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Abstract. We prove two Liouville theorems for ancient nonnegative solutions of the
heat equation on a complete non-compact Riemannian manifold with Ricci curvature
bounded from below by −K, K > 0. If, at any fixed time, such a solution grows
sub-exponentially in space, then it either constant (when K = 0) or stationary (if
K > 0). We also show the optimality of this growth condition through examples.

1. Introduction

Two instances of Liouville’s type theorems are the following classical facts:

(i) if u is harmonic on RN and is bounded from below, then it is constant;
(ii) if u is harmonic on RN and grows sublinearly at infinity, then it is constant.

The first statement follows from the Harnack inequality, while the second one from
gradient estimates for harmonic functions. These kind of results received ever increasing
attention in the last decades, with generalizations to other partial differential equations,
Riemannian manifolds under Ricci curvature lower bounds (see the recent survey [2]),
or even to metric measure spaces . In this paper, motivated by [14,17], we investigate
various form of Liouville theorems for the heat equation on a Riemannian manifold, with
the aim to find optimal growth/bound conditions ensuring triviality of its solutions.

Compared to the elliptic case depicted above, Liouville-type theorems in the parabolic
setting are more subtle. On the one hand, solving the Cauchy problem in RN with initial
datum in C∞c (RN ) shows that no global growth/bound condition can ensure triviality of
a solution u ∈ C∞(RN× ]0,+∞[). If, however, we consider ancient solutions of the heat
equation (i. e., defined on RN× ]−∞, T [), things look brighter. Indeed, an immediate
byproduct of the parabolic Harnack inequality is the constancy of any bounded solution
of the heat equation on RN× ]−∞, T [. To explore further the classical case of RN we
consider the two main examples of ancient solutions, namely

(1.1) u(x, t) := exN+t, v(x, t) = e−t cosxN , x = (x1, . . . , xN) ∈ RN

The first example shows that non-negativity is not a Liouville property, meaning that
it does not ensure triviality. The second one shows that boundedness at fixed time
also fails to be a Liouville property for the heat equation on RN . The best parabolic
Liouville theorem in RN dates back to Hirschman [7] (see also [19]) and we give now a
short proof of it taken from [4].
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Theorem 1.1 (Hirschman). Let u be a non-negative solution of the heat equation on
RN× ]−∞, T0[ such that for a fixed time t0 < T0 it holds

u(x, t0) ≤ eo(|x|), for |x| → +∞

Then, u is constant.

Proof. We can assume that u > 0. By the Widder representation for ancient positive
solutions (see [14]), there exists a non-negative Borel measure µ such that

(1.2) u(x, t) =

∫
RN
ex·ξ+t|ξ|

2

dµ(ξ).

By Hölder inequality with respect to the measure ν := et0|ξ|
2
µ

u(sx+ (1− s)y, t0) =

∫
RN
e(sx+(1−s)y)·ξ dν(ξ) 6

(∫
RN
ex·ξ dν(ξ)

)s(∫
RN
ey·ξ dν(ξ)

)1−s

= us(x, t0)u
1−s(y, t0),

for all s ∈ ]0, 1[. Therefore, x 7→ log u(x, t0) is convex, and being sublinear by assumption,
it must be constant. Thus u(x, t0) ≡ c and differentiating under the integral sign (1.2),
we obtain

0 = P (Dx)u(x, t0)|x=0 =

∫
RN
P (ξ) dν(ξ)

for any polinomial P such that P (0) = 0. By the Stone-Weierestrass and Riesz
representation theorems, this implies that supp(ν) = {0} and thus µ = c δ0 for some
c ∈ R. Inserting the latter into (1.2) gives the claim. �

The two examples in (1.1) show that the assumption in the previous Liouville theorem
are optimal.

The picture becomes more involved if we substitute RN with a general Riemannian
manifold. Indeed, if HN denotes the real hyperbolic space of dimension N , there are
plenty of bounded harmonic functions1, which are also eternal solutions of ∂t −∆ = 0.
It turns out, however, that this issue can only appear in negative curvature and the
following is the more general Liouville type theorem in the Riemannian framework up to
now. Recall that a caloric function is just a non-negative solution of the heat equation.

