2)

where 1 < ¢ < p < 00, > 0, and u € WHP(£2), then (1.1) becomes
—Apu — pAqu = f(z,u, Vu) in 2,

1.3
<|Vu|p_2Vu + u|Vu|q_2Vu> v =g(z,u) — Clul*u on HR. (13)

The second part treats the uniqueness of solutions to (1.3) and its asymptotic behavior as y — 0% and
1 — 0o, respectively.

It should be noted that the presence of a reaction depending also on the gradient of the solution prevents
to apply variational methods, like critical point theory. This difficulty is overcome by adapting the approach
of Averna—Motreanu—Tornatore [2], who considered problem (1.1) with a homogeneous Dirichlet boundary
condition and weighted (p, ¢)-Laplacian as defined in (1.2). Our paper exhibits at least two novelties:

e a more general differential operator, which may also depend on x € {2, appears;
e nonlinear Robin boundary conditions with perturbation g : 92 x R — R are taken on.

Moreover, a bounded solution to (1.1) exists once a suitable inequality involving the first eigenvalue of the
Robin eigenvalue problem for the p-Laplacian (cf. (2.7) in Section 2 and (3.6) of Section 3) holds.

For other existence results on quasilinear equations with convection term we refer to the papers of
De Figueiredo—Girardi-Matzeu [3], Dupaigne-Ghergu-Rédulescu [4], Faraci-Motreanu—Puglisi [5], Faria—
Miyagaki-Motreanu [6], Faria-Miyagaki-Motreanu-Tanaka [7], Motreanu—Motreanu—Moussaoui [14],
Motreanu-Tanaka [16], Motreanu—Tornatore [17], Ruiz [20], Tanaka [21], and the references therein. Finally,
we mention the works of Filippucci-Pucci-Radulescu [8] and Winkert [22] concerning problems with
nonlinear boundary condition and the recent monograph of Papageorgiou-Réadulescu—Repovs [18].

2. Preliminaries

For 1 < p < 0o, we denote by LP(£2) and LP(£2,RY) the usual Lebesgue spaces, equipped with the norm
|- |lp- If 1 < p < oo then WP(£2) stands for the Sobolev space, endowed with the norm || - || ,. The duality
pairing between W1P(§2) and its dual W1P(§2)* will be denoted by (-, ).

On the boundary 92 we consider the (N — 1)-dimensional Hausdorff (surface) measure o, by which we
can define in the usual way the boundary Lebesgue space LP(942), with norm || - ||p.00. It is known that
there exists a unique continuous linear operator v : WHP(2) — L(912), where p < ¢ < p. (see (3.3) below),
called trace map, such that

Y(u) = ul,,, forallueW"(2)nC"(1).

Henceforth, although all restrictions of Sobolev functions to 02 are understood in the sense of traces, we
will avoid the usage of the trace operator v to simplify notation.
Given any g > 0, consider the norm

1
g,a(z> g ) (2.1)

lullo = (IVully + ollu
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which is equivalent to the standard one ||-||1,,; see Papageorgiou-Winkert [19]. If s > 1 then 5" := %5 denotes
its conjugate, x - z is the inner product of z, 2 € RY, while R, := [0, +00). The well-known inequality

(|81‘r—281 — |82|r—252) (51 — 52) Z 22_T|81 — 82|r V81,82 S R (2.2)

holds, where r > 2; see Lindqvist [12, p. 71, inequality I]. The Lebesgue measure is denoted by |- | and the
same notation is used for the Hausdorff surface measure (it will be clear from the context which one is used).

Let us now introduce the hypotheses on the map a : 2 x RY — RY involved in the definition of the
differential operator. Suppose ¥ € C1((0,00)) satisfies

~ ' (t
0<dy< ()

<50 <d; and  dot?' <9(t) < d3 (1+1P7Y) (2.3)

for all £ > 0, with 1 < p < 0o and appropriate constants czo, Jl, Ciz, 623 > 0. The conditions on a : 2 x RY —
RY read as follows.

