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Abstract. A homogeneous Dirichlet problem with (p, q)-Laplace differential operator and reaction
given by a parametric p-convex term plus a q-concave one is investigated. A bifurcation-type result,
describing changes in the set of positive solutions as the parameter λ > 0 varies, is proven. Since for
every admissible λ the problem has a smallest positive solution ūλ, both monotonicity and continuity
of the map λ 7→ ūλ are studied.

1. Introduction

Let Ω be a bounded domain in RN with a C2-boundary ∂Ω, let 1 < τ < q < p < +∞, and let
f : Ω× R→ R be a Carathéodory function. Consider the Dirichlet problem

(Pλ)

 −∆pu−∆qu = uτ−1 + λf(x, u) in Ω,
u > 0 in Ω,
u = 0 on ∂Ω,

where λ > 0 is a parameter while ∆r, r > 1, denotes the r-Laplacian, namely
∆ru := div(|∇u|r−2∇u) ∀u ∈W 1,r

0 (Ω).
The nonhomogeneous differential operator Au := ∆pu+ ∆qu that drives (Pλ) is usually called (p, q)-
Laplacian. It stems from a wide range of important applications, including models of elementary
particles [8], biophysics [9], plasma physics [26], reaction-diffusion equations [7], elasticity theory [27],
etc. That’s why the relevant literature looks daily increasing and numerous meaningful works on this
subject are by now available; see the survey paper [19] for a larger bibliography.

Since τ < q < p, the function ξ 7→ ξτ−1 grows (q − 1)-sublinearly at +∞, whereas ξ 7→ f(x, ξ)
is assumed to be (p − 1)-superlinear near +∞, although it need not satisfy the usual (in such cases)
Ambrosetti-Rabinowitz condition. So, the reaction in (Pλ) exhibits the competing effects of concave
and convex terms, with the latter multiplied by a positive parameter.

The aim of this paper is to investigate how the solution set of (Pλ) changes as λ varies. In particular,
we prove that there exists a critical parameter value λ∗ > 0 for which problem (Pλ) admits

• at least two solutions if λ ∈ (0, λ∗),
• at least one solution when λ = λ∗, and
• no solution provided λ > λ∗.

Moreover, we detect a smallest positive solution ūλ for each λ ∈ (0, λ∗] and show that the map λ 7→ ūλ
turns out left-continuous, besides increasing.

The first bifurcation result for semilinear Dirichlet problems driven by the Laplace operator was
established, more than twenty years ago, in the seminal paper [2] and then extended to the p-Laplacian
in [11,16]. These works treat the reaction

ξ 7→ λξs−1 + ξr−1, ξ ≥ 0,
where 1 < s < p < r < p∗, λ > 0, and p∗ denotes the critical Sobolev exponent. A wider class of
nonlinearities has recently been investigated in [22], while [24] deals with Robin boundary conditions.
It should be noted that, unlike our case, λ always multiplies the concave term, which changes the
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analysis of the problem. Finally, [4, 14, 23] contain analogous bifurcation theorems for problems of a
different kind, whereas [20,21] study (p, q)-Laplace equations having merely concave right-hand side.

Our approach is based on the critical point theory, combined with appropriate truncation and
comparison techniques.

2. Mathematical background and hypotheses

Let (X, ‖ · ‖) be a real Banach space. Given a set V ⊆ X, write V for the closure of V , ∂V for the
boundary of V , and intX(V ) or simply int(V ), when no confusion can arise, for the interior of V . If
x ∈ X and δ > 0 then

Bδ(x) := {z ∈ X : ‖z − x‖ < δ} , Bδ := Bδ(0) .
The symbol (X∗, ‖ · ‖X∗) denotes the dual space of X, 〈· , ·〉 indicates the duality pairing between X
and X∗, while xn → x (respectively, xn ⇀ x) in X means ‘the sequence {xn} converges strongly
(respectively, weakly) in X’. We say that A : X → X∗ is of type (S)+ provided

xn ⇀ x in X, lim sup
n→+∞

〈A(xn), xn − x〉 ≤ 0 =⇒ xn → x.

The function Φ : X → R is called coercive if lim
‖x‖→+∞

Φ(x) = +∞ and weakly sequentially lower

semicontinuous when
xn ⇀ x in X =⇒ Φ(x) ≤ lim inf

n→∞
Φ(xn).

Suppose Φ ∈ C1(X). We denote by K(Φ) the critical set of Φ, i.e.,
K(Φ) := {x ∈ X : Φ′(x) = 0}.

