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We study a pseudo-differential equation driven by the degenerate fractional p-
Laplacian, under Dirichlet type conditions in a smooth domain. First we show 
that the solution set within the order interval given by a sub-supersolution pair 
is nonempty, directed, and compact, hence endowed with extremal elements. Then, 
we prove existence of a smallest positive, a biggest negative and a nodal solution, 
combining variational methods with truncation techniques.
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1. Introduction

In the study of nonlinear boundary value problems, one classical issue is that about the sign of solutions, 
especially in the case of multiple solutions. Typically, constant sign solutions can be detected as critical 
points of a truncated energy functional by direct minimization or min-max methods, while the existence 
of a nodal (i.e., sign-changing) solution is a more delicate question (some classical results, based on Morse 
theory, can be found in [1,2,40]). An interesting approach was proposed in [11] for the Dirichlet problem 
driven by the Laplacian operator: it consists in proving that the problem admits a smallest positive and a 
biggest negative one, plus a third nontrivial solution lying between the two, which must then be nodal. The 
method used for finding the nodal solution is based on the Fučik spectrum. Such approach was then extended 
to the p-Laplacian in [9], and then combined with a variational characterization of the second eigenvalue to 
detect a nodal solution under more general assumptions in [16] (see also [20,34] and the monograph [35]).

Recently, many authors have turned their attention to nonlinear equations driven by nonlocal operators. 
The present paper is devoted to the study of the following Dirichlet-type problem for a nonlinear fractional 
equation:
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{
(−Δ)sp u = f(x, u) in Ω
u = 0 in Ωc,

(1.1)

where Ω ⊂ RN (N > 1) is a bounded domain with C1,1 boundary, p � 2, s ∈ (0, 1), N > ps, and (−Δ)sp
denotes the fractional p-Laplacian, namely the nonlinear, nonlocal operator defined for all u : RN → R

smooth enough and all x ∈ RN by

(−Δ)sp u(x) = 2 lim
ε→0+

ˆ

Bc
ε(x)

|u(x) − u(y)|p−2(u(x) − u(y))
|x− y|N+ps

dy (1.2)

(which in the linear case p = 2 reduces to the fractional Laplacian up to a dimensional constant C(N, s) > 0, 
see [6,7,14]). The reaction f : Ω × R → R is a Carathéodory mapping subject to a subcritical growth 
condition.

Problem (1.1) has been intensively studied in the recent literature, both in the semilinear and the non-
linear case. Regarding the semilinear case, we recall the fine regularity results of [37], the existence and 
multiplicity results obtained for instance in [15,19,23], and the study on extremal solutions in [38] (see also 
the monograph [32]). The nonlinear case is obviously more involved: spectral properties of (−Δ)sp were 
studied in [4,17,18,21,31], a detailed regularity theory was developed in [3,24,25,29,30] (some results about 
Sobolev and Hölder regularity being only proved for the degenerate case p > 2), maximum and comparison 
principles have appeared in [13,27], while existence and multiplicity of solutions have been obtained for 
instance in [10,12,18,22,39] (see also the surveys [33,36]). For the purposes of the present study, we recall 
in particular [26], where it was proved that the local minimizers of the energy functional corresponding to 
problem (1.1) in the topologies of W s,p

0 (Ω) and of the weighted Hölder space C0
s (Ω), respectively, coincide 

(namely, a nonlinear fractional analogue of the classical result of [5]).
Here we focus on the structure of the set S(u, u), namely the set of solutions of (1.1) lying within the 

interval [u, u] where u and u are a subsolution and a supersolution of (1.1), respectively, with u � u in Ω. 
We shall prove that S(u, u) is nonempty, directed, and compact in W s,p

0 (Ω), hence endowed with extremal 
elements.

Then, we will assume that f(x, ·) is (p − 1)-sublinear at infinity and asymptotically linear near the origin 
without resonance on the first eigenvalue, and prove that (1.1) has a smallest positive solution u+ and a 
biggest negative solution u−. Finally, under more restrictive assumptions on the behavior of f(x, ·) near the 
origin, we will prove existence of a nodal solution ũ s.t. u− � ũ � u+ in Ω, thus extending some results of 
[9,16] to the fractional p-Laplacian.

We remark that our results are new (to our knowledge) even in the semilinear case p = 2, and that 
the structure of the set S(u, u) can provide valuable information about extremal solutions also in different 
frameworks.

The paper has the following structure: in Section 2 we collect the necessary preliminaries; in Section 3 we 
study the properties of the solution set; in Section 4 we show existence of extremal constant sign solutions; 
and in Section 5 we prove existence of a nontrivial nodal solution.

Notation: Throughout the paper, for any A ⊂ RN we shall set Ac = RN \ A. For any two measurable 
functions f, g : Ω → R, f � g will mean that f(x) � g(x) for a.e. x ∈ Ω (and similar expressions). The 
positive (resp., negative) part of f is denoted f+ (resp., f−). If X is an ordered Banach space, then X+

will denote its non-negative order cone. For all r ∈ [1, ∞], ‖ · ‖r denotes the standard norm of Lr(Ω) (or 
Lr(RN ), which will be clear from the context). Every function u defined in Ω will be identified with its 
0-extension to RN . Moreover, C will denote a positive constant (whose value may change case by case).
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2. Preliminaries

In this section we collect some useful results related to the fractional p-Laplacian. First we fix a functional-
analytical framework, following [14,22]. First, for all measurable u : RN → R we set

[u]ps,p =
¨

RN×RN

|u(x) − u(y)|p
|x− y|N+ps

dμ,

where dμ = |x − y|−N−ps dx dy. Then we define the following fractional Sobolev spaces:

W s,p(RN ) =
{
u ∈ Lp(RN ) : [u]s,p < ∞

}
,

W s,p
0 (Ω) =

{
u ∈ W s,p(RN ) : u(x) = 0 in Ωc

}
,

the latter being a uniformly convex, separable Banach space with norm ‖u‖s,p = [u]s,p and dual W−s,p′(Ω)
(with norm ‖ · ‖−s,p′). Set p∗s = Np/(N − ps), then the embedding W s,p

0 (Ω) ↪→ Lq(Ω) is continuous for all 
q ∈ [1, p∗s] and compact for all q ∈ [1, p∗s), with embedding constant cq > 0.

We denote W̃ s,p(Ω) the space of all u ∈ Lp
loc(RN ) s.t. u ∈ W s,p(U) for some open U ⊆ RN , Ω ⊂ U , and

ˆ

RN

|u(x)|p−1

(1 + |x|)N+ps
dx < ∞.

Clearly, W s,p
0 (Ω) ⊂ W̃ s,p(Ω). By [24, Lemma 2.3], for any u ∈ W̃ s,p(Ω) we can define (−Δ)sp u ∈ W−s,p′(Ω)

by setting for all v ∈ W s,p
0 (Ω)

〈(−Δ)sp u, v〉 =
¨

RN×RN

|u(x) − u(y)|p−1(u(x) − u(y))(v(x) − v(y)) dμ.

The definition above agrees with (1.2) when u lies in the Schwartz space of C∞, rapidly decaying functions 
in RN . In the next lemma we recall some useful properties of (−Δ)sp in W s,p

0 (Ω):

Lemma 2.1. (−Δ)sp : W s,p
0 (Ω) → W−s,p′(Ω) is a monotone, continuous, (S)+-operator.