H(a): a(z,€) = a(x,[€]) € in 2 xRN where a € C°(2 x Ry) and a(z,t) > 0 for every (z,t) € 2 x (0, +00).
Moreover,

(i) @ € CH(2 x (0,00)), t — ta(x,t) is strictly increasing in (0, 00), and

ta,(x,t A —
lim ta(z,t) =0, lim W@l Gy veen
t—0+ t—ot a(z,t)
(i) [|Vea(z, )| < 624% for every (z,€) € 2 x RN \ {0}, with suitable dy > 0;
(iii) (Vea(z,&)y) -y > %hﬁ for all z € 2, £ € RV \ {0}, and y € RY.

Remark 2.1. Setting ,
Go(z,t) = / a(z,s)sds, (z,t) € N2 xRy,
0
one has Gy € C1(2 x R;) as well as t — G(x,t) increasing and strictly convex. Accordingly, the function
G(x,€) = Go(x, |€]) lies in C*(2 x RY) and is convex with respect to £. Since an easy computation shows

that
VeG(x.€) = (Go)(, |5|>|§ — aa, |E)E = ala,€) VE RV {0)

while V¢G(z,0) = 0, the function G(z,-) turns out a primitive of a(z,-). When combined with G(z,0) =0
and £ = G(z, ) convex, this entails

G(z,8) <a(x,&)-€& (x,6) € 2 xRN, (2.4)

The next lemma summarizes the main properties of a : 2 x RY — RM. It immediately follows from (2.3)
and H(a).

Lemma 2.2. Let H(a) be satisfied. Then:

(i) a € CO(2 xRN RMYNCLH(N2 x (RV\ {0}),RY). Moreover, the map & + a(x,€), x € RN, is continuous
and strictly monotone, whence mazximal monotone too.
(ii) |a(z,&)| < ds (1 + |£|p71) for every (z,€) € 2 x RN, where ds > 0.

(iii) a(x,§) - & > %\ﬂp for all (z,€) € 2 x RN, with dy given by (2.3).

Gathering Lemma 2.2 and (2.4) together yields the estimates below for the primitive G(z, -).
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Corollary 2.3. Under assumptions H(a) one has, for appropriate dg > 0,

~

Example 2.4. The following functions, where we drop the z-dependence for the sake of simplicity, fulfill
H(a).

(a) a(§) = |§|p72§7 with 1 < p < 00. It corresponds to the p-Laplacian
Ayu = div <|vu|p*2vu) Vue Whe(0).

The potential is G(£) = %|§|p.
(b) a(€) = [€["7%¢ + pl|¢|? 3¢, where 1 < ¢ < p < oo and p > 0. It arises from the parametric
(p, q)-Laplacian

u— Apu+ pAgu Yu € whr ().
The potential is G(£) = %|§|p + %|f|q~
p—2

(c) a(§) = (1 + |§|2) o &, with 1 < p < oo, It represents the generalized p-mean curvature differential
operator

. 2,P=2 1
w div [(1 4 |Vu|”) 2 Vu] Yue WHP(0).

The potential is G(§) = %(1 +[¢]P)E.
Let A: WhP(Q2) — WP (02)* be defined by

(A(u), @) == /Q a(z,Vu)-Vedr, u,oc W(Q). (2.5)

The next proposition collects some basic properties of A; proofs can be found in Gasiniski-Papageorgiou [9].

Proposition 2.5. Let H(a) be satisfied and let A be as in (2.5). Then the operator A is bounded, continuous,
monotone (hence maximal monotone), and of type (S4).

Evidently,
(Ap(u),p) = / IVulP"?Vu - Vodz Yu,o € WHP(12) (2.6)
0

represents a meaningful special case of A.
Given 8 > 0, consider the Robin eigenvalue problem

—Apu=Au"?u in 2,

2.7
[VulP *Vu-v=—Blul’ *u  on dL. @7

It is known (see Lé [10]) that the first eigenvalue A1, g of (2.7) is positive, simple, and isolated. Moreover,
it can be variationally characterized through

_ P P . Py, _
M p,8 _uGV;Illva(Q){/Q |Vul d:r—i—ﬂ/mz lul"do - /Q|u\ dx = 1}. (2.8)
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3. Existence results
The assumptions on the perturbations f : 2 x R x RY — R and g : 02 x R — R read as follows. To
avoid unnecessary technicalities, ‘for all z’ will take the place of ‘for almost all x’.