Theorem 1.2 (Souplet-Zhang [17]). Let M be a complete Riemannian manifold with
non-negative Ricci curvature, p ∈M and d be the metric distance. Any ancient caloric
u such that u(x, t) 6 eo(d(x,p)+

√
−t) for d(x, p),−t→ +∞, is constant.

This result was actually an immediate consequence of a new gradient estimate for
positive solutions u of the heat equation in QR,T := BR(p) × [−T, 0], p ∈ M . If
RicM > −K g for some K > 0, then the gradient estimate of [17] states that

(1.3) |∇ log u|2 6 CN

(
K +

1

R2
+

1

T

)
log2(S/u), S = sup

QR,T

u

1E. g., classical harmonics on B1 ⊂ R2 are also harmonic on H2 identified with the Poincaré disc.
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holds in QR/2,T/2 for any u as above. The previous inequality falls into the wider
framework of parabolic gradient estimates such as the celebrated Li-Yau’s one [13]

(1.4) |∇ log u|2 6 ∂t log u+ CN

(
K +

1

R2
+

1

T

)
or the Hamilton inequality [6] (generalized by Kotschvar [10] to the non-compact case)

(1.5) |∇ log u|2 6 CN

(
K +

1

T

)
log(S/u), S = sup

M× [−T,0]
u.

Notice that letting T → +∞ into this last inequality immediately gives a Liouville
theorem for bounded ancient caloric functions in the case K = 0, but it is only its
localized counterpart (1.3) which provides the much weaker sub-exponential growth

condition u 6 eo(d(x,p)+
√
−t) as a Liouville property. Still in the case K = 0, one can let

R, T → +∞ in (1.4) to obtain that entire ancient caloric functions are non-decreasing
in time. Therefore, the supremum S in (1.3) is attained at t = 0. If u(x, 0) 6 eo(d(x,p))

(which is the optimal growth condition at fixed time), we can then apply (1.3) to u+ 1
and let R, T → +∞ to get that u is constant.

Theorem 1.2 has been generalized (with the same growth condition) in various
directions, see e.g. [8] and the bibliography therein. We can now state the main result
of this note.

Theorem 1.3. Let M be a complete Riemannian manifold with Ricci curvature bounded
from below by −K 6 0, p ∈M and u be an ancient caloric function.

(i) If K = 0 and u(x, t0) 6 eo(d(x,p)) for d(x, p) → +∞ at some fixed t0, u is
constant.

(ii) If K > 0 and u(x, t) 6 eo(d(x,p)−t) for d(x, p)− t → +∞, u is stationary (and
hence harmonic).

Let us make some comments on the result. As already pointed out, the case K = 0
was already known and provides an optimal parabolic Liouville property in the case
RicM > 0 more in the spirit of [9]. However, we will prove it without using (1.3), through
a Choquet representation for ancient solutions (see Lemma 2.3 below). This method has
already been used in [11] to prove the uniqueness of the non-negative Cauchy problem in
manifolds with non-negative Ricci curvature bound and sketched in [14, Remark 2.3] to
single out a class of non-decreasing in time ancient solutions in the general case K > 0.
Remark 2.5 shows, however, that there exist eternal non-negative solutions in HN which
are exponentially decreasing in time, giving the optimality of the time dependance in (ii)
above. More generally, the Choquet representation approach allows us to fully deal with
the case K > 0, which was out of reach of the parabolic gradient estimates (1.3)–(1.5)
and is therefore the main novelty of this work. The case M = HN discussed above shows
that our second Liouville statement is the best one can get through a growth condition.

As a final remark, Liouville properties for ancient caloric functions in the metric
measure setting of RCD∗(K,N) spaces can probably be obtained through the same
techniques described here, providing a generalization of the RCD∗(K,N) counterpart
of Theorem 1.2. The latter has been proved in the metric measure setting in [8] through
a gradient estimate of the form (1.3), but the more general statement of Theorem
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1.3 in the RCD∗ framework can be cooked up via the same ingredients: the granted
linearity of the Laplacian is essential in order to apply Choquet theory, the parabolic
Harnack inequality holds true since RCD∗(K,N) verifies doubling and Poincaré, while
the relevant Laplacian comparison and comparison principles can be found in [5]. The
only additionally needed result is a gradient estimate for eigenfunctions of Yau’s type
(see Proposition 2.2 below), which follows from the metric version of the parabolic
Li-Yau inequality proved in [20].