The classical Cerami compactness condition for Φ reads as follows:
(C) Every {xn} ⊆ X such that {Φ(xn)} is bounded and (1 + ‖xn‖)Φ′(xn) → 0 in X∗ has a

convergent subsequence.
From now on, Ω indicates a fixed bounded domain in RN with a C2-boundary ∂Ω. Let u, v : Ω → R
be measurable and let t ∈ R. The symbol u ≤ v means u(x) ≤ v(x) for almost every x ∈ Ω,
t± := max{±t, 0}, u±(·) := u(·)±. If u, v belong to a function space, say Y , then we set

[u, v] := {w ∈ Y : u ≤ w ≤ v} , [u) := {w ∈ Y : u ≤ w} .
The conjugate exponent r′ of a number r ≥ 1 is defined by r′ := r/(r − 1), while r∗ indicates its
Sobolev conjugate, namely

r∗ :=
{

Nr
N−r when r < N,

+∞ otherwise.
As usual,

‖u‖r :=
(ˆ

Ω
|u|r dx

)1/r
∀u ∈ Lr(Ω), ‖u‖1,r :=

(ˆ
Ω
|∇u|r dx

)1/r
∀u ∈W 1,r

0 (Ω),

and W−1,r′(Ω) denotes the dual space of W 1,r
0 (Ω). We will also employ the linear space C1

0 (Ω) :=
{u ∈ C1(Ω) : ub∂Ω= 0}, which is complete with respect to the standard C1(Ω)-norm. Its positive cone

C+ := {u ∈ C1
0 (Ω) : u(x) ≥ 0 in Ω}

has a nonempty interior given by

int(C+) =
{
u ∈ C+ : u(x) > 0 ∀x ∈ Ω, ∂u

∂n
(x) < 0 ∀x ∈ ∂Ω

}
.

Here n(x) denotes the outward unit normal to ∂Ω at x.
Let Ar : W 1,r

0 (Ω)→W−1,r′(Ω) be the nonlinear operator stemming from the negative r-Laplacian,
i.e.,

〈Ar(u), v〉 :=
ˆ

Ω
|∇u|r−2∇u · ∇v dx , u, v ∈W 1,r

0 (Ω) .
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We know [12, Section 6.2] that Ar is bounded, continuous, strictly monotone, and of type (S)+.
The Liusternik-Schnirelmann theory gives an increasing sequence {λn,r} of eigenvalues for Ar. The
following assertions can be found in [12, Section 6.2].

(p1) λ1,r is positive, isolated, and simple.
(p2) ‖u‖rr ≤

1
λ1,r
‖u‖r1,r for all u ∈W 1,r

0 (Ω).

(p3) λ1,r admits an eigenfunction φ1,r ∈ int(C+) such that ‖φ1,r‖r = 1.
Proposition 13 of [6] then ensures that

(p4) If r 6= r̂ then φ1,r and φ1,r̂ are linearly independent.
Let g : Ω× R→ R be a Carathéodory function satisfying the growth condition

|g(x, t)| ≤ a(x)
(
1 + |t|s−1) in Ω× R,

where a ∈ L∞(R), 1 < s ≤ p∗. Set G(x, ξ) :=
´ ξ

0 g(x, t) dt and consider the C1-functional ϕ :
W 1,p

0 (Ω)→ R defined by

ϕ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
G(x, u(x)) dx, u ∈W 1,p

0 (Ω).

Proposition 2.1 ([13], Proposition 2.6). If u0 ∈ W 1,p
0 (Ω) is a local C1

0 (Ω)-minimizer of ϕ then
u0 ∈ C1,α(Ω) for some α ∈ (0, 1) and u0 turns out to be a local W 1,p

0 (Ω)-minimizer of ϕ.

Combining this result with the strong comparison principle below, essentially due to Arcoya-Ruiz [3],
shows that certain constrained minimizers actually are ‘global’ critical points. Recall that, given
h1, h2 ∈ L∞(Ω),

h1 ≺ h2 ⇐⇒ ess inf
K

(h2 − h1) > 0 for any nonempty compact set K ⊆ Ω.

Proposition 2.2. Let a ∈ R+, h1, h2 ∈ L∞(Ω), u1 ∈ C1
0 (Ω), u2 ∈ int(C+). Suppose h1 ≺ h2 as well

as
−∆pui −∆qui + a|ui|p−2ui = hi in Ω, i = 1, 2.

Then, u2 − u1 ∈ int(C+).

Throughout the paper, ‘for every x ∈ Ω’ will take the place of ‘for almost every x ∈ Ω’, c0, c1, . . .
indicate suitable positive constants, f : Ω × R → R is a Carathéodory function such that f(· , t) = 0
provided t ≤ 0, while F (x, ξ) :=

´ ξ
0 f(x, t) dt.