Proof. By [26, Lemma 2.3] (with q = 1) we have for all u, v ∈ W s,p
0 (Ω)

〈(−Δ)sp u− (−Δ)sp v, u− v〉 � 0,

hence (−Δ)sp is monotone. Plus, (−Δ)sp is continuous as the Gâteaux derivative of the C1-functional u 
→
‖u‖p

s,p

p . Finally, if un ⇀ u in W s,p
0 (Ω) and

lim sup
n

〈(−Δ)sp un, un − u〉 � 0,

then for all n ∈ N we have

(‖un‖p−1
s,p − ‖un‖p−1

s,p )(‖u‖s,p − ‖u‖s,p) = ‖un‖ps,p − ‖un‖p−1
s,p ‖u‖s,p − ‖un‖s,p‖u‖p−1

s,p + ‖u‖ps,p
≤ 〈(−Δ)sp un, un〉 − 〈(−Δ)sp un, u〉 − 〈(−Δ)sp u, un〉 + 〈(−Δ)sp u, u〉
= 〈(−Δ)sp un, un − u〉 + 〈(−Δ)sp u, u− un〉 ≤ o(1),

hence ‖un‖s,p → ‖u‖s,p. By uniform convexity of W s,p
0 (Ω), un → u in W s,p

0 (Ω). Therefore, (−Δ)sp is an 
(S)+-operator. �
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Now we introduce basic hypothesis on the reaction f :

H0 f : Ω ×R → R is a Carathéodory function s.t. for a.e. x ∈ Ω and all t ∈ R

|f(x, t)| ≤ c0(1 + |t|q−1) (c0 > 0, q ∈ (p, p∗s))

We recall some definitions:

Definition 2.2. Let u ∈ W̃ s,p(Ω):

(i) u is a supersolution of (1.1) if u � 0 in Ωc and for all v ∈ W s,p
0 (Ω)+

〈(−Δ)sp u, v〉 �
ˆ

Ω

f(x, u)v dx;

(ii) u is a subsolution of (1.1) if u � 0 in Ωc and for all v ∈ W s,p
0 (Ω)+

〈(−Δ)sp u, v〉 �
ˆ

Ω

f(x, u)v dx.

We say that (u, u) ∈ W̃ s,p(Ω) × W̃ s,p(Ω) is a sub-supersolution pair of (1.1), if u is a subsolution, u is a 
supersolution, and u � u in Ω.

Definition 2.3. u ∈ W s,p
0 (Ω) is a solution of (1.1) if for all v ∈ W s,p

0 (Ω)

〈(−Δ)sp u, v〉 =
ˆ

Ω

f(x, u)v dx.

Clearly, u ∈ W s,p
0 (Ω) is a solution of (1.1) iff it is both a supersolution and a subsolution. Sub-, su-

persolutions, and solutions of similar problems will be meant in the same sense as in Definitions 2.2, 2.3
above.

We will need the following a priori bound for solutions of (1.1):

Lemma 2.4. [26, Lemma 2.1] Let H0 hold, u ∈ W s,p
0 (Ω) be a solution of (1.1). Then, u ∈ L∞(Ω) with 

‖u‖∞ � C, for some C = C(‖u‖s,p) > 0.

We define weighted Hölder-type spaces with weight ds
Ω(x) = dist(x, Ωc)s, along with their norms:

C0
s (Ω) =

{
u ∈ C0(Ω) : u

ds
Ω

∈ C0(Ω)
}
, ‖u‖0,s =

∥∥∥ u

ds
Ω

∥∥∥
∞
,

and for all α ∈ (0, 1)

Cα
s (Ω) =

{
u ∈ C0(Ω) : u

ds
Ω

∈ Cα(Ω)
}
, ‖u‖α,s = ‖u‖0,s + sup

x�=y

|u(x)/ds
Ω(x) − u(y)/ds

Ω(y)|
|x− y|α .

The embedding Cα
s (Ω) ↪→ C0

s (Ω) is compact for all α ∈ (0, 1). Unlike in W s,p
0 (Ω), the positive cone C0

s (Ω)+
of C0

s (Ω) has a nonempty interior given by
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int(C0
s (Ω)+) =

{
u ∈ C0

s (Ω) : u(x)
ds

Ω(x)
> 0 in Ω

}
(2.1)

(see [22, Lemma 5.1]). Consider the following Dirichlet problem, with right-hand side g ∈ L∞(Ω):{
(−Δ)sp u = g(x) in Ω
u = 0 in Ωc.

(2.2)

We have the following regularity result:

Lemma 2.5. [25, Theorem 1.1] Let g ∈ L∞(Ω), u ∈ W s,p
0 (Ω) be a solution of (2.2). Then, u ∈ Cα

s (Ω) with 

‖u‖α,s � C‖g‖
1

p−1
∞ , for some α ∈ (0, s], C = C(Ω) > 0.

Combining Lemmas 2.4, 2.5 we see that any solution of (1.1) under H0 lies in Cα
s (Ω), with a uniform 

estimate on the Cα
s (Ω)-norm. In the final part of our study, we will follow a variational approach. We define 

an energy functional for problem (1.1) by setting for all (x, t) ∈ Ω ×R

F (x, t) =
tˆ

0

f(x, τ) dτ,

and for all u ∈ W s,p
0 (Ω)

Φ(u) =
‖u‖ps,p

p
−
ˆ

Ω

F (x, u) dx.

By H0, it is easily seen that Φ ∈ C1(W s,p
0 (Ω)) and the solutions of (1.1) coincide with the critical points of 

Φ. We will need the following equivalence result for local minimizers of Φ in W s,p
0 (Ω) and in C0

s (Ω):

Lemma 2.6. [26, Theorem 1.1] Let H0 hold, u ∈ W s,p
0 (Ω). Then, the following are equivalent:

(i) there exists ρ > 0 s.t. Φ(u + v) � Φ(u) for all v ∈ W s,p
0 (Ω), ‖v‖s,p � ρ;

(ii) there exists σ > 0 s.t. Φ(u + v) � Φ(u) for all v ∈ W s,p
0 (Ω) ∩ C0

s (Ω), ‖v‖0,s � σ.

Since we are mainly interested in constant sign solutions, we will need a strong maximum principle and 
Hopf’s lemma. Consider the problem{

(−Δ)sp u = −c(x)|u|p−2u in Ω
u = 0 in Ωc,

(2.3)

with c ∈ C0(Ω)+. Then we have the following:

Lemma 2.7. [13, Theorem 1.5] Let c ∈ C0(Ω)+, u ∈ W̃ s,p(Ω)+ \{0} be a supersolution of (2.3). Then, u > 0
in Ω and for any x0 ∈ ∂Ω

lim inf
Ω�x→x0

u(x)
ds

Ω(x) > 0.

Finally, we recall some spectral properties of (−Δ)sp (see [12,21] and [18, Proposition 3.4]). Let ρ ∈
L∞(Ω)+ \ {0} and consider the following weighted eigenvalue problem:
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{
(−Δ)sp u = λρ(x)|u|p−2u in Ω
u = 0 on Ωc.

