ON A DIRICHLET PROBLEM WITH (p,q)-LAPLACIAN AND PARAMETRIC
CONCAVE-CONVEX NONLINEARITY

SALVATORE A. MARANO, GRETA MARINO, AND NIKOLAOS S. PAPAGEORGIOU

ABSTRACT. A homogeneous Dirichlet problem with (p, ¢)-Laplace differential operator and reaction
given by a parametric p-convex term plus a g-concave one is investigated. A bifurcation-type result,
describing changes in the set of positive solutions as the parameter A > 0 varies, is proven. Since for
every admissible A the problem has a smallest positive solution @), both monotonicity and continuity
of the map A\ — ) are studied.

1. INTRODUCTION

Let Q be a bounded domain in RV with a C%-boundary 9Q, let 1 < 7 < ¢ < p < +00, and let
f: QxR — R be a Carathéodory function. Consider the Dirichlet problem
—Apu—Agu=u""t + \f(z,u) in Q,
(Px) u>0 in Q,
u=20 on 0},

where A > 0 is a parameter while A, 7 > 1, denotes the r-Laplacian, namely
Avu = div(|Vu| "2Vu) Yue W (Q).

The nonhomogeneous differential operator Au := Apu + Agju that drives (Py) is usually called (p, ¢)-
Laplacian. It stems from a wide range of important applications, including models of elementary
particles [8], biophysics [9], plasma physics [26], reaction-diffusion equations [7], elasticity theory [27],
etc. That’s why the relevant literature looks daily increasing and numerous meaningful works on this
subject are by now available; see the survey paper [19] for a larger bibliography.

Since 7 < ¢ < p, the function & +— 77! grows (q — 1)-sublinearly at +oo, whereas & — f(x,€)
is assumed to be (p — 1)-superlinear near +oco, although it need not satisfy the usual (in such cases)
Ambrosetti-Rabinowitz condition. So, the reaction in (P)) exhibits the competing effects of concave
and convex terms, with the latter multiplied by a positive parameter.

The aim of this paper is to investigate how the solution set of (P)) changes as A varies. In particular,
we prove that there exists a critical parameter value A* > 0 for which problem (P,) admits

o at least two solutions if A € (0, \*),

e at least one solution when A = A\*, and

e no solution provided A > \*.
Moreover, we detect a smallest positive solution @) for each A € (0, A\*] and show that the map A — @)
turns out left-continuous, besides increasing.

The first bifurcation result for semilinear Dirichlet problems driven by the Laplace operator was

established, more than twenty years ago, in the seminal paper [2] and then extended to the p-Laplacian
in [11,16]. These works treat the reaction

Em AT T >0,
where 1 < s < p < r < p*, A > 0, and p* denotes the critical Sobolev exponent. A wider class of

nonlinearities has recently been investigated in [22], while [24] deals with Robin boundary conditions.
It should be noted that, unlike our case, A always multiplies the concave term, which changes the
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analysis of the problem. Finally, [4,14,23] contain analogous bifurcation theorems for problems of a
different kind, whereas [20,21] study (p, ¢)-Laplace equations having merely concave right-hand side.

Our approach is based on the critical point theory, combined with appropriate truncation and
comparison techniques.

2. MATHEMATICAL BACKGROUND AND HYPOTHESES

Let (X, | - ||) be a real Banach space. Given a set V' C X, write V for the closure of V, 9V for the
boundary of V, and intx (V) or simply int(V'), when no confusion can arise, for the interior of V. If
x € X and § > 0 then

Bs(z):={z€ X : ||z—xz| <0}, Bs:= Bs(0).
The symbol (X*, | - |[x+) denotes the dual space of X, (-,-) indicates the duality pairing between X
and X*, while x,, — = (respectively, z,, — z) in X means ‘the sequence {z,} converges strongly
(respectively, weakly) in X’ We say that A : X — X* is of type (S)+ provided
zp = in X, limsup(A(z,), 2z, —2)<0 = x, >z

n—-+oo

The function ® : X — R is called coercive if | Hlim ®(xz) = +oo and weakly sequentially lower
x||——+o0

semicontinuous when
Tp—x in X =  &(z)<liminf ®(x,).

n—oQ

Suppose ® € C1(X). We denote by K(®) the critical set of @, i.e.,
K(®):={z e X: ®(x)=0}.
The classical Cerami compactness condition for ¢ reads as follows:

(C) Every {x,} C X such that {®(z,)} is bounded and (1 + ||z,]])®' () — 0 in X* has a
convergent subsequence.