The following hypotheses will be posited.
(h1) There exist θ ∈ [τ, q] and r ∈ (p, p∗) such that

c1t
p−1 + c2t

q−1 ≤ f(x, t) ≤ c0
(
tθ−1 + tr−1) ∀ (x, t) ∈ Ω× R+ ,

where c2 > λ1,q.
(h2) lim

ξ→+∞
F (x,ξ)
ξp = +∞ uniformly with respect to x ∈ Ω.

(h3) lim inf
ξ→+∞

f(x,ξ)ξ−pF (x,ξ)
ξβ

≥ c3 uniformly in x ∈ Ω. Here, β > τ and

(r − p) max
{
Np−1, 1

}
< β < p∗.

(h4) To every ρ > 0 there corresponds µρ > 0 such that t 7→ f(x, t) + µρt
p−1 is nondecreasing in

[0, ρ] for any x ∈ Ω.
By (h2)–(h3) the perturbation f(x, ·) is (p−1)-superlinear at +∞. In the literature, one usually treats
this case via the well-known Ambrosetti-Rabinowitz condition, namely:

(AR) With appropriate M > 0, σ > p one has both ess inf
Ω

F (· ,M) > 0 and

(2.1) 0 < σF (x, ξ) ≤ f(x, ξ)ξ , (x, ξ) ∈ Ω× [M,+∞).
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It easily entails c3ξσ ≤ F (x, ξ) in Ω × [M,+∞), which forces (h2). However, nonlinearities having a
growth rate ‘slower’ than tσ−1 at +∞ are excluded from (2.1). Thus, assumption (h3) incorporates in
our framework more situations.

Example 2.3. Let c2 > λ1,q. The functions f1, f2 : R+ → R defined by

f1(t) :=
{
tp−1 + c2t

τ−1 if 0 ≤ t ≤ 1,
tr−1 + c2t

q−1 otherwise,
f2(t) := tp−1 log(1 + t) + c2t

q−1, t ∈ R+,

satisfy (h1)–(h4). Nevertheless, f1 alone complies with condition (AR).

3. A bifurcation-type theorem

Write Sλ for the set of positive solutions to (Pλ). Lieberman’s nonlinear regularity theory [18, p.
320] and Pucci-Serrin’s maximum principle [25, pp. 111,120] yield

Sλ ⊆ int(C+).

Put L := {λ > 0 : Sλ 6= ∅}. Our first goal is to establish some basic properties of L. From now on,
X := W 1,p

0 (Ω) and ‖ · ‖ := ‖ · ‖1,p.

Proposition 3.1. Under (h1) one has L 6= ∅.

Proof. Given λ > 0, consider the C1-functional Ψλ : W 1,p
0 (Ω)→ R defined by

Ψλ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
dx

ˆ u(x)

0
gλ(t) dt ∀u ∈W 1,p

0 (Ω),

where
gλ(t) := (t+)τ−1 + λc0

[
(t+)θ−1 + (t+)r−1] , t ∈ R.

Evidently, gλ fulfills (2.1) once σ ∈ (p, r) and M > 0 is big enough. So, condition (C) holds true for
Ψλ. Moreover,

u ∈ int(C+) =⇒ lim
t→+∞

Ψλ(tu) = −∞

because r > p. Observe next that if s ∈ [1, p∗] then

‖u‖s ≤ c‖u‖p∗ ≤ C‖u‖ ∀u ∈ X,

with C := C(s,Ω). This easily leads to

Ψλ(u) ≥ 1
p
‖u‖p − c4‖u‖τ − λc5

[
‖u‖θ + ‖u‖r

]
=
[

1
p
− c4‖u‖τ−p − λc5

(
‖u‖θ−p + ‖u‖r−p

)]
‖u‖p, u ∈ X.

(3.1)

Let us set, for any t > 0,

γλ(t) := c4t
τ−p + λc5(tθ−p + tr−p), γ̂λ(t) := (c4 + λc5)tτ−p + 2λc5tr−p.

From τ ≤ θ < p < r it follows λc5tθ−p ≤ λc5 (tτ−p + tr−p), which implies

(3.2) 0 < γλ(t) ≤ γ̂λ(t) in (0,+∞).

Since lim
t→0+

γ̂λ(t) = lim
t→+∞

γ̂λ(t) = +∞, there exists t0 > 0 satisfying γ̂′λ(t0) = 0. One has

t0 := t0(λ) :=
[

(c4 + λc5)(p− τ)
2λc5(r − p)

] 1
r−τ

and, via simple calculations, lim
λ→0+

γ̂λ(t0) = 0. On account of (3.1)–(3.2) we can thus find λ0 > 0 such
that

Ψλ(u) ≥ mλ > 0 = Ψλ(0) for all u ∈ ∂B(0, t0), λ ∈ (0, λ0).
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Pick λ ∈ (0, λ0). The mountain pass theorem entails Ψ′λ(ūλ) = 0 and Ψλ(ūλ) ≥ mλ with appropriate
ūλ ∈ X. Hence,