(2.4)

Lemma 2.8. Let ρ ∈ L∞(Ω)+ \ {0}. Then, (2.4) has an unbounded sequence of variational eigenvalues

0 < λ1(ρ) < λ2(ρ) � . . . � λk(ρ) � . . .

The first eigenvalue admits the following variational characterization:

λ1(ρ) = inf
u∈W s,p

0 (Ω)\{0}

‖u‖ps,p´
Ω ρ(x)|u|p dx,

and

(i) λ1(ρ) > 0 is simple, isolated and attained at an unique positive eigenfunction û1(ρ) ∈ W s,p
0 (Ω) ∩

int(C0
s (Ω)+) s.t. 

´
Ω ρ(x)|û1|p dx = 1;

(ii) if u ∈ W s,p
0 (Ω) \ {0} is an eigenfunction of (2.4) associated to any eigenvalue λ > λ1(ρ), then u is 

nodal;
(iii) if ρ̃ ∈ L∞(Ω)+ \ {0} is s.t. ρ̃ � ρ, ρ̃ ≡ ρ, then λ1(ρ) < λ1(ρ̃).

When ρ ≡ 1 we set λ1(ρ) = λ1 and û1(ρ) = û1. Moreover, the second (non-weighted) eigenvalue admits 
the following variational characterization:

λ2 = inf
γ∈Γ1

max
t∈[0,1]

‖γ(t)‖ps,p, (2.5)

where

Γ1 =
{
γ ∈ C([0, 1],W s,p

0 (Ω)) : γ(0) = û1, γ(1) = −û1, ‖γ(t)‖p = 1 for all t ∈ [0, 1]
}
,

see [4, Theorem 5.3].

3. Solutions in a sub-supersolution interval

In this section we consider a sub-supersolution pair (u, u) and study the set

S(u, u) = {u ∈ W s,p
0 (Ω) : u solves (1.1), u � u � u}.

On spaces W s,p
0 (Ω), ̃W s,p(Ω) we consider the pointwise partial ordering, inducing a lattice structure. We set 

u ∧ v = min{u, v} and u ∨ v = max{u, v}.
The first result shows that the pointwise minimum of supersolutions is a supersolution, as well as the 

maximum of subsolutions is a subsolution. A similar result was proved in [28] for a homogeneous problem, 
under a different definition of super- and subsolutions. We give the proof in full detail, as it requires some 
careful calculations:

Lemma 3.1. Let H0 hold and u1, u2 ∈ W̃ s,p(Ω):

(i) if u1, u2 are supersolutions of (1.1), then so is u1 ∧ u2;
(ii) if u1, u2 are subsolutions of (1.1) then so is u1 ∨ u2.
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Proof. We prove (i). We have for i = 1, 2{
〈(−Δ)sp ui, v〉 �

´
Ω f(x, ui)v dx for all v ∈ W s,p

0 (Ω)+
ui � 0 in Ωc.

(3.1)

Set u = u1 ∧ u2 ∈ W̃ s,p(Ω) (by the lattice structure of W̃ s,p(Ω)), then u � 0 in Ωc. Set also

A1 = {x ∈ RN : u1(x) < u2(x)}, A2 = Ac
1.

Now fix ϕ ∈ C∞
c (Ω)+, ε > 0, and set for all t ∈ R

τε(t) =

⎧⎪⎪⎨⎪⎪⎩
0 if t � 0
t

ε
if 0 < t < ε

1 if t � ε.

The mapping τε : R → R is Lipschitz continuous, nondecreasing, and 0 � τε(t) � 1 for all t ∈ R, and clearly

τε(u2 − u1) → χA1 , 1 − τε(u2 − u1) → χA2

a.e. in RN , as ε → 0+, with dominated convergence. Testing (3.1) with τε(u2 − u1)ϕ, (1 − τε(u2 − u1))ϕ ∈
W s,p

0 (Ω)+ for i = 1, 2 respectively, we get

〈(−Δ)sp u1, τε(u2 − u1)ϕ〉 + 〈(−Δ)sp u2, (1 − τε(u2 − u1))ϕ〉 (3.2)

�
ˆ

Ω

f(x, u1)τε(u2 − u1)ϕdx +
ˆ

Ω

f(x, u2)(1 − τε(u2 − u1))ϕdx.

We focus on the left-hand side of (3.2). Setting for brevity τε = τε(u2−u1) and ap−1 = |a|p−2a for all a ∈ R, 
and recalling that τε = 0 in A2, while τε → 1 in A1 as ε → 0+, we get

〈(−Δ)sp u1, τεϕ〉 + 〈(−Δ)sp u2, (1 − τε)ϕ〉

=
¨

RN×RN

(u1(x) − u1(y))p−1(τε(x)ϕ(x) − τε(y)ϕ(y)) dμ

+
¨

RN×RN

(u2(x) − u2(y))p−1[(1 − τε(x))ϕ(x) − (1 − τε(y))ϕ(y)] dμ

=: I.

Using the definition of A1 and A2, we obtain

I =
¨

A1×A1

(u1(x) − u1(y))p−1(ϕ(x) − ϕ(y))τε(x) dμ (A)

+
¨

A1×A1

(u1(x) − u1(y))p−1ϕ(y)(τε(x) − τε(y)) dμ (B)

+
¨

(u1(x) − u1(y))p−1ϕ(x)τε(x) dμ (C)

A1×A2
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−
¨

A2×A1

(u1(x) − u1(y))p−1ϕ(y)τε(y) dμ (D)

+
¨

A1×A1

(u2(x) − u2(y))p−1(ϕ(x) − ϕ(y))(1 − τε(x)) dμ (E)

−
¨

A1×A1

(u2(x) − u2(y))p−1ϕ(y)(τε(x) − τε(y)) dμ (B)

+
¨

A1×A2

(u2(x) − u2(y))p−1(ϕ(x) − ϕ(y))(1 − τε(x)) dμ (F)

−
¨

A1×A2

(u2(x) − u2(y))p−1ϕ(y)τε(x) dμ (C)

+
¨

A2×A1

(u2(x) − u2(y))p−1ϕ(x)τε(y) dμ (D)

+
¨

A2×A1

(u2(x) − u2(y))p−1(ϕ(x) − ϕ(y))(1 − τε(y)) dμ (G)

+
¨

A2×A2

(u2(x) − u2(y))p−1(ϕ(x) − ϕ(y)) dμ. (H)

We then put together the integrals with the same letter and note that (E), (F), (G) → 0 as ε → 0+. So, we 
have

I =
¨

A1×A1

(u1(x) − u1(y))p−1(ϕ(x) − ϕ(y)) dμ (A)

+
¨

A1×A1

[(u1(x) − u1(y))p−1 − (u2(x) − u2(y))p−1]ϕ(y)(τε(x) − τε(y)) dμ (B)

+
¨

A1×A2

[(u1(x) − u1(y))p−1ϕ(x) − (u2(x) − u2(y))p−1ϕ(y)]τε(x) dμ (C)

+
¨

A2×A1

[(u2(x) − u2(y))p−1ϕ(x) − (u1(x) − u1(y))p−1ϕ(y)]τε(y) dμ (D)

+
¨

A2×A2

(u2(x) − u2(y))p−1(ϕ(x) − ϕ(y)) dμ (H)

+ o(1).