2. Proof of the main result

By a time translation will always work with caloric functions on M× ]−∞, 1[. If u
is ancient and caloric (i. e., a non-negative ancient solution of the heat equation) then
the local Harnack inequality shows that if u(x0, t0) = 0, then u vanishes identically on
M× ]−∞, t0]. Since we are supposing that RicM is bounded from below, uniqueness of
the non-negative Cauchy problem holds (see e. g. [15] and the references therein), and
therefore any nontrivial caloric function is strictly positive. Let C be the cone of caloric
functions on M× ]−∞, 1[. We say that u ∈ C is minimal, and write u ∈ Ext(C), if

v ∈ C and v 6 u ⇒ v = k u for some k ∈ R.
The following result is basically contained in [11,16], see also [14, Remark 2.3].

Proposition 2.1 (Extremal caloric functions). Let M be a complete Riemannian
manifold with Ricci curvature bounded from below. If v ∈ Ext(C) then there exists λ ∈ R
and w ∈ C∞(M) solving ∆w = λw such that v(x, t) = eλ tw(x).

Regarding eigenfunctions, we recall the following a-priori bound of [1], which is a
refinement of the classical Yau’s gradient estimate in [18].

Proposition 2.2 (Gradient bound for eigenfunctions). Let (M, g) be a complete N-
dimensional Riemannian manifold with RicM > −(N − 1)κ g for κ > 0 and w a positive
λ-eigenfunction. Then λ > −(N − 1)2 κ/4 and

|∇ logw| 6 N − 1

2

(√
κ+

4λ

(N − 1)2
+
√
κ

)
In particular, by Yau’s elliptic Liouville theorem, if RicM > 0, positive nontrivial

solutions of ∆w = λw exist only for λ > 0.

Lemma 2.3. Let M be a complete Riemannian manifold with Ricci curvature bounded
from below and u ∈ C. There exists a Borel probability measure ν on R and a family of
functions {wλ}λ∈R such that

(2.1) u(x, t) =

∫
R
eλ twλ(x) dν

where λ 7→ wλ(x) is Borel for any x ∈M and wλ is a positive solution of ∆w = λw for
ν a. e. λ.

Proof. The cone C fails to have a compact base with respect to any useful topology.
However, if we equip it with the topology of pointwise convergence, it turns out to be a
proper closed a subset of RM× ]−∞,1[ and therefore is weakly complete. We claim that C
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is metrizable and hence well-capped in the Choquet sense (see [3, 30.16]). Indeed, let
D ⊆M× ]−∞, 1[ be denumerable and dense. The local parabolic Harnack inequality
implies that the topology of pointwise convergence in D coincides with the pointwise
convergence in C ⊆ RM× ]−∞,1[ (it actually implies locally uniform convergence). This
proves metrizability due to D being denumberable and, even more, that C is second
countable and thus separable. As a consequence, C is a Polish space, and being Ext(C)
a Gδ subset of C2, it turns out to be Polish as-well.

By Choquet theorem [3, Theorem 30.22], any u ∈ C can be represented through a
probability measure supported on Ext(C), i.e. there exists a probability measure µ on
Ext(C) such that for any continuous linear functional Λ

〈Λ, u〉 =

∫
Ext(C)

〈Λ, v〉 dµ.

Specifying Λ to be the evaluation at (x, t) ∈M× ]−∞, 1[, gives

u(x, t) =

∫
Ext(C)

v(x, t) dµ ∀(x, t) ∈M× ]−∞, 1[.

Let us fix p ∈ M and observe that the map ψ : Ext(C) → R between Polish spaces
defined as

ψ(v) = v−1(p, 0)
∂v

∂t
(p, 0)

is measurable3 and thus induces a disintegration of the probability measure µ into
probability measures {µλ}λ, Borel measurable with respect to λ, such that supp(µλ) ⊆
ψ−1(λ). In particular, the Disintegration theorem ensures that there exists a probability
measure ν on R such that

(2.2) u(x, t) =

∫
R

∫
ψ−1(λ)

v(x, t) dµλ dν.

By Proposition 2.1, any v ∈ Ext(C) is of the form v(x, t) = eλ tw(x) for some λ ∈ R and
w > 0 solving ∆w = λw, therefore it holds

(2.3) v(x, t) = eλ t v(x, 0), ψ(v) = λ.