(3.3) 〈Ap(ūλ) +Aq(ūλ), v〉 =
ˆ

Ω

[
(ū+
λ )τ−1 + λc0

(
(ū+
λ )θ−1 + (ū+

λ )r−1)] v dx, v ∈ X,

and ūλ 6= 0. Choosing v := −ū−λ in (3.3) yields ‖∇ū−λ ‖pp + ‖∇ū−λ ‖qq = 0, namely ū−λ = 0. This forces
ūλ ≥ 0 while, by (3.3) again,

−∆pūλ −∆qūλ = ūτ−1
λ + λc0

(
ūθ−1
λ + ūr−1

λ

)
in Ω.

Lieberman’s nonlinear regularity theory and Pucci-Serrin’s maximum principle finally lead to ūλ ∈
int(C+). Now define, provided (x, ξ) ∈ Ω× R,

f̄λ(x, ξ) :=
{

(ξ+)τ−1 + λf(x, ξ+) if ξ ≤ ūλ(x),
ūλ(x)τ−1 + λf(x, ūλ(x)) otherwise,

F̄λ(x, ξ) :=
ˆ ξ

0
f̄λ(x, t) dt.

An easy verification ensures that the associated C1-functional

Φ̄λ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
F̄λ(x, u(x)) dx, u ∈ X,

is coercive and weakly sequentially lower semicontinuous. So, it attains its infimum at some point
uλ ∈ X. Assumption (h1) produces

Φ̄λ(uλ) < 0 = Φ̄λ(0),
i.e., uλ 6= 0, because τ < q < p. As before, from

(3.4) 〈Ap(uλ) +Aq(uλ), v〉 =
ˆ

Ω
f̄λ(x, uλ(x))v(x) dx ∀ v ∈ X

we infer uλ ≥ 0. Test (3.4) with v := (uλ − ūλ)+, exploit (h1) again, and recall (3.3) to arrive at

〈Ap(uλ) +Aq(uλ), (uλ − ūλ)+〉 =
ˆ

Ω

[
ūτ−1
λ + λf(· , ūλ)

]
(uλ − ūλ)+dx

≤
ˆ

Ω

[
ūτ−1
λ + λc0(ūθ−1

λ + ūr−1
λ )

]
(uλ − ūλ)+dx

= 〈Ap(ūλ) +Aq(ūλ), (uλ − ūλ)+〉,
which entails uλ ≤ ūλ by monotonicity. Summing up, uλ ∈ [0, ūλ] \ {0}. On account of (3.4), one thus
has uλ ∈ Sλ for any λ ∈ (0, λ0). This completes the proof. �

Our next result ensures that L is an interval.

Proposition 3.2. Let (h1) be satisfied. If λ̂ ∈ L then (0, λ̂) ⊆ L.

Proof. Pick û ∈ Sλ̂, λ ∈ (0, λ̂), and define, provided (x, ξ) ∈ Ω× R,

f̂λ(x, ξ) :=
{

(ξ+)τ−1 + λf(x, ξ+) if ξ ≤ û(x),
û(x)τ−1 + λf(x, û(x)) otherwise,

F̂λ(x, ξ) :=
ˆ ξ

0
f̂λ(x, t) dt.

The associated energy functional

Φ̂λ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
F̂λ(x, u(x)) dx, u ∈ X,

turns out coercive, weakly sequentially lower semicontinuous, besides C1. Now, arguing exactly as
above yields the conclusion. �

A careful reading of this proof allows one to state the next ‘monotonicity’ property.

Corollary 3.3. Under hypothesis (h1), for every λ̂ ∈ L, uλ̂ ∈ Sλ̂, and λ ∈ (0, λ̂) there exists uλ ∈ Sλ
such that uλ ≤ uλ̂.

Actually, we can prove a more precise assertion.
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Proposition 3.4. Suppose (h1) and (h4) hold. Then to each λ̂ ∈ L, uλ̂ ∈ Sλ̂, λ ∈ (0, λ̂) there
corresponds uλ ∈ Sλ fulfilling uλ̂ − uλ ∈ int(C+).

Proof. Write ρ := ‖uλ̂‖∞. If µρ is given by (h4) while uλ comes from Corollary 3.3 then

−∆puλ̂ −∆quλ̂ + λµρu
p−1
λ̂

= uτ−1
λ̂

+ λ̂f(x, uλ̂) + λµρu
p−1
λ̂

= uτ−1
λ̂

+ λf(x, uλ̂) + λµρu
p−1
λ̂

+ (λ̂− λ)f(x, uλ̂)

≥ uτ−1
λ + λf(x, uλ) + λµρu

p−1
λ = −∆puλ −∆quλ + λµρu

p−1
λ

(3.5)

because uλ ≤ uλ̂ and f(x, t) ≥ 0 once t ≥ 0. The function h(x) := (λ̂ − λ)f(x, uλ̂(x)) lies in L∞(Ω).
Indeed, on account of (h1), we have

0 ≤ h(x) ≤ c0(λ̂− λ)
[
‖u‖θ−1
∞ + ‖u‖r−1

∞
]
∀x ∈ Ω.