From now on, ) indicates a fixed bounded domain in RV with a C2-boundary 99Q. Let u,v:Q — R

be measurable and let ¢ € R. The symbol v < v means u(z) < v(x) for almost every z € £,

t+ := max{=+t,0}, v (-) := u(-)*. If u,v belong to a function space, say Y, then we set
[wv]i={weY:u<w<v}, [u):={weY : u<w}.

The conjugate exponent 1’ of a number r > 1 is defined by 7' := r/(r — 1), while r* indicates its

Sobolev conjugate, namely

*

r¥ = N-r

Nr_ when r < N,
+o00 otherwise.

1/r 1/r
[l := </ |qux) Vue L"(Q), ||lullir:= (/ |Vul|" dw) Yue WOI’T(Q),
Q Q

and W17 (Q) denotes the dual space of Wy (Q). We will also employ the linear space C}(Q) :=
{u € CH(Q) : ulso= 0}, which is complete with respect to the standard C1(Q2)-norm. Its positive cone
Cp:={uecC}Q):u(xr)>0in Q}
has a nonempty interior given by
0
int(Cy) = {u eCy:u(z) >0 Ve, a—Z(m) <0 Vze 89} .

Here n(z) denotes the outward unit normal to 92 at x.
Let A, : Wy (Q) — W17 (92) be the nonlinear operator stemming from the negative r-Laplacian,
ie.,

(Ar(u),v) == /Q Vu|""2Vu - Vodz, u,ve Wy ().
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We know [12, Section 6.2] that A, is bounded, continuous, strictly monotone, and of type (S)4.
The Liusternik-Schnirelmann theory gives an increasing sequence {\, ,} of eigenvalues for A,. The
following assertions can be found in [12, Section 6.2].

(p1) A1, is positive, isolated, and simple.

for all u € Wy ().

(pa) Il < -
(P3) A1 admits an elgenfunctlon o1, € int(Cy) such that [|¢1 |- = 1.
Proposition 13 of [6] then ensures that
(pa) If r # 7 then ¢y, and ¢ » are linearly independent.
Let g : 2 x R — R be a Carathéodory function satisfying the growth condition
lg(z,t)] < a(z) (14 t7") in QxR,

where a € L*(R), 1 < s < p*. Set G(z,§) fo x,t)dt and consider the C!-functional ¢ :
WP () — R defined by

1 1
p(u) = ];IIVUHZ + §IIVUI|3 - /Q G(z,u())dz, ueWy™(Q).

Proposition 2.1 ([13], Proposition 2.6). If ug € Wy (Q) is a local CL(Q)-minimizer of ¢ then
up € CY*(Q) for some a € (0,1) and ug turns out to be a local WP (Q)-minimizer of .
Combining this result with the strong comparison principle below, essentially due to Arcoya-Ruiz [3],

shows that certain constrained minimizers actually are ‘global’ critical points. Recall that, given
hi, he € L™(8),

hi < hy <— essKinf (ha — hy) > 0 for any nonempty compact set K C Q.

Proposition 2.2. Let a € Ry, hy,hy € L®(Q), uy € CH(Q), uz € int(Cy). Suppose hy < hy as well
as
—Apu; — Agqu; + alw;P"2u; = hy in Q, i=1,2.
Then, ug —uy € int(Cy).
Throughout the paper, ‘for every x € 2’ will take the place of ‘for almost every x € 0, co,cq,. ..
indicate suitable positive constants, f 2 x R — R is a Carathéodory function such that f(-,¢) =0

provided ¢ < 0, while F(x,§) : fo x,t) dt.
The following hypotheses will be p031ted.

(hy) There exist 6 € [r,q] and r € (p, p*) such that
att ettt < fa,t) <o (BT 4+ V(x,t) € Qx Ry,

where co > Ay 4.

(hs) ) hrf F(g;’g) = +o0 uniformly with respect to z € Q.
—r+00

(hs) liminf w > ¢3 uniformly in z € Q. Here, 8 > 7 and

E——4o0
(r — p) max {Np_l, 1} < B <p’.
(hy) To every p > 0 there corresponds p1, > 0 such that ¢ — f(x,t) + p,tP~" is nondecreasing in
[0, p] for any = € Q.