(H) f: 2xRxRY -5 Rand g: 92 x R — R are Carathéodory functions such that:
(i) There exist a7 € qul(.Q), ay € L2 (092) and aq, a2, a3 € Ry satisfying
D
[F(.5, )] < arl€]™ +azls|" ™ + aa(a) in 2xRxRY, (3.1)
19(2,8)| < asls[™ ™" + an(a) on 90 xR, (3.2)

where 1 < g1 < p* and 1 < g2 < p., with critical exponents

N _
P if p< N, (N —Dp

. ~———— ifp<N,

pt =S N—p Dy = N-p P (3.3)
400 otherwise, 400 otherwise.
(ii) There exist wy € L'(2),w, € L'(82) and by, be, b3 € R, such that

f(z,8,8)s <bi|€] + bals|” +wy(z) in 2xRxRY, (3.4)

g(x,8)s < bs|s|” + wy(x) on 9 x R.

Moreover,
—1 b3 . d2

b +baAy 5+ < < min 1 1 and 0< <. (3.6)

Definition 3.1. We say that u € WP(2) is a weak solution of problem (1.1) if it satisfies

/ a(x,Vu) -Vodr = [ f(z,u,Vu)pdz —|—/ [g(a:, u) — C|u|p_2u} pdo (3.7)
e 2 le)

for all test functions ¢ € WHP(£2).

Using the embeddings (cf. Adams [1])
i WEP(2) = LU(0) and ~: W'P(2) — L2(00), (3.8)

Holder’s inequality, as well as (H)(i), one easily verifies that all the integrals involved in (3.7) are finite.
We are now ready to formulate our existence result, whose proof chiefly exploits the main theorem on
pseudomonotone operators.

Theorem 3.2.  Under hypotheses H(a) and (H), problem (1.1) admits at least one weak solution u €
WLP(02) N L*(02).

Proof. Let Nf and Ng the Nemytskij operators associated with f and g, respectively, let i* : qul(.Q) —
WLP(0Q)* and v* : L9%(812) — WP(£2)* be the adjoints of embeddings (3.8), and let

Ny = i*oNf, Ny = fy*oNgo'y, N =~v%0o <C\ . |p72-> 0. (3.9)

Set, provided u € WP(02),
A(u) = A(u) = Ng(u) = Ng(u) + N(u). (3.10)
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From (H)(i) it immediately follows that A : W1P(Q2) — W1P(02)* maps bounded sets into bounded sets.
Moreover, the operator A is pseudomonotone. Indeed, if {u,} C WP () fulfills

Uy > u in WHP(02),  limsup(A(uy,), un —u) <0
n—oo
then, by compactness of embeddings (3.8), one has
Up > u in LY(2), wu, - u in L=2(00).
When combined with (3.1)—(3.2) this entails, after using Holder’s inequality,

lim fzyun, Vuy) (un —u)dz =0,
1?)

n—o0
lim g(z,un)(u, —u)do =0, (3.11)
lim C|un|p_2un(un —u)do =0,
whence
lim sup(A(uy,), u, — u) = limsup{A(uy), u, — u) <0. (3.12)
n— o0 n—00

Since A enjoys property (Sy), the weak convergence of {u,} in W1P(§2) and (3.12) yield u, — u. So,
A(u,) — A(u) in WHP(02)*, because A is continuous. Let us finally show that the operator A turns out
coercive, i.e.,

lm AW L (3.13)
lull p—oo [ullc.p
where || - ||¢,, denotes the equivalent norm on WP (£2) defined in (2.1), for p := ¢. Via (2.8) and (3.6) we
have