Pick any compact set K ⊆ Ω. Recalling that uλ̂ ∈ int(C+) and using (h1) again gives

h(x) ≥ (λ̂− λ)
[
c1uλ̂(x)p−1 + c2uλ̂(x)q−1] ≥ (c1 inf

K
up−1
λ̂

+ c2 inf
K
uq−1
λ̂

)
> 0, x ∈ Ω,

whence 0 ≺ h. Now, (3.5) combined with Proposition 2.2 entails uλ̂ − uλ ∈ int(C+). �

The interval L turns out to be bounded.

Proposition 3.5. Let (h1) and (h4) be satisfied. If λ∗ := supL then λ∗ <∞.

Proof. Fix λ ∈ L, uλ ∈ Sλ. Note that we can suppose λ > 1, otherwise L would be bounded, which of
course entails λ∗ <∞. Define

gλ(x, ξ) :=
{
λ
[
c1(ξ+)p−1 + c2(ξ+)q−1] if ξ ≤ uλ(x),

λ
[
c1uλ(x)p−1 + c2uλ(x)q−1] otherwise,

Gλ(x, ξ) :=
ˆ ξ

0
gλ(x, t)dt

for every (x, ξ) ∈ Ω× R, as well as

Ψλ(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
Gλ(x, u(x)) dx, u ∈ X.

The same arguments employed before yield here a global minimum point, say ūλ, to Ψλ. So, in
particular,

(3.6) 〈Ap(ūλ) +Aq(ūλ), v〉 =
ˆ

Ω
gλ(x, ūλ(x))v(x) dx ∀ v ∈ X.

Choosing v := −ū−λ first and then v := (ūλ − uλ)+ we obtain ūλ ∈ [0, uλ]; cf. the proof of Proposition
3.1. Since, by (p3) in Section 2, uλ, φ1,q ∈ int(C+), through [22, Proposition 1] one has tφ1,q ≤ uλ,
with t > 0 small enough. Thus, on account of (p3) again,

Ψλ(tφ1,q) = 1
p
‖∇(tφ1,q)‖pp + 1

q
‖∇(tφ1,q)‖qq −

ˆ
Ω
Gλ(x, tφ1,q(x)) dx

= tp

p
‖∇φ1,q‖pp + tq

q
‖∇φ1,q‖qq −

ˆ
Ω
λ

(
c1
tp

p
φp1,q + c2

tq

q
φq1,q

)
dx

= tp

p
‖∇φ1,q‖pp + tq

q
λ1,q − λc1

tp

p
‖φ1,q‖pp − λc2

tq

q

≤ tp

p
‖∇φ1,q‖pp + tq

q
(λ1,q − λc2)

<
tp

p
‖∇φ1,q‖pp + tq

q
λ1,q(1− λ) = c6t

p − c7tq.

Now, recall that q < p and decrease t when necessary to achieve

Ψλ(ūλ) = min
X

Ψλ ≤ Ψλ(tφ1,q) < 0 = Ψλ(0),
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i.e., ūλ 6= 0. Summing up, ūλ ∈ [0, uλ] \ {0}, whence, by (3.6), it turns out a positive solution of the
equation

−∆pu−∆qu = λc1|u|p−2u+ λc2|u|q−2u in Ω.
Due to [5, Theorem 2.4], this prevents λ from being arbitrary large, as desired. �

Le us finally prove that L = (0, λ∗]. From now on, Φλ : X → R will denote the C1-energy functional
associated with problem (Pλ). Evidently,

(3.7) Φλ(u) = 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

1
τ
‖u+‖ττ − λ

ˆ
Ω
F (x, u+(x)) dx ∀u ∈ X.

Proposition 3.6. Under (h1), (h3), and (h4) one has λ∗ ∈ L.

Proof. Pick any {λn} ⊆ (0, λ∗) fulfilling λn ↑ λ∗. Via Corollary 3.3, construct a sequence {un} ⊆ X
such that un ∈ Sλn , un ≤ un+1. Then

(3.8) 〈Ap(un) +Aq(un), v〉 =
ˆ

Ω
uτ−1
n v dx+ λn

ˆ
Ω
f(· , un)v dx, v ∈ X.