By (ha)—(hs) the perturbation f(z,-) is (p — 1)-superlinear at +oco. In the literature, one usually treats
this case via the well-known Ambrosetti-Rabinowitz condition, namely:

(AR) With appropriate M > 0, 0 > p one has both essﬂian(~ ,M) >0 and

(2.1) 0<oF(z,8) < f(2,8¢, (x,§) €Qx[M,+00).
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It easily entails ¢3€? < F(z,€) in Q X [M,+00), which forces (hs). However, nonlinearities having a
growth rate ‘slower’ than t°~1 at +oc0 are excluded from (2.1). Thus, assumption (h3) incorporates in
our framework more situations.

Example 2.3. Let cp > A1 4. The functions fi, fo : R — R defined by

Pl 4 et ! if 0<t<1,
fl(t)::{ ? yo=t<

t) :=tPtlog(1+1t) +cot?™t, teRy,
7 4 et otherwise, f2(t) &l ) ? *

satisfy (hy)—(hg). Nevertheless, f1 alone complies with condition (AR).

3. A BIFURCATION-TYPE THEOREM

Write S, for the set of positive solutions to (P,). Lieberman’s nonlinear regularity theory [18, p.
320] and Pucci-Serrin’s maximum principle [25, pp. 111,120] yield

Sy Cint(Cy).
Put £ :={\ > 0: S\ # (0}. Our first goal is to establish some basic properties of £. From now on,
X = WyP(Q) and || - || == || - [|1,p-
Proposition 3.1. Under (hy) one has L # 0.
Proof. Given A > 0, consider the C'-functional ¥} : Wol’p(ﬂ) — R defined by

1 1 u(x)
Ua(u) == = Vullh + = Vul[] — / dx/ a(t)dt Yuce Wol’p(Q),
p q Q 0
where
@) =) deo [T+ )Y, teR

Evidently, gy fulfills (2.1) once ¢ € (p,r) and M > 0 is big enough. So, condition (C) holds true for
Wy. Moreover,

u€int(Cy) = tllgrnoo Uy (tu) = —o0
because r > p. Observe next that if s € [1,p*] then
p <Clu|| YuelX,

[ulls < cllu

with C' := C(s, Q). This easily leads to

() > ~[ull” = eqllul” = Acs [l + [lue]"]
(3.1) o
= 5—C4||U||T*” = Aes (Jull 7P+l "7P) | P, v € X
Let us set, for any ¢t > 0,

a(t) == cat™ P+ Aes(t07P +177P), Aa(t) = (cq + Aes)tTTP + 2hest" P,

From 7 < 0 < p < r it follows Aes5t? P < Aes (t™~P +¢"~P), which implies
(3.2) 0 <](t) <Aa(t) in (0,400).
Since tl_i}r(x)l+ Aa(t) = lim Aa(t) = +oo, there exists to > 0 satisfying 44 ({p) = 0. One has

t——+o0
1
(catAcs)(p—7)]" "
2Xes(r — p)
and, via simple calculations, /\hr& Ax(to) = 0. On account of (3.1)—(3.2) we can thus find Ag > 0 such
—
that

tg :=to(A) ==

Uy(u) >my >0=U,(0) foralluedB(0,t), A€ (0,A).
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Pick A € (0, A¢). The mountain pass theorem entails ¥ (uy) = 0 and ¥ (ux) > m, with appropriate
uy € X. Hence,

(3.3) (Ap(y) + Ag(ay),v) = /Q (@)™ + Aeo (@)™ + (uf)" )] vdz, veX,

and uy # 0. Choosing v := —u) in (3.3) yields [|Vu, |[5 + ||V, || = 0, namely u, = 0. This forces
uy > 0 while, by (3.3) again,

—Apiy — Agliy = a5 "+ Ao (@4 +ay ) in Q.

Lieberman’s nonlinear regularity theory and Pucci-Serrin’s maximum principle finally lead to uy €
int(C,). Now define, provided (z,£) € Q x R,

. {(sﬂf—l FAMf(@,6T) IS <an(e),

_ € _
@, &)= tx(z)" "t + Mf(z,ur(z)) otherwise, Ex@ &) = /0 fa(@, 1) ds.