Now we note that for all x, y ∈ A1

u1(x) − u1(y) � u2(x) − u2(y) ⇔ u2(y) − u1(y) � u2(x) − u1(x) ⇔ τε(y) � τε(x),

hence the integrand in (B) is negative. Besides, for all x ∈ A1, y ∈ A2

u1(x) − u1(y) � u1(x) − u2(y) � u2(x) − u2(y),
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and for all x ∈ A2, y ∈ A1

u2(x) − u2(y) � u2(x) − u1(y) � u1(x) − u1(y),

so we can estimate the integrands in (C), (D) respectively and get

I �
¨

A1×A1

(u1(x) − u1(y))p−1(ϕ(x) − ϕ(y)) dμ

+
¨

A1×A2

(u1(x) − u2(y))p−1(ϕ(x) − ϕ(y)) dμ

+
¨

A2×A1

[(u2(x) − u1(y))p−1(ϕ(x) − ϕ(y)) dμ

+
¨

A2×A2

(u2(x) − u2(y))p−1(ϕ(x) − ϕ(y)) dμ + o(1)

= 〈(−Δ)sp u, ϕ〉 + o(1).

All in all, we have

〈(−Δ)sp u1, τε(u2 − u1)ϕ〉 + 〈(−Δ)sp u2, (1 − τε(u2 − u1))ϕ〉 � 〈(−Δ)sp u, ϕ〉 + o(1), (3.3)

as ε → 0+. Regarding the right-hand side of (3.2), we use the bounds from H0 and the definition of τε to 
get

|f(·, u1)τ+
ε (u2 − u1)ϕ| � c0(1 + |u1|q−1)ϕ,

|f(·, u2)(1 − τ+
ε (u2 − u1))ϕ| � c0(1 + |u2|q−1)ϕ,

and pass to the limit as ε → 0+:
ˆ

Ω

f(x, u1)τε(u2 − u1)ϕdx +
ˆ

Ω

f(x, u2)(1 − τε(u2 − u1))ϕdx (3.4)

=
ˆ

Ω

f(x, u1)χA1ϕdx +
ˆ

Ω

f(x, u2)χA2ϕdx + o(1)

=
ˆ

Ω

f(x, u)ϕdx + o(1).

Plugging (3.3), (3.4) into (3.2) we have for all ϕ ∈ C∞
c (Ω)+

〈(−Δ)sp u, ϕ〉 �
ˆ

Ω

f(x, u)ϕdx.

By density, the same holds with test functions in W s,p
0 (Ω)+, hence u is a supersolution of (1.1), which proves 

(i). Similarly we prove (ii). �
Now we consider a sub-supersolution pair (u, u) and we study the set S(u, u). We begin with a sub-

supersolution principle, showing that S(u, u) = ∅:
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Lemma 3.2. Let H0 hold and (u, u) be a sub-supersolution pair of (1.1). Then, there exists u ∈ S(u, u).

Proof. In this argument we use some nonlinear operator theory from [8]. First we define A = (−Δ)sp :
W s,p

0 (Ω) → W−s,p′(Ω). By Lemma 2.1 A is monotone and continuous, hence hemicontinuous [8, Definition 
2.95 (iii)], therefore A is pseudomonotone [8, Lemma 2.98 (i)].

Besides, we set for all (x, t) ∈ Ω ×R

f̃(x, t) =

⎧⎪⎪⎨⎪⎪⎩
f(x, u(x)) if t � u(x)
f(x, t) if u(x) < t < u(x)
f(x, u(x)) if t � u(x).

In general, f̃ does not satisfy H0, but still f̃ : Ω ×R → R is a Carathéodory function s.t. for a.e. x ∈ Ω and 
all t ∈ R

|f̃(x, t)| � c0(1 + |u|q−1 + |u|q−1). (3.5)

We define B : W s,p
0 (Ω) → W−s,p′(Ω) by setting for all u, v ∈ W s,p

0 (Ω)

〈B(u), v〉 = −
ˆ

Ω

f̃(x, u)v dx,

well posed by (3.5), as |u|q−1, |u|q−1 ∈ Lq′(Ω). We prove that B is strongly continuous [8, Definition 2.95 
(iv)]. Indeed, let (un) be a sequence s.t. un ⇀ u in W s,p

0 (Ω), passing to a subsequence if necessary, we have 
un → u in Lq(Ω), un(x) → u(x) and |un(x)| � h(x) for a.e. x ∈ Ω, for some h ∈ Lq(Ω). Therefore, for all 
n ∈ N, by (3.5) we have for a.e. x ∈ Ω

|f̃(x, un) − f̃(x, u)| � 2c0(1 + |u|q−1 + |u|q−1) ∈ Lq′(Ω),

while by continuity of f(x, ·) we have f̃(x, un) → f̃(x, u). Hence, for all v ∈ W s,p
0 (Ω),

|〈B(un) −B(u), v〉| �
ˆ

Ω

|f̃(x, un) − f̃(x, u)||v| dx

� ‖f̃(·, un) − f̃(·, u)‖q′‖v‖q

and the latter tends to 0 as n → ∞, uniformly with respect to v. Therefore B(un) → B(u) in W−s,p′(Ω). 
By [8, Lemma 2.98 (ii)], B is pseudomonotone. Thus, A + B is pseudomonotone.

Now we prove that A + B is bounded. Indeed, for all u ∈ W s,p
0 (Ω) we have ‖A(u)‖−s,p′ � ‖u‖p−1

s,p and

‖B(u)‖−s,p′ = sup
‖v‖s,p�1

ˆ

Ω

f̃(x, u)v dx

� C‖f̃(·, u)‖q′

� C(1 + ‖u‖q−1
q + ‖u‖q−1

q ),

where we have used (3.5) and the continuous embedding W s,p
0 (Ω) ↪→ Lq(Ω).
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Finally we prove that A + B is coercive. Indeed, for all u ∈ W s,p
0 (Ω) \ {0} we have

〈A(u) + B(u), u〉
‖u‖s,p

= ‖u‖p−1
s,p − 1

‖u‖s,p

ˆ

Ω

f̃(x, u)u dx

� ‖u‖p−1
s,p − C

‖u‖s,p

ˆ

Ω

(1 + |u|q−1 + |u|q−1)|u| dx

� ‖u‖p−1
s,p − C

‖u‖s,p
(
‖u‖1 + ‖u‖q−1

q ‖u‖q + ‖u‖q−1
q ‖u‖q

)
� ‖u‖p−1

s,p − C,

and the latter tends to ∞ as ‖u‖s,p → ∞ (here we have used the continuous embeddings W s,p
0 (Ω) ↪→

L1(Ω), Lq(Ω)). By [8, Theorem 2.99], the equation

A(u) + B(u) = 0 in W−s,p′
(Ω) (3.6)

has a solution u ∈ W s,p
0 (Ω). Now we prove that in Ω

u � u � u. (3.7)

Clearly (3.7) holds in Ωc. Testing (3.6) with (u − u)+ ∈ W s,p
0 (Ω)+ we have

〈(−Δ)sp u, (u− u)+〉 =
ˆ

Ω

f̃(x, u)(u− u)+ dx

=
ˆ

Ω

f(x, u)(u− u)+ dx

� 〈(−Δ)sp u, (u− u)+〉,

where we also used that u is a supersolution of (1.1), so

〈(−Δ)sp u− (−Δ)sp u, (u− u)+〉 � 0.