We can also assume Φλ(un) < 0 (see the proof of Proposition 3.1), which means

(3.9) ‖∇un‖pp + p

q
‖∇un‖qq −

p

τ
‖un‖ττ − λn

ˆ
Ω
pF (x, un(x)) dx < 0.

Testing (3.8) with v := un gives

(3.10) ‖∇un‖pp + ‖∇un‖qq = ‖un‖ττ + λn

ˆ
Ω
f(· , un)un dx.

Since q < p while λ1 ≤ λn, from (3.9)–(3.10) it follows

(3.11)
ˆ

Ω
[f(· , un)un − pF (· , un)] dx ≤ 1

λ1

(p
τ
− 1
)
‖un‖ττ ∀n ∈ N.

Observe next that, thanks to (h1) and (h3), one has

f(x, ξ)ξ − pF (x, ξ) ≥ c8ξβ − c9 in Ω× R+ .

Consequently, (3.11) becomes

c8‖un‖ββ ≤
1
λ1

(p
τ
− 1
)
‖un‖ττ + c10 ≤ c11‖un‖τβ + c10, n ∈ N,

because τ < β. This clearly forces
(3.12) ‖un‖β ≤ c12 ∀n ∈ N.

If r ≤ β then {un} turns out also bounded in Lr(Ω). Using (3.10) besides (h1) entails

‖un‖p ≤ ‖∇un‖pp + ‖∇un‖qq ≤ ‖un‖ττ + λ∗
ˆ

Ω
f(· , un)un dx

≤ |Ω|1−τ/r‖un‖τr + λ∗c0

ˆ
Ω

(uθn + urn) dx

≤ |Ω|1−τ/r‖un‖τr + λ∗c0

ˆ
Ω

[(1 + urn) + urn] dx,

(3.13)

whence {un} ⊆ X is bounded. Suppose now β < r < p∗. Two cases may occur.
1) p < N . Let t ∈ (0, 1) satisfy

(3.14) 1
r

= 1− t
β

+ t

p∗
.

The interpolation inequality [12, p. 905] yields ‖un‖r ≤ ‖un‖1−tβ ‖un‖tp∗ . Via (3.12) we thus obtain

(3.15) ‖un‖rr ≤ c13‖un‖trp∗ , n ∈ N.
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Reasoning exactly as before and exploiting (3.15) produce

(3.16) ‖un‖p ≤ ‖∇un‖pp + ‖∇un‖qq ≤ c14
(
1 + ‖un‖trp∗

)
≤ c15

(
1 + ‖un‖tr

)
.

Finally, note that tr < p. Indeed, (r − p)Np < β due to (h3), while

tr < p ⇐⇒ r − β
p∗ − β

<
p

p∗
⇐⇒ (r − p)N

p
< β;

cf. (3.14). Now, the boundedness of {un} ⊆ X directly stems from (3.16).
2) p ≥ N , which implies p∗ = +∞. We will repeat the previous argument with p∗ replaced by any
σ > r. Accordingly, if t ∈ (0, 1) fulfills 1

r = 1−t
β + t

σ then tr = σ(r−β)
σ−β . Since, thanks to (h3) again,

lim
σ→+∞

σ(r − β)
σ − β

= r − β < p,

one arrives at tr < p for σ large enough. This entails {un} ⊆ X bounded once more.
Hence, in either case, we may assume

(3.17) un ⇀ u∗ in X and un → u∗ in Lr(Ω),

where a subsequence is considered when necessary. Testing (3.8) with v := un − u∗ thus yields, as
n→ +∞,

lim
n→+∞

〈Ap(un) +Aq(un), un − u∗〉 = 0,

whence, by monotonicity of Aq,

lim sup
n→+∞

[〈Ap(un), un − u∗〉+ 〈Aq(u), un − u∗〉] ≤ 0.

On account of (3.17) it follows
lim sup
n→+∞

〈Ap(un), un − u∗〉 ≤ 0.

Recalling that Ap enjoys the (S)+-property, we infer un → u∗ in X, besides 0 ≤ un ≤ u∗ for all n ∈ N.
Finally, let n→ +∞ in (3.8) to get

〈Ap(u∗) +Aq(u∗), v〉 =
ˆ

Ω
(u∗)τ−1v dx+ λ∗

ˆ
Ω
f(· , u∗)v dx ∀ v ∈ X,

i.e., u∗ ∈ Sλ∗ and, a fortiori, λ∗ ∈ L. �

Some meaningful (bifurcation) properties of the set Sλ will now be established.

Proposition 3.7. Suppose (h1)–(h4) hold true. Then, for every λ ∈ (0, λ∗), problem (Pλ) admits two
solutions u0, û ∈ int(C+) such that u0 ≤ û. Moreover, u0 is a local minimizer of the associated energy
functional Φλ.