If Cλ denotes the cone of non-negative solutions to ∆w = λw, the latter discussion
shows that

ψ−1(λ) ⊆ {v : v(x, t) = eλ tw(x), w ∈ Cλ}.
The map Φλ : ψ−1(λ)→ Cλ defined as Φλ(v)(x) = v(x, 0) is continuous and induces a
push-forward measure (Φλ)∗(µλ) on Cλ, which we still denote by µλ by a slight abuse of
notation. By construction, it satisfies∫

ψ−1(λ)

v(x, 0) dµλ =

∫
Cλ
w(x) dµλ =: wλ(x)

2With little effort, it is possible to prove that it is closed.
3It is actually continuous by local parabolic regularity, but we wont need it.
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and we observe that, being λ 7→ µλ Borel, so is λ 7→ wλ and thus (λ, x) 7→ wλ(x). Using
the distributional formulation of the equation ∆w = λw, namely∫

M

w∆ϕdg = λ

∫
M

wϕdg, ∀ϕ ∈ C∞c (M)

and Fubini-Tonelli’s theorem, it is readily checked that wλ is a distributional, and thus
classical solution of ∆w = λw. Finally, by the first relation in (2.3),∫

ψ−1(λ)

v(x, t) dµλ = eλ twλ(x)

and recalling (2.2) completes the proof of (2.1). Finally, the strong minimum principle
ensures that wλ(x) = 0 for some x ∈M implies wλ ≡ 0, so that it suffices to restrict ν
to the measurable subset {wλ(p) > 0} for a fixed p. �

Lemma 2.4. Let (M, g) be a complete N-dimensional Riemannian manifold with
RicM > −(N − 1)κ g, κ > 0 and p ∈M . For λ > 0 define

(2.4) χλ = χλ(κ,N) =
N − 1

2

(√
κ+

4λ

(N − 1)2
−
√
κ

)
.

There exists w̄λ ∈ Liploc(M) such that w̄λ(p) = 1, ∆w̄λ 6 λ w̄λ weakly on M and

(2.5)

{
w̄λ(x) > c(N, λ) eχλ d(x,p) if κ > 0

w̄λ(x) > c(N, ε) e(χλ−ε) d(x,p) for any ε > 0, if κ = 0,

for x ∈M , where c(N) and c(N, ε) are suitable positive constants.

Proof. We begin considering the case RicM > −(N − 1)κ g for κ > 0. Eventually
rescaling the metric, we can suppose without loss of generality that κ = 1. Moreover, the
condition w̄λ(p) = 1 can be dropped, as it suffices to eventually multiply by a suitable
constant. Let H denote the real hyperbolic space of dimension N , with corresponding
Laplace-Beltrami operator ∆H and distance dH. We identify H with the open ball
B1 ⊆ RN equipped with the Poincaré metric g = 4 (1− |z|2)−2Id, obtaining in particular

(2.6) dH(z, 0) = log

(
1 + |z|
1− |z|

)
, ∀z ∈ B1 ⊆ RN .

The Busemann function bν for the geodesic ray γν from 0 with direction ν, |ν| = 1 is
explicitly given by

bν(z) = lim
t→+∞

dH(γν(t), z)− t = − log

(
1− |z|2

|z − ν|2

)
,

and satisfies
|∇Hbν | = 1, ∆Hbν = N − 1.

From the latters, we immediately compute

∆H e
µ bν = µ (µ+N − 1) eµ bν .

For λ > 0, we choose

µλ :=
1

2

(
1−N −

√
(N − 1)2 + 4λ

)
< 1−N
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and let

(2.7) wλ,ν(z) = eµλ bν(z) =

(
1− |z|2

|z − ν|2

)−µλ
,

so that, being µλ (µλ +N − 1) = λ, wλ,ν is a positive λ-eigenfunction. Finally, we let

wλ(z) =

∫
SN−1

wλ,ν(z) dHN−1(ν), z ∈ B1 ⊆ RN ,

which is again a positive λ-eigenfunction, radial by construction. As such, letting
f(r) = wλ(z) with r = dH(z, 0) and using polar hyperbolic coordinates, f obeys

f ′′(r) + (N − 1) tanh r f ′(r) = λ f(r) f ′(0) = 0.