By [4, Lemma A.2] and [26, Lemma 2.3] (with g(t) = t+) we have for all a, b ∈ R

|a+ − b+|p � (a− b)p−1(a+ − b+), (a− b)p−1 � C(ap−1 − bp−1),

hence

‖(u− u)+‖ps,p =
¨

RN×RN

|(u(x) − u(x))+ − (u(y) − u(y))+|p dμ

�
¨

RN×RN

[(u(x) − u(x)) − (u(y) − u(y))]p−1[(u(x) − u(x))+ − (u(y) − u(y))+] dμ

� C

¨

RN×RN

[(u(x) − u(y))p−1 − (u(x) − u(y))p−1][(u(x) − u(x))+ − (u(y) − u(y))+] dμ

= C〈(−Δ)sp u− (−Δ)sp u, (u− u)+〉 � 0,
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so (u − u)+ = 0, i.e., u � u in Ω. Similarly we prove u � u and achieve (3.7). Finally, using (3.7) in (3.6)
we see that u ∈ W s,p

0 (Ω) solves (1.1). Thus u ∈ S(u, u). �
We recall that a partially ordered set (S, �) is downward directed (resp., upward directed) if for all 

u1, u2 ∈ S there exists u3 ∈ S s.t. u3 � u1, u2 (resp., u3 � u1, u2), and that S is directed if it is both 
downward and upward directed.

Lemma 3.3. Let H0 hold, (u, u) be a sub-supersolution pair of (1.1). Then, S(u, u) is directed.

Proof. We prove that S(u, u) is downward directed. Let u1, u2 ∈ S(u, u), then in particular u1, u2 are 
supersolutions of (1.1). Set û = u1 ∧ u2 ∈ W s,p

0 (Ω), then by Lemma 3.1 û is a supersolution of (1.1) and 
u � û. By Lemma 3.2 there exists u3 ∈ S(u, ̂u), in particular u3 ∈ S(u, u) and u3 � u1 ∧ u2.

Similarly we see that S(u, u) is upward directed. �
Another important property of S(u, u) is compactness:

Lemma 3.4. Let H0 hold, (u, u) be a sub-supersolution pair of (1.1). Then, S(u, u) is compact in W s,p
0 (Ω).

Proof. Let (un) be a sequence in S(u, u), then for all n ∈ N, v ∈ W s,p
0 (Ω)

〈(−Δ)sp un, v〉 =
ˆ

Ω

f(x, un)v dx (3.8)

and u � un � u. Testing (3.8) with un ∈ W s,p
0 (Ω), we have by H0

‖un‖ps,p =
ˆ

Ω

f(x, un)un dx

� c0

ˆ

Ω

(|un| + |un|q) dx

� c0(‖u‖1 + ‖u‖1 + ‖u‖qq + ‖u‖qq) � C,

hence (un) is bounded in W s,p
0 (Ω). Passing to a subsequence, we have un ⇀ u in W s,p

0 (Ω), un(x) → u(x)
and |un(x)| � h(x) for a.e. x ∈ N, with h ∈ Lq(Ω). Therefore,

|f(x, un)(un − u)| � c0(1 + |un|q−1)|un − u|
� 2c0(1 + g(x)q−1)(|u| + |u|) ∈ L1(Ω).

Testing (3.8) with un − u ∈ W s,p
0 (Ω), we get

〈(−Δ)sp (un), un − u〉 =
ˆ

Ω

f(x, un)(un − u) dx,

and the latter tends to 0 as n → ∞. By Lemma 2.1 we have un → u in W s,p
0 (Ω). Then, we can pass to the 

limit in (3.8) and conclude that u ∈ S(u, u). �
The main result of this section states that S(u, u) contains extremal elements with respect to the pointwise 

ordering:
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Theorem 3.5. Let H0 hold, (u, u) be a sub-supersolution pair of (1.1). Then S(u, u) contains a smallest and 
a biggest element.

Proof. The set S(u, u) is bounded in both W s,p
0 (Ω) and Cα

s (Ω). Indeed, for all u ∈ S(u, u), testing (1.1)
with u ∈ W s,p

0 (Ω) we have

‖u‖ps,p =
ˆ

Ω

f(x, u)u dx

� c0

ˆ

Ω

(|u| + |u|q) dx

� c0(‖u‖1 + ‖u‖1 + ‖u‖qq + ‖u‖qq),

hence S(u, u) is bounded in W s,p
0 (Ω). Further, by Lemma 2.4, for all u ∈ S(u, u) we have u ∈ L∞(Ω), 

‖u‖∞ � C (with C = C(u, u) > 0, here and in the forthcoming bounds). In turn, this implies ‖f(·, u)‖∞ � C. 
Then we apply Lemma 2.5 (with g = f(·, u)) to see that u ∈ Cα

s (Ω), ‖u‖α,s � C. So, S(u, u) is bounded in 
Cα

s (Ω) as well (in particular, then, S(u, u) is equibounded in Ω).
Now we prove that S(u, u) has a minimum. Let (xk) be a dense subset of Ω, and set

mk = inf
u∈S(u,u)

u(xk) > −∞

for each k � 1 (recall S(u, u) is equibounded). For all n ∈ N, k ∈ {1, . . . , n} we can find un,k ∈ S(u, u) s.t.

un,k(xk) � mk + 1
n
.

Since S(u, u) is downward directed (Lemma 3.3), we can find un ∈ S(u, u) s.t. un � un,k for all k ∈
{1, . . . , n}. In particular, for all n ∈ N, k ∈ {1, . . . , n} we have

un(xk) � mk + 1
n
. (3.9)

Since S(u, u) is compact (Lemma 3.4), passing to a subsequence we have un → u0 in W s,p
0 (Ω) for some 

u0 ∈ S(u, u). Besides, (un) ⊆ S(u, u) is bounded in Cα
s (Ω), hence up to a further subsequence un → u0 in 

C0
s (Ω), in particular un(x) → u0(x) for all x ∈ Ω. By (3.9) we have for all k ∈ N

u0(xk) = lim
n

un(xk) � lim
n

(
mk + 1

n

)
= mk.

Therefore, given u ∈ S(u, u) we have u0(xk) � u(xk) for all k � 1, which by density of (xk) implies u0 � u. 
Hence,

u0 = minS(u, u).

Similarly we prove the existence of maxS(u, u). �
Remark 3.6. For the sake of completeness, we recall that Theorem 3.5 can be proved following closely the 
proof of [8, Theorem 3.11], using Lemmas 3.3, 3.4, and the fact that W s,p

0 (Ω) is separable (another way 
consists in applying Zorn’s Lemma, as in [8, Remark 3.12]). We also note that, as seen in the proof of 
Theorem 3.5, S(u, u) turns out to be compact in C0

s (Ω).
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4. Extremal constant sign solutions

In this section we prove that (1.1) has a smallest positive and a biggest negative solution (following the 
ideas of [9]), under the following hypotheses on f :

H1 f : Ω ×R → R is a Carathéodory function, for all (x, t) ∈ Ω ×R we set

F (x, t) =
tˆ

0

f(x, τ) dτ,

and the following conditions hold:

(i) |f(x, t)| ≤ c0(1 + |t|q−1) for all a.e. x ∈ Ω and all t ∈ R (c0 > 0, q ∈ (p, p∗s));

(ii) lim sup
|t|→∞

F (x, t)
|t|p <

λ1

p
uniformly for a.e. x ∈ Ω;

(iii) λ1 < lim inf
t→0

f(x, t)
|t|p−2t

� lim sup
t→0

f(x, t)
|t|p−2t

< ∞ uniformly for a.e. x ∈ Ω.