An easy verification ensures that the associated C!'-functional
_ 1 1 _
D)\ (u) == EHVUHZ + 6||Vu||g — / Fi(z,u(z))dz, ueX,
Q

is coercive and weakly sequentially lower semicontinuous. So, it attains its infimum at some point
ux € X. Assumption (h;) produces

P (ur) <0 =2,(0),
i.e., uy # 0, because 7 < g < p. As before, from

(3.4) (A (u2) + Ay (), v) = / A ur@)o@)de Yoe X
Q
we infer uy > 0. Test (3.4) with v := (uy —u))™, exploit (h;) again, and recall (3.3) to arrive at

(Ap(ur) + Ag(un), (ux —ur)™) = /Q [al !+ A (- ua)] (un — ax) Tz

< / [a 7"+ Aeo(@§ 4+ a5 1)) (un — ) Tda
Q

= (Ap(ar) + Ag(un), (un —ax)™),
which entails uy < @y by monotonicity. Summing up, uy € [0,u5]\ {0}. On account of (3.4), one thus
has uy € Sy for any A € (0, \p). This completes the proof. O

Our next result ensures that £ is an interval.
Proposition 3.2. Let (hy) be satisfied. If A\ € £ then (0,)) C L.
Proof. Pick 4 € S5, A € (0, 5\), and define, provided (z,€) € Q x R,

A {w)f—l FAf(z,6T) i€ < a(a),

. £
Iz, 8) = (x)" L + Mf(z,4(z)) otherwise, B(z,8) ::/0 Iz, t)dt.

The associated energy functional

A

1 1 .
Ba(w)i= 3 |Vullp + 2 Vuly - [ Fou(e)ds, we X,
p q Q
turns out coercive, weakly sequentially lower semicontinuous, besides C'. Now, arguing exactly as
above yields the conclusion. O
A careful reading of this proof allows one to state the next ‘monotonicity’ property.

Corollary 3.3. Under hypothesis (hy), for every X € L, us € S5, and X € (0, \) there exists uy € S
such that uy < uj.

Actually, we can prove a more precise assertion.
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Proposition 3.4. Suppose (hy) and (hy) hold. Then to each A € L, us € S5, A € (0,A) there
corresponds uy € Sy fulfilling us, — uy € int(Cy).

. If p, is given by (h4) while uy comes from Corollary 3.3 then
_Apuj\ — Agus + Aupu§_1 = ug_l + Af(x, us) + /\upu’;\_l

(3.5) = ul T+ A, ug) + Appud T 4+ (A= ) f(, ug)

> ugfl + Af(z,un) + )\upuf\fl = —Apuy — Aquy + )\ﬂpuffl

because uy < u; and f(z,t) > 0 once t > 0. The function h(z) := (A — \) f(z, us(x)) lies in L>(Q).
Indeed, on account of (h;), we have

0.< h(a) < co(h— N [Jull’s? + Jull 5] Ve e .
Pick any compact set K C (2. Recalling that u; € int(C,) and using (h;) again gives

~

h(z) > (A= X) [clux(x)p_l + 02u5\(x)q_1] > <01 i?{f ul)f\*l + ¢y i%f u§71> >0, z€9Q,
whence 0 < h. Now, (3.5) combined with Proposition 2.2 entails u5 — ux € int(C). O
The interval £ turns out to be bounded.
Proposition 3.5. Let (h1) and (ha) be satisfied. If \* :=sup L then \* < co.

Proof. Fix A € L, uy € S). Note that we can suppose A > 1, otherwise £ would be bounded, which of
course entails \* < co. Define

c1 P=l 4 ¢y g1 if € <wuy(2), £
(0,€) = {” (€7 +eale)] HEsw) o g = [ stetya

Aerua(@)Pt + coup(z)?71]  otherwise,
for every (z,£) € Q x R, as well as
1 1
Uy (u) := ;HVUH% + ;HVUH% — / Gi(z,u(z))dz, ue€ X.
Q

The same arguments employed before yield here a global minimum point, say wuy, to ¥y. So, in
particular,

(3.6) (Ap(ur) + Aq(un),v) = / gr(z,un(x))v(z)de Yove X.
Q
Choosing v := —u, first and then v := (uy —ux)™ we obtain uy € [0, u,]; cf. the proof of Proposition

3.1. Since, by (ps) in Section 2, uy, ¢1,4 € int(CL), through [22, Proposition 1] one has t¢1,4 < ux,
with ¢ > 0 small enough. Thus, on account of (p3) again,

U (thr,y) = %nwwl,q)ng + énwwl,q)ng - / G (st (2)) da

tP t4
pvm,qn%qnwl,quA( L ¢1q>

tP t4 tP t4
= *HV%,«;HZ + *)‘1,11 - A01*||¢1,q||5 - )‘023

I /\

—HV¢17q||p )\1 g — Ac2)

< EHVQSLqu + E)\l,q(l - /\) = Cﬁtp - C7tq.