Multiplying by (cosh r)N−1 both sides and integrating, we get

(cosh r)N−1 f ′(r) =

∫ r

0

(
(cosh τ)N−1 f ′(τ)

)′
dτ = λ

∫ r

0

(cosh τ)N−1 f(τ) dτ > 0

which implies that wλ is radially increasing. We claim that

(2.8) wλ(z) > cN e
χλ dH(z,0)

for χλ given in (2.4). Using wλ,ν > 0 and the expression in (2.7), we get∫
SN−1

wλ,ν(z) dHN−1(ν) >
∫
{ν∈SN−1:|z−ν|62 (1−|z|)}

(
1− |z|2

|z − ν|2

)−µλ
dHN−1(ν)

> 4µλ
(

1 + |z|
1− |z|

)−µλ
HN−1({ν ∈ SN−1 : |z − ν| 6 2 (1− |z|)

})
.

Through an elementary geometric argument, we see that it holds

HN−1({ν ∈ SN−1 : |z − ν| 6 2 (1− |z|)
})
> cN (1− |z|)N−1

for some cN > 0, so that being µλ +N − 1 = −χλ,

wλ(z) > c(N, λ)
(1 + |z|)χλ+N−1

(1− |z|)χλ
> c(N, λ)

(
1 + |z|
1− |z|

)χλ
.

Recalling formula (2.6) for the distance dH proves (2.8). Finally, let w̄λ ∈ Liploc(M) be
defined through

w̄λ(x) = wλ(z), with dH(z, 0) = d(x, p),

where d is the usual metric distance in M . Clearly w̄λ is well defined by the radiality
of wλ and (2.8) holds true in M as well by construction. Since RicM > −g, and wλ is
radially increasing, the Laplacian comparison implies that, weakly in M ,

∆w̄λ(x) 6 ∆Hwλ(z) = λwλ(z) = λ w̄λ(x).

The case κ = 0 is easier, as in the model space RN we define

wλ(z) =

∫
SN−1

e
√
λ z·ν dHN−1(ν), z ∈ RN ,
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which is a radial positive λ-eigenfunction. It is radially increasing by integrating, as
before, the corresponding ODE, so that it suffices to prove the pointwise lower bound.
To this end, let ε > 0, z = r e1, e1 = (1, 0, . . . , 0) and compute∫

SN−1

e
√
λ z·ν dHN−1(ν) >

∫
{ν∈SN−1:e1·ν>(1−ε)}

e
√
λ z·ν dHN−1(ν)

> e
√
λ (1−ε) rHN−1({ν ∈ SN−1 : e1 · ν > (1− ε)

})
which proves the claimed lower bound when M = RN . Applying the Laplacian compari-
son as before, we get the claim. �

Remark 2.5. While we focussed on the case λ > 0, the function wλ,ν given in (2.7)
is a positive eigenfunction in HN for all µλ obeying µλ(µλ + N − 1) = λ. Choosing
−(N − 1)/2 < λ < 0 and a corresponding µλ, we see that the eternal caloric function
u(x, t) := eλ twλ,ν(x) on HN × R is exponentially decreasing in time.

Corollary 2.6. Let M, p be as above. If w > 0 solves ∆w = λw for λ > 0, then

(2.9) lim inf
r→+∞

sup
∂Br(p)

logw

r
> χλ.

Proof. The statemenet of the corollary in unaffected by multiplying w for positive
constants, so we can suppose that w(p) = 2. If (2.9) is false, there exists ε > 0
and a sequence {rn} with rn → +∞ such that for any sufficiently large n it holds
w 6 exp(χλ (1− 2 ε) rn) on ∂Brn(p). Let w̄λ and c = c(N, λ) (or c(N, ε), respectively)
be given the previous Lemma. By (2.5), for sufficiently large n it holds

w̄λ > c exp(χλ (1− ε) rn) > exp(χλ (1− 2 ε) rn) > w

on ∂Brn(p), so that the weak comparison principle for −∆ + λ in Brn(p) implies
w̄λ(p) > w(p). As w̄λ(p) = 1 and w(p) = 2, this is a contradiction. �

Proof. of Theorem 1.3.
Suppose that RicM > −(N − 1)κ g with κ > 0, let u be a caloric ancient solution

in M× ]−∞, 1[ and consider the representation given in (2.1) of Lemma 2.3. We will
prove, separately for κ = 0 and κ > 0, that the assumed growth conditions force in both
cases supp(ν) = {0}. This in turn implies that u is stationary and harmonic, concluding
the proof in the case κ > 0, while an application Yau’s elliptic Liouville theorem will
ensure u ≡ c > 0 in the case κ = 0.