Clearly H1 implies H0. Here λ1 > 0 denotes the principal eigenvalue of (−Δ)sp in W s,p
0 (Ω), with associated 

positive, Lp(Ω)-normalized eigenfunction û1 ∈ W s,p
0 (Ω) (see Lemma 2.8 (i)). Note that by H1 (iii) we have 

f(·, 0) = 0 in Ω, hence (1.1) has the trivial solution 0. Condition H1 (iii) conjures a (p − 1)-linear behavior 
of f(x, ·) near the origin.

In this and the forthcoming section, our approach to problem (1.1) is purely variational. Our result is 
the following:

Theorem 4.1. Let H1 hold. Then, (1.1) has a smallest positive solution u+ ∈ int(C0
s (Ω)+) and a biggest 

negative solution u− ∈ −int(C0
s (Ω)+).

Proof. We focus on positive solutions. Set for all (x, t) ∈ Ω ×R

f+(x, t) = f(x, t+), F+(x, t) =
tˆ

0

f+(x, τ) dτ,

and for all u ∈ W s,p
0 (Ω)

Φ+(u) =
‖u‖ps,p

p
−
ˆ

Ω

F+(x, u) dx.

Since f+(x, t) = 0 for all (x, t) ∈ Ω × R−, f+ satisfies H1 (with t → 0+ in (iii)). Therefore, Φ+ ∈
C1(W s,p

0 (Ω)). By H1 (i) and the compact embedding W s,p
0 (Ω) ↪→ Lq(Ω), it is easily seen that Φ+ is 

sequentially weakly lower semicontinuous in W s,p
0 (Ω).

By H1 (ii) there exist θ ∈ (0, λ1), K > 0 s.t. for a.e. x ∈ Ω and all |t| � K

F+(x, t) � θ

p
|t|p.

Besides, by H1 (i) we can find CK > 0 s.t. for a.e. x ∈ Ω and all t ∈ R



JID:YJMAA AID:124205 /FLA Doctopic: Partial Differential Equations [m3L; v1.285; Prn:18/05/2020; 11:16] P.15 (1-22)
S. Frassu, A. Iannizzotto / J. Math. Anal. Appl. ••• (••••) •••••• 15
F+(x, t) � θ

p
|t|p + CK .

So, for all u ∈ W s,p
0 (Ω) we have

Φ+(u) �
‖u‖ps,p

p
−
ˆ

Ω

(θ
p
|u|p + CK

)
dx

�
‖u‖ps,p

p
− θ

p
‖u‖pp − CK |Ω|

�
(
1 − θ

λ1

)‖u‖ps,p
p

− CK |Ω|

(where we used Lemma 2.8), and the latter tends to infinity as ‖u‖s,p → ∞. Therefore Φ+ is coercive. Thus, 
there is û ∈ W s,p

0 (Ω) s.t.

Φ+(û) = inf
u∈W s,p

0 (Ω)
Φ+(u). (4.1)

In particular, we have Φ′
+(û) = 0, i.e.,

(−Δ)sp û = f+(·, û) in W−s,p′
(Ω). (4.2)

Testing (4.2) with −û− ∈ W s,p
0 (Ω), we get

‖û−‖p � −〈(−Δ)sp û, û−〉 = −
ˆ

Ω

f+(x, û)û− dx = 0,

so û � 0. Hence, f+(·, ̂u) = f(·, ̂u), therefore (4.2) rephrases as

(−Δ)sp (û) = f(·, û) in W−s,p′
(Ω),

i.e., û ∈ W s,p
0 (Ω)+ is a solution of (1.1). By Lemmas 2.4, 2.5 we have û ∈ C0

s (Ω)+. By H1 (iii), we can find 
λ1 < c1 < c2, δ > 0 s.t. for a.e. x ∈ Ω and all t ∈ [0, δ]

c1t
p−1 � f(x, t) � c2t

p−1. (4.3)

Choose τ > 0 s.t. 0 < τû1 � δ in Ω. Then by (4.1), (4.3), and Lemma 2.8 we have

Φ+(û) � Φ+(τ û1)

= τp

p
‖û1‖ps,p −

ˆ

Ω

F+(x, τ û1) dx

� τp

p
‖û1‖ps,p −

τpc1
p

‖û1‖pp

= τp

p
(λ1 − c1) < 0,

hence û = 0. By (4.2), (4.3) we have for all v ∈ W s,p
0 (Ω)+
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〈(−Δ)sp û, v〉 �
ˆ

{û�δ}

c1û
p−1v dx−

ˆ

{û>δ}

c0(1 + ûq−1)v dx

�
ˆ

Ω

c1û
p−1v dx− c0

ˆ

{û>δ}

[
1

δp−1 + ‖û‖q−p
∞

]
ûp−1v dx

� −C

ˆ

Ω

ûp−1v dx

for some C > 0. By Lemma 2.7 and (2.1) we have û ∈ int(C0
s (Ω)+), so there is r > 0 s.t. u ∈ C0

s (Ω)+ for 
all u ∈ C0

s (Ω) with ‖u − û‖0,s < r. Now pick

0 < ε < min
{ δ

‖û‖∞
,

r

‖û1‖0,s

}
. (4.4)

By (4.3) we have for all v ∈ W s,p
0 (Ω)+

〈(−Δ)sp (εû1), v〉 = λ1

ˆ

Ω

(εû1)p−1v dx �
ˆ

Ω

f(x, εû1)v dx,

hence εû1 is a subsolution of (1.1). Besides,

‖(û− εû1) − û‖0,s = ε‖û1‖0,s < r,

so û− εû1 ∈ C0
s (Ω)+, in particular εû1 � û. Therefore (εû1, ̂u) is a sub-supersolution pair of (1.1).

For all n ∈ N big enough, ε = 1
n satisfies (4.4). By Theorem 3.5, there exists

un = minS
( û1

n
, û

)
.

Clearly (0, ̂u) is a sub-supersolution pair of (1.1) and un ∈ S(0, ̂u), so by Lemma 3.4, passing if necessary 
to a subsequence, we have un → u+ in W s,p

0 (Ω) for some u+ ∈ S(0, ̂u).
On the other hand we have for all n ∈ N

S
( û1

n
, û

)
⊆ S

( û1

n + 1 , û
)
,

hence by minimality un+1 � un. This in turn implies that un(x) → u+(x) for a.e. x ∈ Ω. Now, since 
0 � un � û, we see that (un) is a bounded sequence in L∞(Ω), hence by H1 (i) (f(·, un)) is uniformly 
bounded as well. Then, since for all n ∈ N

(−Δ)sp un = f(·, un) in W−s,p′
(Ω), (4.5)

Lemmas 2.4, 2.5 imply that (un) is bounded in Cα
s (Ω) as well. So, passing to a further subsequence, we 

have un → u+ in C0
s (Ω).