Now, recall that ¢ < p and decrease ¢ when necessary to achieve

\I/)\(ﬁ)\) = Ir}}n\I/A < \I/)\(t(bl’q) <0= \I’,\(()),



CONCAVE-CONVEX AND PARAMETRIC (p, q)-EQUATIONS 7

ie., uy # 0. Summing up, uy € [0,uy] \ {0}, whence, by (3.6), it turns out a positive solution of the
equation

—Apu — Agu = Aer|[ulP"2u+ Aealu|f?u in Q.
Due to [5, Theorem 2.4], this prevents A from being arbitrary large, as desired. (]

Le us finally prove that £ = (0, \*]. From now on, ®y : X — R will denote the C'-energy functional
associated with problem (Py). Evidently,

1 1 1
(3.7) Ba(u) = IVl + 2 [Vl — 7 o - )\/ Flo,u* () dz Vue X.
Q

Proposition 3.6. Under (h;), (hs), and (hs) one has \* € L.

Proof. Pick any {\,} C (0, \*) fulfilling A, T A*. Via Corollary 3.3, construct a sequence {u,} C X
such that u, € Sy, un < up4+1. Then

n?

(3.8) (Ap(un) + Ag(up),v) = /Qu;_lv dx + Ay /Q f( un)vde, veX.
We can also assume ®y(u,) < 0 (see the proof of Proposition 3.1), which means
(3.9) IVl + 21V = 2l = A | 9P (00 a)) d < 0.
Testing (3.8) with v := w,, gives

(3.10) Vunllp + [[Vun g = lluall? + An /Q FCsun)uy de.

Since ¢ < p while Ay < A, from (3.9)—(3.10) it follows

(3.11) /Q (- tn)ttn — pP (- up)] dar < Ail (E-1) lunli; vnen.

Observe next that, thanks to (h;) and (hs), one has
f@, )6 —pF(2,6) > es¢” —co in QxR .
Consequently, (3.11) becomes
Lp . .
csllunl3 < 5= (2= 1) llwall? + 10 < enrlfuallj + 0, neN,
1
because 7 < . This clearly forces

(3.12) lunllg <c12 VneN.
If r < B then {u,} turns out also bounded in L"(£2). Using (3.10) besides (h;) entails

Un > Unp Unllg = [|Un||+ ©y Up )Up AT
lanl? < [ Venll? + [Vt < | ||T+X"/Qf( ity d
(3.13) <1 T+ Ae / (W, + ul) d

Q

<1 17+ Ao /Q (14 ) + ) dor,

whence {u,} C X is bounded. Suppose now 8 < r < p*. Two cases may occur.
1) p< N. Let ¢ € (0,1) satisfy
1 1-—t t
3.14 1=ttt
(3.14) r g p
The interpolation inequality [12, p. 905] yields ||uy,], < ||un||}3_t||un||;* Via (3.12) we thus obtain

(3.15) len 7 < 013||un||';’§, n e N.
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Reasoning exactly as before and exploiting (3.15) produce

(3.16) [P < IV} + V1§ < cra (14 [lun

Z;) < 15 (1 + Hunlltr) .
Finally, note that tr < p. Indeed, (r — p)% < f due to (hs), while

— N
T* ﬁ<£* — (r—p)— < p;
pr=pF p p
cf. (3.14). Now, the boundedness of {u,} C X directly stems from (3.16).
2) p > N, which implies p* = +00. We will repeat the previous argument with p* replaced by any

o > r. Accordingly, if t € (0,1) fulfills % = % + g then tr = ”(%}B) Since, thanks to (hs) again,

. o(r—p)
JEIJIrloo o—pf

tr<p <=

:T7/6<p7

one arrives at tr < p for o large enough. This entails {u,} C X bounded once more.
Hence, in either case, we may assume