Case κ = 0. Suppose by contradiction that supp(ν) 6= {0}. Recall that RicM > 0
implies that M possesses positive λ-eigenfunctions only for λ > 0, therefore we can
suppose that there exists 0 < a < b such that ν([a, b]) > 0.
As pointed out in the proof of Lemma 2.3, the function [a, b] 3 λ 7→ wλ ∈ RM is Borel
when RM has the pointwise convergence topology. By Proposition 2.2, the set

E := {logw : w > 0, ∆w = λw for some λ ∈ [a, b]}
is equilipschitz, so that pointwise convergence and locally uniform convergence coincide
on E, therefore the map

[a, b] 3 λ 7→ ϕ(λ) := logwλ ∈ E
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is Borel when E is equipped with the locally uniform topology. Consider the metric

(2.10) dE(f, g) = sup
n

{
1

n
sup
Bn(p)

|f − g|

}
which is finite on E due to the above mentioned equilipschitzianity. The topology of
(E, dE) is finer than the locally uniform one, but ϕ is still Borel to (E, dE), since

ϕ−1({dE(f, 0) 6 δ}) =
⋂
n

{
λ ∈ R : sup

Bn(p)

|ϕ(λ)| 6 δ n
}
,

Lusin’s theorem then provides a compact K ⊆ [a, b] such that

ν(K) > ν([a, b])/2, ϕbK∈ C0(K, (E, dE)).

Fix a point λ0 ∈ K such that ν
(
Ir(λ0)∩K

)
> 0 for all r > 0, where Ir(λ0) = [λ0−r, λ0+r]

and let ε > 0 to be determined. The continuity of ϕ in λ0 implies that there exists
rε > 0 such that for any n > 1,

logwλ0 6 logwλ + ε n, in Bn(p), ∀λ ∈ Irε(λ0) ∩K.
Taking the mean value over Irε(λ0)∩K with respect to the measure ν and using Jensen
inequality we infer that in the ball Bn(p) it holds

logwλ0 6 −
∫
Irε (λ0)∩K

logwλ dν + ε n 6 log

(
−
∫
Irε (λ0)∩K

wλ dν

)
+ ε n

and by the positivity of wλ and the representation (2.1) of u we conclude

logwλ0 6 − log ν
(
Irε(λ0) ∩K

)
+ log u+ ε n

in Bn(p). We take the supremum on ∂Bn(p), divide by n and let n → +∞. By the
assumption log u(x) 6 o(d(x, p)), we get

lim sup
n

sup
∂Bn

logwλ0
n

6 ε,

which gives a contradiction to (2.9) if ε < χλ0 .

Case κ > 0. Consider as before the Choquet representation (2.1) of u. The assumption
u(x, t) 6 eo(d(x,p)−t) as d(x, p)− t→ +∞ entails

(2.11) u(p, t) =

∫
eλ twλ(p) dν 6 eo(−t).

The latter in turn implies that ν(]−∞, 0[) = 0, for otherwise, being λ 7→ wλ(p) Borel,
Lusin’s theorem provides a compact K ⊂ ]−∞, 0[ such that

ν(K) > 0, λ 7→ wλ(p) ∈ C0(K,R).

Since wλ(p) > 0 for ν a. e.λ, we infer∫
eλ twλ(p) dν > et maxK min

K
wλ(p) ν(K),

contradicting (2.11) for t → −∞, due to maxK < 0. The rest of the proof follows
verbatim as in the previous case, showing that ν(]0,+∞[) = 0 as well. Therefore
supp(ν) = {0} and thus u is harmonic and stationary.
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�

Remark 2.7. In the case κ > 0 we actually proved the following statement. If there is
a point p ∈M such that u(p, t) 6 eo(−t) as t→ −∞ and t0 such that u(x, t0) 6 eo(d(x,p))

for d(x, p)→ +∞, then u is a positive harmonic function.
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