We prove now that u+ = 0, by contradiction. If u+ = 0, then un → 0 uniformly in Ω. Set

vn = un

‖un‖s,p
∈ W s,p

0 (Ω)+,

then by (4.5) we have for all n ∈ N
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(−Δ)sp vn = f(·, un)
‖un‖p−1

s,p

= f(·, un)
up−1
n

vp−1
n in W−s,p′

(Ω).

Set for all n ∈ N

ρn = f(·, un)
up−1
n

.

By (4.3), for n ∈ N big enough we have c1 � ρn � c2 in Ω, in particular ρn ∈ L∞(Ω). Then vn ∈ W s,p
0 (Ω) \{0}

is an eigenfunction of the (2.4)-type eigenvalue problem

(−Δ)sp vn = λρnv
p−1
n in W−s,p′

(Ω), (4.6)

associated with the eigenvalue λ = 1. Since ρn � c1 > λ1, by Lemma 2.8 (iii) we have

λ1(ρn) < λ1(λ1) = 1,

therefore vn is a non-principal eigenfunction of (4.6). By Lemma 2.8 (ii) vn is nodal, a contradiction. Hence, 
by Lemma 2.7 and (2.1) we have u+ ∈ int(C0

s (Ω)+).
Finally, we prove that u+ is the smallest positive solution of (1.1). Let u ∈ W s,p

0 (Ω)+ \ {0} be a solution 
of (1.1). Arguing as above we see that u ∈ int(C0

s (Ω)+). Set w = u ∧ û ∈ W s,p
0 (Ω)+, then by Lemma 3.1 w

is a supersolution of (1.1). As above, for all n ∈ N big enough we have that û1
n is a subsolution of (1.1) and 

û1
n � w in Ω, i.e., (û1/n, w) is a sub-supersolution pair. Therefore, by Lemma 3.2 we can find

wn ∈ S
( û1

n
,w

)
.

Since

S
( û1

n
,w

)
⊆ S

( û1

n
, û

)
,

by minimality, for all n ∈ N big enough we have un � wn, hence un � u. Passing to the limit as n → ∞, 
we have u+ � u.

Similarly we prove existence of the biggest negative solution u− ∈ −int(C0
s (Ω)+). �

Remark 4.2. According to [21], most properties in Lemma 2.8 also hold if ρ lies in a special class W̃p of 
singular weights, namely if ρ dsa

Ω ∈ Lr(Ω) for some a ∈ [0, 1], r > 1 satisfying

1
r

+ a

p
+ p− a

p∗s
< 1.

So, in view of the proof of Theorem 4.1 above, a natural question is whether we may replace H1 (iii) with 
the weaker condition

lim inf
t→0

f(x, t)
tp−1 > λ1 uniformly for a.e. x ∈ Ω.

Define ρn = f(·, un)/up−1
n as above, then recalling that un � cds

Ω in Ω we have

0 < ρn � C(1 + d−s(p+1)
Ω ).

Unfortunately, this does not ensure that ρn ∈ W̃p, in general. For instance, consider the case Ω = B1(0), 
dΩ(x) = 1 − |x|. Then we have ds

Ω ∈ Lα(Ω) iff α ∈ (0, 1). Therefore, ρn ∈ W̃p implies
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⎧⎨⎩sr(p− a− 1) < 1
1
r

+ a

p
+ p− a

p∗s
< 1,

in particular (p −2)s < 1. Yet, for special values of p, s, and a suitable domain Ω, analogues to Theorem 4.1
could be proved for reactions f(x, ·) with a (p − 1)-sublinear behavior near the origin.

5. Nodal solutions

In this section we present an application of our main result, following the ideas of [16] (see also [35, 
Theorem 11.26]). Applying Theorem 4.1, along with the mountain pass theorem and spectral theory for 
(−Δ)sp , we prove existence of a nodal solution of (1.1). Our hypotheses on the reaction f are the following:

H2 f : Ω ×R → R is a Carathéodory function, for all (x, t) ∈ Ω ×R we set

F (x, t) =
tˆ

0

f(x, τ) dτ,

and the following conditions hold:

(i) |f(x, t)| ≤ c0(1 + |t|q−1) for all a.e. x ∈ Ω and all t ∈ R (c0 > 0, q ∈ (p, p∗s));

(ii) lim sup
|t|→∞

F (x, t)
|t|p <

λ1

p
uniformly for a.e. x ∈ Ω;

(iii) λ2 < lim inf
t→0

f(x, t)
|t|p−2t

� lim sup
t→0

f(x, t)
|t|p−2t

< ∞ uniformly for a.e. x ∈ Ω.

Here λ2 > λ1 denotes the second (variational) eigenvalue of (−Δ)sp in W s,p
0 (Ω), defined by (2.5). Again, we 

are assuming for f(x, ·) a (p − 1)-linear behavior near the origin.
Our method is variational. We define the energy functional Φ as in Section 1 and recall the following 

Palais-Smale compactness condition:

(PS) Any sequence (un)n in W s,p
0 (Ω), s.t. (Φ(un)) is bounded in R and Φ′(un) → 0 in W−s,p′ , admits a 

(strongly) convergent subsequence.

We will use the following notation for critical points:

K(Φ) =
{
u ∈ W s,p

0 (Ω) : Φ′(u) = 0 in W−s,p′
(Ω)

}
and for all c ∈ R

Kc(Φ) =
{
u ∈ K(Φ) : Φ(u) = c

}
.

Our result is the following:

Theorem 5.1. Let H2 hold. Then, (1.1) has a smallest positive solution u+ ∈ int(C0
s (Ω)+), a biggest negative 

solution u− ∈ −int(C0
s (Ω)+), and a nodal solution ũ ∈ C0

s (Ω) s.t. u− � ũ � u+ in Ω.

Proof. Clearly H2 implies H1. From Theorem 4.1, then, we know that (1.1) has a smallest positive solution 
u+ ∈ int(C0

s (Ω)+) and a biggest negative solution u− ∈ −int(C0
s (Ω)+). Plus, by H2 (iii), 0 is a solution of 

(1.1). We are going to detect a fourth solution ũ ∈ W s,p
0 (Ω), and then show that it is nodal.
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Set for all (x, t) ∈ Ω ×R

f̃(x, t) =

⎧⎪⎪⎨⎪⎪⎩
f(x, u−(x)) if t < u−(x)
f(x, t) if u−(x) � t � u+(x)
f(x, u+(x)) if t > u+

and

F̃ (x, t) =
tˆ

0

f̃(x, τ) dτ.

Since u± ∈ L∞(Ω), f̃ satisfies H0. Now set for all u ∈ W s,p
0 (Ω)

Φ̃(u) =
‖u‖ps,p

p
−
ˆ

Ω

F̃ (x, u) dx.