Vull? + B||lul? ul|?
Mys < Vull 52\ 5,00 < I ICZ;,, Vu e W(2)\ {0}, (3.14)
[[ullp [[uell
Exploiting Lemma 2.2(iii), (3.4), (3.5), and (3.14) leads to

(A(w), u)
:/Qa(z,Vu)~Vud:c+(||u\|z7agf/Qf(x,u,Vu)ud:cf[)Qg(w,u)udx

| d
> min {p_l, 1} lull¢ , = oIVl = bollully — llwylls = bsllull; 5o — llwglloe

. dy _ b3
> lmln {plv 1} — b1 —baA, 5 — C] [ulld , = llwrlls = llwgll1,00-

On account of (3.6), conclusion (3.13) follows at once from p > 1.

Summing up, A : WHP(2) — WHP(£2)* is bounded, pseudomonotone, and coercive. Thus, the main
theorem on pseudomonotone operators (see, e.g., Motreanu—Motreanu—Papageorgiou [15]) provides u €
WLP(02) such that A(u) = 0. Thanks to (3.10) the function u turns out a weak solution of problem (1.1),
while Theorem 3.1 in Marino-Winkert [13] gives u € W1P(£2) N L°°(£2). This completes the proof. O

Remark 3.3. To achieve the C*“-regularity of the solution given by Theorem 3.2, we need an additional
condition on the boundary term g, namely
l9(z,5) —g(y. )] < Lllz —y|" +1s —t°], |g(z,s)[ <L

for all (x,s), (y,t) € 002 x [—My, My], with appropriate L € Ry, a € (0,1], My > 0. In such a case, the
desired result follows from Marino-Winkert [13, Theorem 3.9], which is a direct consequence of the famous
Lieberman’s regularity theory [11].
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4. Asymptotic behavior and uniqueness results for the (p, q)-Laplacian

Throughout this section, a(z, &) = |§|p72£ + ,u|§|q72§, where 1 < g < p < oo and p > 0. Hence, problem
(1.1) writes

—Apu — pAgu = f(z,u, Vu) in {2,
(|Vu|p_2Vu + ,u|Vu|q_2Vu) v =g(z,u) — Clu’"*u on 8L, (Py)
while (3.6) becomes
by +baAy 5+ %3 <1 and B<¢, (4.1)
because dy = p— 1. If g := 0 then (P,) reduces to
—Apu = f(z,u, Vu) in 2, (Po)

|Vu|p_2Vu v =g(x,u) — C\u|p_2u on O1).

Using Example 2.4 and Theorem 3.2 we directly infer the following theorem.

Theorem 4.1. Let (H) be satisfied. Then, for each 1 > 0, problem (P,,) possesses at least one weak solution
u, € WHP(02) N L>(12).

To investigate the asymptotic behavior of (P,) as p goes to zero and +oo, respectively, the next
elementary a priori estimate will be employed.

Proposition 4.2. Let hypotheses (H) be satisfied and let u,, € WP (£2) N L>®(£2) be the weak solution of
problem (P,,) obtained from Theorem 4.1. Then there exists a constant C > 0, independent of u, such that

lupllep £C Vi eR,. (4.2)
Proof. Note that u, fulfills (3.7), pick ¢ := u,, and recall (3.14), to arrive at

lunllé p = IVullp + Cllually o0

g/ (|wu\p+u|wu|qu+</ [P do
2 a0

:/ f(z,u“,Vuu)uudz+/ g(x,uy)u, do
2 on

< 0 [[Vupllp + ballwp I} + lwslly + bslluplly oo + llwg

l1,00

_ b3
< (Bt bt 2 ) Bl + oogl + Doy laon

¢
Therefore, by (4.1), setting

lwslls + llwgllr,00
= (ot )

inequality (4.2) holds true for any p € Ry. O

C = >0

We first treat the case when pu — 0F.

Theorem 4.3. Let (H) be satisfied. Then to every sequence i, — 0 there correspond a (not relabeled)
subsequence {u,,, } C WP ()N L>(82) such that
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(1) uy, is a weak solution of (P,,) for alln € N,
(2) up,, — uwin WHP(2), and
(3) w € WHP(2) is a weak solution of (Py).