(3.17) up, =~ u* in X and wu, —u* in L7(Q),
where a subsequence is considered when necessary. Testing (3.8) with v := wu, — «* thus yields, as
n — 400,

lim (Ap(up) + Aq(un), up — u*) =0,

n—r—+0o
whence, by monotonicity of A,
lim sup [(Ap(un), un — u*) + (Ag(w), up —u*)] < 0.
n—-+oo
On account of (3.17) it follows
lim sup(A, (un), un, — u*) < 0.

n—-+oo
Recalling that A, enjoys the (S)i-property, we infer u,, — v* in X, besides 0 < u,, < u* for all n € N.
Finally, let n — +o00 in (3.8) to get

(Ap(u) + Ag(u),v) = /

Q
i.e., u* € S\~ and, a fortiori, \* € L. O

(u*)Tﬁlvder/\*/f(gu*)vd:z: Vo e X,
Q

Some meaningful (bifurcation) properties of the set Sy will now be established.

Proposition 3.7. Suppose (hy)—(hy) hold true. Then, for every X € (0, \*), problem (Py) admits two
solutions ug, 4 € int(CL) such that ug < 4. Moreover, ug is a local minimizer of the associated energy
functional ®y.

Proof. Fix X € (0,\*) and choose 1 € (A, A*). By Proposition 3.2, there exists u, € S, while Proposi-
tion 3.4 provides up € Sy satisfying

(3.18) ug € int ey (5)([0, Up)).

The same reasoning adopted in the proof of Proposition 3.2 ensures here that ug is a global minimum
point to the functional

1 1
B, () = [ Vull+ =Vl - / Fa(@,u(@)dr, ue X,
Q

where Fy ,(z,§) := f(f an(z,t)dt, with

)+ Af(@,€T) if § < up(x),
up(x)" + N (z,u,(z))  otherwise.

fAJI(mag) = {
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By (3.18), ug turns out a local C¢ (Q)-minimizer of ®y, because @y L(0,u,)= ®rnl[0,u,)- Via Proposition
2.1 we then see that this remains valid with C}(€2) replaced by X. Set

. uo(z)T 1+ Nf(x,up(z))  if € < up(x),
(3.19) folz:8) = {57_1 + Af(z,6) otherwise,

(z,8) € A xR, as well as

13
Fo(x,§) :z/O fol(z,t) dt,

1 1
(3.20) Bo(u) i= |Vl + <[ Vallj - / Fo(z,u(z))de Vu e X.
Q

From (3.19) and the nonlinear regularity theory it follows ug € K (®) C [ug) Nint(C4). We may thus
assume

(321) K((DO) N [’LL07’LL»,]] = {U’O}a
or else a second solution of (P)) bigger than uy would exist. Bearing in mind the proof of Proposition
3.6 and making small changes to accommodate the truncation at ug(x) shows that ®q satisfies condition

(C). Let us next truncate fo(z,-) at u,(x) to construct a new Carathéodory function f, with primitive
F and associated functional ®, defined like in (3.20) but replacing Fy by F. Evidently,

K(®) = K(®o) N [uo, uy),

whence K(®) = {ug} because of (3.21). Since ® is coercive and weakly sequentially lower semicon-
tinuous, it possesses a global minimum point that must coincide with ug. An easy verification gives
Do l0,u,)= (i)L[O,un]' So, thanks to (3.18), ug turns out a local C§(Q)-minimizer of ®,. This still holds
when X replaces C}(Q2); cf. Proposition 2.1. We may suppose K (®g) finite, otherwise infinitely many
solutions of (P)) bigger than uy do exist. Adapting the argument exploited in [1, Proposition 29]
provides p € (0,1) such that

(3.22) Do (ug) < mo := inf{Pg(u) : [|[u — ugll = p}.

Finally, if v € int(Cy) then simple calculations based on (hs) entail ®g(tu) — —oo as t — +oo.
Therefore, the mountain pass theorem can be applied, and there is & € X fulfilling

(3.23) @ e K(®), ®o(a) > mo.
Via (3.22)—(3.23) one has ug # @ while the inclusion K (®g) C [ug) Nint(Cy.) forces ug < 4, which ends
the proof. 0

Proposition 3.8. Under (hy1)-(h4), the solution set Sy admits a smallest element uy for every A € L.