Proof. Fix λ ∈ (0, λ∗) and choose η ∈ (λ, λ∗). By Proposition 3.2, there exists uη ∈ Sη while Proposi-
tion 3.4 provides u0 ∈ Sλ satisfying

(3.18) u0 ∈ intC1
0 (Ω)([0, uη]).

The same reasoning adopted in the proof of Proposition 3.2 ensures here that u0 is a global minimum
point to the functional

Φλ,η(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
Fλ,η(x, u(x)) dx, u ∈ X,

where Fλ,η(x, ξ) :=
´ ξ

0 fλ,η(x, t) dt, with

fλ,η(x, ξ) :=
{

(ξ+)τ−1 + λf(x, ξ+) if ξ ≤ uη(x),
uη(x)τ−1 + λf(x, uη(x)) otherwise.
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By (3.18), u0 turns out a local C1
0 (Ω)-minimizer of Φλ, because Φλb[0,uη ]= Φλ,ηb[0,uη]. Via Proposition

2.1 we then see that this remains valid with C1
0 (Ω) replaced by X. Set

(3.19) f0(x, ξ) :=
{
u0(x)τ−1 + λf(x, u0(x)) if ξ ≤ u0(x),
ξτ−1 + λf(x, ξ) otherwise,

F0(x, ξ) :=
ˆ ξ

0
f0(x, t) dt,

(x, ξ) ∈ Ω× R, as well as

(3.20) Φ0(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
F0(x, u(x)) dx ∀u ∈ X.

From (3.19) and the nonlinear regularity theory it follows u0 ∈ K(Φ0) ⊆ [u0)∩ int(C+). We may thus
assume
(3.21) K(Φ0) ∩ [u0, uη] = {u0},
or else a second solution of (Pλ) bigger than u0 would exist. Bearing in mind the proof of Proposition
3.6 and making small changes to accommodate the truncation at u0(x) shows that Φ0 satisfies condition
(C). Let us next truncate f0(x, ·) at uη(x) to construct a new Carathéodory function f̃ , with primitive
F̃ and associated functional Φ̃, defined like in (3.20) but replacing F0 by F̃ . Evidently,

K(Φ̃) = K(Φ0) ∩ [u0, uη],

whence K(Φ̃) = {u0} because of (3.21). Since Φ̃ is coercive and weakly sequentially lower semicon-
tinuous, it possesses a global minimum point that must coincide with u0. An easy verification gives
Φ0b[0,uη]= Φ̃b[0,uη ]. So, thanks to (3.18), u0 turns out a local C1

0 (Ω)-minimizer of Φ0. This still holds
when X replaces C1

0 (Ω); cf. Proposition 2.1. We may suppose K(Φ0) finite, otherwise infinitely many
solutions of (Pλ) bigger than u0 do exist. Adapting the argument exploited in [1, Proposition 29]
provides ρ ∈ (0, 1) such that
(3.22) Φ0(u0) < m0 := inf{Φ0(u) : ‖u− u0‖ = ρ}.
Finally, if u ∈ int(C+) then simple calculations based on (h2) entail Φ0(tu) → −∞ as t → +∞.
Therefore, the mountain pass theorem can be applied, and there is û ∈ X fulfilling
(3.23) û ∈ K(Φ0), Φ0(û) ≥ m0.

Via (3.22)–(3.23) one has u0 6= û while the inclusion K(Φ0) ⊆ [u0)∩ int(C+) forces u0 ≤ û, which ends
the proof. �

Proposition 3.8. Under (h1)–(h4), the solution set Sλ admits a smallest element ūλ for every λ ∈ L.

Proof. A standard procedure ensures that Sλ turns out downward directed; see, e.g., [10, Section 4].
Lemma 3.10 at p. 178 of [17] yields
(3.24) ess inf Sλ = inf{un : n ∈ N}
for some decreasing sequence {un} ⊆ Sλ. Consequently, 0 ≤ un ≤ u1 and

(3.25) 〈Ap(un) +Aq(un), v〉 =
ˆ

Ω

[
uτ−1
n + λf(· , un)

]
v dx ∀ v ∈ X.

Due to (h1), testing (3.25) with v := un we thus obtain

‖un‖p ≤ ‖∇un‖pp + ‖∇un‖qq =
ˆ

Ω
[uτn + λf(· , un)un] dx

≤
ˆ

Ω

[
uτn + λc0

(
uθn + urn

)]
dx ≤

ˆ
Ω

[
uτ1 + λc0

(
uθ1 + ur1

)]
dx, n ∈ N,

namely {un} ⊆ X is bounded. Like before (cf. the proof of Proposition 3.6), this gives un → ūλ in X,
where a subsequence is considered if necessary. So, from (3.25) it easily follows

〈Ap(ūλ) +Aq(ūλ), v〉 =
ˆ

Ω

[
ūτ−1
λ + λf(· , ūλ)

]
v dx ∀ v ∈ X.
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Showing that ūλ 6= 0 will entail ūλ ∈ Sλ, whence the conclusion by (3.24). To the aim, consider the
problem

(3.26) −∆pu−∆qu = uτ−1 in Ω, u > 0 in Ω, u = 0 on ∂Ω.