Proof. Fixed {u,} as above, Theorem 4.1 gives {u,,} C WhP(£2) N L*°(£2) enjoying (1). Thanks to
Proposition 4.2, the sequence {u,,, } turns out bounded. So, we may assume

Uy, —u in W'P(0), w,, —u in L%(Q) and L%2(90), (4.3)

which easily produce (3.11); cf. the proof of Theorem 3.2. From (3.7) written for u := w,,,, ¢ = u,, —u it
thus follows

WETOO<AP(U“")’ Uy, —u) =0,

with A4, given by (2.6), because p,, — 0. The (S )-property of A, now entails u,, — u in WP (), namely
(2) holds. Finally, due to (H)(i) and standard results on the Nemytskij operator, we have

Ny(up,) = Ne(u), Ng(up,) = Ng(u), N(up,) — N(u) (4.4)

in WHP(§2)*; see (3.9) for the meaning of symbols Ny, Ny, N. Since
/Q YV, P>V, - Vedz — un/ﬂ Vg, " *Vu,, - Vodr

= / f(a:, Uiy, 5 Vuun)¢d9€ +/ [g(x?uﬂn) - <|U'Hn|p_2uﬂn:| pdo, neN,
(9] o0

and, moreover,
(Ap(up,) @) = (Ap(w), ), (Ag(up,), @) = (Aq(u), @)
whatever o € WHP(£2), while y,, — 0, letting n — +o00 in (4.5) shows (3). O

We now come to the case when p — +o00.

Theorem 4.4. If hypotheses (H) hold, p,, — +oo, and {u,, } € WP(£2) N L>(R2) fulfills conclusion (1)
of Theorem 4.3 then u,,,, — ¢ in WH4(R2) for some ¢ € R.

Proof. The same arguments employed in the previous proof yield here (4.3), (4.4), as well as

1 _ _
;/Q|vuun‘p Qvuun 'V<Pd$+/n‘vuun|q Qvuun -Vedx
1

1
== [ f@w, Vu,)edo+— [ |g(e,un,) = Cluy,

= P2
Hn J 0 Hn Joo

Uun} pdo,
with arbitrary ¢ € WP(2). Put ¢ =: u,,,, —u and recall that u, — 400 to achieve
ngr_{_loo<Aq (Wi ) Ups, — 1) = 0,

i.e., uy, — uin WH(2) by the (S;)-property of A,. From (4.6) it next follows, after letting n — +oo0,
/ IVul! *Vu - Vodr =0, ¢ec WhP(R),
7

which clearly means
Aqu=0 in £2, |Vul'*Vu v =0 on 92.

Hence, u = c¢ for some ¢ € R. Since these arguments apply to every subsequence of {u,, }, the proof is
complete. [



S.A. Marano and P. Winkert / Nonlinear Analysis 187 (2019) 159-169 167

Remark 4.5. Theorems 4.3—4.4 remain valid for the more general problem

—div[a1(z, Vu) + paz(z, Vu)] = f(z, u, Vu) in £,
[a1(x, Vi) 4 pag(z, Vu)] - v = g(z,u) — (lul’ >u on 91,

where a1, as : 2 x RY — RV satisfy assumptions H(a).
The last part of this section addresses uniqueness of weak solutions to problem (P,). Adapting the

approach of Averna—Motreanu-Tornatore [2], we will treat the cases p = 2 or ¢ = 2 under the following

assumptions.

(U1) There exist ¢1,co € Ry such that

(fz,5,6) = f(2,t,6)) (s —t) <er]s —t]* Ve e 2, s,t €R, £ € RV,
(9(x,s) — g(z, 1)) (s — t) < cals — t|* Vo € 00, s,t € R.

(U2) With appropriate p € Lr/(Q), where 1 < ' < p*, and ¢35 € R one has both § — f(z,s,£) — p(z)
linear for every (z,s) € 2 x R and

1f(xz,8,6) — p(x)] < eslé| in 2 xR xR,

Theorem 4.6. Let (H), (U1), and (U2) be satisfied.