Proof. A standard procedure ensures that Sy turns out downward directed; see, e.g., [10, Section 4].
Lemma 3.10 at p. 178 of [17] yields

(3.24) ess inf Sy = inf{u, : n € N}

for some decreasing sequence {u,} C Sy. Consequently, 0 < u,, < u; and

(3.25) (Ap(upn) + Aq(up),v) = / [ul P+ A (- un)] vde Vo e X.
Q

Due to (hy), testing (3.25) with v := u,, we thus obtain

[un” < [[Vun|lf + IVun|lg = /Q [ug, + A (- un)un] da

§/ [u], + Aco (ufl+ufl)]d:c§/ [u] + Aeo (uf +ul)]dz, neN,
Q Q

namely {u,} C X is bounded. Like before (cf. the proof of Proposition 3.6), this gives u, — uy in X,
where a subsequence is considered if necessary. So, from (3.25) it easily follows

(A (i) + Aq (i), v) = /Q [0+ Af(,an)] vde Vo e X.
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Showing that uy # 0 will entail uy € Sy, whence the conclusion by (3.24). To the aim, consider the
problem

(3.26) —Apu—Agu=u"""in Q wu>0inQ wu=0 on 6.
Its energy functional

1 1 1,
Do (u) = EIIVUII,’i + 5\\Vu\|3 ——lutlr weX,

turns out coercive and weakly sequentially lower semicontinuous. Hence, there exists & € X satisfying
®y(1) = infx Pg. One has ug # 0, because @y(a) < 0 = Po(0) (the argument is like in the proof of
Proposition 3.5). Further, ®y(a) =0, i.e.,

(A (@) + Ag (@), v) = /Q(fﬁy—lvdx Vo e X.

Choosing v := —a~ we see that u is a positive solution to (3.26). Actually, @ € int(C,) and, through
a standard procedure [15, Lemma 3.1], @ turns out unique.

Claim: @ < wu for all u € S,.

Indeed, for any fixed u € Sy, define

1 1 w(x)
U(w) = <[ Vull? + | Vull? / dm/ oz, dt, we X,
p q Q 0

where

)=t ift < wu(x),

1) = V(z,t) € QxR
9@.1) {u(x)Tl otherwise (@,

The following assertions can be easily verified.

o U(u*) =infx ¥, with appropriate u* € X.

e U(u*) < 0= T(0), whence u* # 0.

e u* € K(U) C0,ulnCy.
Therefore, u* is a positive solution of (3.26). By uniqueness, this implies u* = @. Thus, a fortiori,
u < u.
The claim brings @ < u,, n € N, which in turn provides 0 < @ < u), as desired. O

Let us finally come to some meaningful properties of the map
k:X€ L uyeCiQ).

Proposition 3.9. Suppose (hy)—(hs) hold true. Then the function k is both

(i1) strictly increasing, namely uy, — uy, € int(Cy) if Ay < Mg, and
(iz) left-continuous.

Proof. Pick A1, Ay € £ such that \; < A2. Since uy, € Sy,, Proposition 3.4 yields uy, € Sy, fulfilling
Ux, — Uy, € int(Cy), while Proposition 3.8 entails ux, < uy,. Hence, uy, —uy, € int(Cy). This shows

(i1).

If A\, — A~ in £ then, by (i1), the sequence {uy,} turns out increasing. Its boundedness in X
immediately stems from (h;); see the previous proof. Now, repeat the argument below (3.17) to arrive
at

(3.27) G, — Gy in X,

whence @) € Sy C int(C1). We finally claim that @) = @). Assume on the contrary
(3.28) ux(xo) < Gx(xg) for some xg € Q.

Lieberman’s nonlinear regularity theory gives {i,} C Cy**(Q) as well as

||ﬂ>\n‘|céva(§) <cg VneN.
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Since the embedding Cy*(Q) «— C3(Q) is compact, (3.27) becomes

’L_L)\n — Uy in Cé(ﬁ)
Because of (3.28), this implies uy(zo) < ux, (zo) for any n large enough, against (i;). Consequently,
Uy = Uy, and (iz) follows from (3.27). O

Gathering Propositions 3.1-3.9 together we obtain the following

Theorem 3.10. Let (hy)—(hy) be satisfied. Then, there exists A* > 0 such that problem (P) admits

(1) at least two solutions ug, @ € int(Cy), with ug < 4, for every A € (0, \*),
(j2) at least one solution u* € int(C4) when A = \*,

(js) mo positive solutions for all A > X*,

(ja) a smallest positive solution uy € int(Cy) provided A € (0, \*].

Moreover, the map A € (0, \*] — iy € C3(Q) is strictly increasing and left-continuous.
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