By H2 (i) (ii), reasoning as in the proof of Theorem 4.1 we see that Φ̃ ∈ C1(W s,p
0 (Ω)) is coercive. As a 

consequence, Φ̃ satisfies (PS) (see [22, Proposition 2.1]). Whenever u ∈ W s,p
0 (Ω) is a critical point of Φ̃, 

then for all v ∈ W s,p
0 (Ω)

〈(−Δ)sp u, v〉 =
ˆ

Ω

f̃(x, u)v dx. (5.1)

By Lemmas 2.4, 2.5 we have u ∈ C0
s (Ω). Besides, testing (5.1) with (u − u+)+, −(u − u−)− ∈ W s,p

0 (Ω)
and arguing as in Lemma 3.2 we have u− � u � u+ in Ω, hence u solves (1.1) in Ω. Using the notation of 
Section 3, we can say that u ∈ S(u−, u+).

We introduce a further truncation setting for all (x, t) ∈ Ω ×R

f̃+(x, t) = f̃(x, t+), F̃+(x, t) =
tˆ

0

f̃+(x, τ) dτ,

and for all u ∈ W s,p
0 (Ω)

Φ̃+(u) =
‖u‖ps,p

p
−
ˆ

Ω

F̃+(x, u) dx.

Reasoning as above, we see that Φ̃+ ∈ C1(W s,p
0 (Ω)) is coercive, and whenever u ∈ W s,p

0 (Ω) is a critical 
point of Φ̃+ we have u ∈ S(0, u+). By the compact embedding W s,p

0 (Ω) ↪→ Lq(Ω), it is easily seen that Φ̃+
is sequentially weakly lower semicontinuous, hence there exists ũ+ ∈ W s,p

0 (Ω) s.t.

Φ̃+(ũ+) = inf
u∈W s,p

0 (Ω)
Φ̃+(u).

Arguing as in Theorem 4.1 we see that Φ̃+(ũ+) < 0, hence ũ+ = 0. By H2 (iii) and Lemma 2.7, we have 
ũ+ ∈ int(C0

s (Ω)+). So, ũ+ is a positive solution of (1.1), hence the minimality of u+ implies ũ+ = u+. In 
particular, since Φ̃ = Φ̃+ in C0

s (Ω)+, we see that u+ ∈ int(C0
s (Ω)+) is a local minimizer of Φ̃ in C0

s (Ω). By 
Lemma 2.6, then u+ is a local minimizer of Φ̃ in W s,p

0 (Ω) as well (recall that f̃ satisfies H0).
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Similarly we prove that u− ∈ −int(C0
s (Ω)+) is a local minimizer of Φ̃.

Now we argue by contradiction, assuming that there are no other critical points of Φ̃ than 0, u+, and 
u−, namely,

K(Φ̃) = {0, u+, u−}. (5.2)

In particular, both u± are strict local minimizers of Φ̃, which satisfies (PS). By the mountain pass Theorem 
[35, Proposition 5.42], there exists ũ ∈ Kc(Φ̃), where we have set

Γ =
{
γ ∈ C([0, 1],W s,p

0 (Ω)) : γ(0) = u+, γ(1) = u−
}
,

and

c = inf
γ∈Γ

max
t∈[0,1]

Φ̃(γ(t)) > max
{
Φ̃(u+), Φ̃(u−)

}
.

In particular ũ = u±, which by (5.2) implies ũ = 0 and hence c = 0. Set

Σ = {u ∈ W s,p
0 (Ω) ∪ C0

s (Ω) : ‖u‖p = 1}.

By H2 (iii) we can find μ > λ2, δ > 0 s.t. for all x ∈ Ω, |t| � δ

F (x, t) � μ

p
|t|p.

By (2.5) there is γ1 ∈ Γ1 s.t.

max
t∈[0,1]

‖γ1(t)‖ps,p < μ,

and by density we may assume γ1 ∈ C([0, 1], Σ), continuous with respect to the C0
s (Ω)-norm (see [15] for 

details). Since t 
→ ‖γ1(t)‖∞ is bounded in [0, 1], we can find ε > 0 s.t. ‖εγ1(t)‖∞ � δ for all t ∈ [0, 1].
Besides, taking ε > 0 even smaller if necessary, we have for all t ∈ [0, 1]

u+ − εtγ1(t) ∈ int(C0
s (Ω)+), u− − εtγ1(t) ∈ −int(C0

s (Ω)+),

in particular u− < εγ1(t) < u+ a.e. in Ω. So, for all t ∈ [0, 1] we get

Φ̃(εγ1(t)) = εp

p
‖γ1(t)‖ps,p −

ˆ

Ω

F̃ (x, εγ1(t)) dx

� εp

p
‖γ1(t)‖ps,p −

μεp

p
‖γ1(t)‖pp

= εp

p
(‖γ1(t)‖ps,p − μ) < 0.

Thus, εγ1 is a continuous path joining εû1 to −εû1, s.t. for all t ∈ [0, 1]

Φ̃(εγ1(t)) < 0.

Besides, by (5.2) and Lemma 2.7 we have

K(Φ̃+) = {0, u+}.
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Set a = Φ̃+(u+), b = Φ̃+(εû1), hence a < b < 0 and there is no critical level in (a, b]. Therefore, by the 
second deformation theorem [35, Theorem 5.34] there exists a continuous deformation h : [0, 1] × {Φ̃+ �
b} → {Φ̃+ � b} s.t. for all t ∈ [0, 1], Φ̃+(u) � b

h(0, u) = u, h(1, u) = u+, Φ̃+(h(t, u)) � Φ̃+(u).

Set for all t ∈ [0, 1]

γ+(t) = h(t, εû1)+ ∈ W s,p
0 (Ω)+,

then γ+ ∈ C([0, 1], W s,p
0 (Ω)) with γ+(0) = εû1, γ(1) = u+, and for all t ∈ [0, 1]

Φ̃(γ+(t)) � b < 0.

Similarly we construct γ− ∈ C([0, 1], W s,p
0 (Ω)) s.t. γ−(0) = −εû1, γ(1) = u−, and for all t ∈ [0, 1]

Φ̃(γ−(t)) < 0.

Concatenating γ+, εγ1, γ− we find a path γ ∈ Γ s.t. for all t ∈ [0, 1]

Φ̃(γ(t)) < 0,

hence c < 0, a contradiction. So, (5.2) is false, i.e., there exists ũ ∈ K(Φ̃) \ {0, u+, u−}, so as ween above 
we have ũ ∈ S(u−, u+).

Finally, we prove that ũ is nodal. Indeed, if ũ ∈ W s,p
0 (Ω)+ \ {0}, then by Lemma 2.7 we would have 

ũ ∈ int(C0
s (Ω)+), along with ũ � u+, which, by Theorem 4.1, would imply ũ = u+, a contradiction. 

Similarly we see that ũ cannot be negative.
Thus, ũ ∈ C0

s (Ω) \ {0} is a nodal solution of (1.1) s.t. u− � ũ � u+ a.e. in Ω. �
Remark 5.2. The argument based on the characterization of λ2 was already employed in [26, Theorem 
4.1] and [15, Theorem 3.3] (for p = 2). The novelty of Theorem 5.1 above, with respect to such results 
(even for the linear case p = 2), lies in the detailed information about solutions, as we prove that u± are 
extremal constant sign solutions and ũ is nodal. We also remark that the assumption p � 2 is essentially 
due to regularity theory (Lemma 2.5), but the arguments displayed in this paper also work, with minor 
adjustments, for p ∈ (1, 2).
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