_1
(a) Ifp:=2>q>1and 01)\1_5 5t e 22B +co¢t < 1 then (P,) admits a unique weak solution for every
> 0.
(b) If p > q := 2 then (P ) possesses only one weak solution provided

22-p
min {ﬂ,} >cl)\125+03)\125+ (4.7
1410027 C

Proof. Fix 1 > 0. Theorem 4.1 gives a weak solution u,, € WhP(2)NL>(£2) of (P,). Suppose v, € WP(12)
enjoys the same property. Using (3.7) with ¢ = u, — v, easily leads to

<Ap(uu) - Ap(Uu)v Up — UM> + M(Aq(uu) - Aq(“p)’ Uy — Uu>
+ </89(|uu|p_2“u - |vu|p_2v“)(uu —wv,)do

= T = 0 V)~ ) 49

+ [ (alen) = o@0,)) = ) don
(a) Let p :== 2 > ¢ > 1. By monotonicity of A, the left-hand side in (4.8) can be estimated through
(Az(up) — Az(vy), up — o) + pl{Ag(up) — Ag(vn), wp — )

—|—C/ (uy —v)(uy —vy) do (4.9)

> [V (upe = v I3 + Cl\uu = vull3,00 = llup — vullZ,
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where || - [|¢,2 denotes the equivalent norm (2.1). As regards the right-hand side, due to (U1), (U2), Hélder’s
inequality, and (3.14), we have

/Q(f(x,u,“VuH) — f(z,v,, Vu,))(u, —v,) de
+ /Q(f(x,v#, Vu,) — f(z, v, Vou)) (u, —v,) dx

+ /6 (gl = 9o ,))(w  v,) do

< exlluy — vll3 + /Q (f <x,vH,V <;(uu - m?)) - p(x)> iz (4.10)

+ calluy, — U;L”g,an
<cilluy — vu”% +c3 /Q [up — vul|V(up — o)l do + c2||uy, — UuH%,aQ
1 B
< (@b ey +ac™) o = ol
Gathering (4.8)—(4.10) together now yields

_1 B
llup — ’Uu”g,z < <Cl>‘1_,é,5 + ‘33)‘1,22,/3 + o€ 1) Jup — Uqu,za

~1
which implies v, = v, because cl)\l_éﬁ + 03)\1722”3 + %2 < 1.
(b) Let p > q := 2. Likewise before, the left-hand side of (4.8) becomes

(Ap(up) = Ap(vp), up — vp) + p{Az(uy) — Az(vy), up — vy)
- -2
+ C/ |uu|p = vl ”u) (up —vyu)do (4.11)
-2 -2
> IV (n — w3 + € / (0”20 ol 20,) (e — w,) o,
o0

while (2.2) entails

/m (|uu|P*2uM - |vu|P*2uﬂ) (up = o) do > 2P|, — v, 1% - (4.12)
Via Holder’s inequality we then get

2 2 p=2 p=2
lun = vall3 00 < I = vall2.00 10217 < lluy = vall o (1+ 10217 ) . (4.13)

Thus, from (4.11)—(4.13) it follows

(Ap(up) + Ap(vy), uy — vy) + p(Az(uy) + As(vy), vy — vy)

+ C/ |u#|p — |vu "™ vu) (up —vu) do
22-p
= pl|V(uy, - Uu)”% + Cj”u# - Uu”%,ao
14002 (4.14)
2P
> min {,u } (HV( —Uu)||%+CHuu_ )
1+ |6(2|

. 22 )
= min § g1, ————— bl — vl
1+ 007
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Combining (4.8) with (4.14) and (4.10) yields

. 22-p _ -1 _
min § g, ———— lu, — v“||g’2 < <cl)\1’§)5 + C3>\1,2§’ﬂ + c2C 1) llu, — v#||g,2.
1+ 002

Therefore, if p satisfies (4.7) then u, =v,. O
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