Its energy functional

Φ0(u) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

1
τ
‖u+‖ττ , u ∈ X,

turns out coercive and weakly sequentially lower semicontinuous. Hence, there exists ũ ∈ X satisfying
Φ0(ũ) = infX Φ0. One has u0 6= 0, because Φ0(ũ) < 0 = Φ0(0) (the argument is like in the proof of
Proposition 3.5). Further, Φ′0(ũ) = 0, i.e.,

〈Ap(ũ) +Aq(ũ), v〉 =
ˆ

Ω
(ũ+)τ−1v dx ∀ v ∈ X.

Choosing v := −ũ− we see that u is a positive solution to (3.26). Actually, ũ ∈ int(C+) and, through
a standard procedure [15, Lemma 3.1], ũ turns out unique.
Claim: ũ ≤ u for all u ∈ Sλ.
Indeed, for any fixed u ∈ Sλ, define

Ψ(w) := 1
p
‖∇u‖pp + 1

q
‖∇u‖qq −

ˆ
Ω
dx

ˆ w(x)

0
g(x, t) dt, w ∈ X,

where

g(x, t) :=
{

(t+)τ−1 if t ≤ u(x),
u(x)τ−1 otherwise

∀ (x, t) ∈ Ω× R.

The following assertions can be easily verified.
• Ψ(u∗) = infX Ψ, with appropriate u∗ ∈ X.
• Ψ(u∗) < 0 = Ψ(0), whence u∗ 6= 0.
• u∗ ∈ K(Ψ) ⊆ [0, u] ∩ C+.

Therefore, u∗ is a positive solution of (3.26). By uniqueness, this implies u∗ = ũ. Thus, a fortiori,
ũ ≤ u.
The claim brings ũ ≤ un, n ∈ N, which in turn provides 0 < ũ ≤ ūλ, as desired. �

Let us finally come to some meaningful properties of the map

k : λ ∈ L 7→ ūλ ∈ C1
0 (Ω).

Proposition 3.9. Suppose (h1)–(h4) hold true. Then the function k is both
(i1) strictly increasing, namely ūλ2 − ūλ1 ∈ int(C+) if λ1 < λ2, and
(i2) left-continuous.

Proof. Pick λ1, λ2 ∈ L such that λ1 < λ2. Since ūλ2 ∈ Sλ2 , Proposition 3.4 yields uλ1 ∈ Sλ1 fulfilling
ūλ2 − uλ1 ∈ int(C+), while Proposition 3.8 entails ūλ1 ≤ uλ1 . Hence, ūλ2 − ūλ1 ∈ int(C+). This shows
(i1).

If λn → λ− in L then, by (i1), the sequence {ūλn} turns out increasing. Its boundedness in X
immediately stems from (h1); see the previous proof. Now, repeat the argument below (3.17) to arrive
at

(3.27) ūλn → ũλ in X,

whence ũλ ∈ Sλ ⊆ int(C+). We finally claim that ũλ = ūλ. Assume on the contrary

(3.28) ūλ(x0) < ũλ(x0) for some x0 ∈ Ω.

Lieberman’s nonlinear regularity theory gives {ūn} ⊆ C1,α
0 (Ω) as well as

‖ūλn‖C1,α
0 (Ω) ≤ c16 ∀n ∈ N.
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Since the embedding C1,α
0 (Ω) ↪→ C1

0 (Ω) is compact, (3.27) becomes

ūλn → ũλ in C1
0 (Ω).

Because of (3.28), this implies ūλ(x0) < ūλn(x0) for any n large enough, against (i1). Consequently,
ũλ = ūλ, and (i2) follows from (3.27). �

Gathering Propositions 3.1–3.9 together we obtain the following

Theorem 3.10. Let (h1)–(h4) be satisfied. Then, there exists λ∗ > 0 such that problem (Pλ) admits
(j1) at least two solutions u0, û ∈ int(C+), with u0 ≤ û, for every λ ∈ (0, λ∗),
(j2) at least one solution u∗ ∈ int(C+) when λ = λ∗,
(j3) no positive solutions for all λ > λ∗,
(j4) a smallest positive solution ūλ ∈ int(C+) provided λ ∈ (0, λ∗].

Moreover, the map λ ∈ (0, λ∗] 7→ ūλ ∈ C1
0 (Ω) is strictly increasing and left-continuous.
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