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ABSTRACT
We study a Dirichlet type problem for an equation involving the
fractional Laplacian and a reaction term subject to either subcriti-
cal or critical growth conditions, depending on a positive parameter.
Applying a critical point result of Bonanno, we prove existence of
one or two positive solutions as soon as the parameter lies under an
(explicitly determined) value. As an application, we find two positive
solutions for a fractional Ambrosetti–Brezis–Cerami problem.
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1. Introduction

This paper is devoted to the Dirichlet problem for a pseudo-differential equation of
fractional order:

(−�)s u = λf (u) in �

u > 0 in �

u = 0 in �c.

(1)

Here s ∈ (0, 1),� ⊂ RN (N>2s) is a bounded domainwithC1,1 boundary, and the leading
operator is the fractional Laplacian defined for all u ∈ S(RN) by

(−�)s u(x) = 2 P.V.
∫

RN

u(x) − u(y)
|x − y|N+2s dy. (2)

The autonomous reaction f ∈ C(R) is assumed to be non-negative and dominated at
infinity by a power of u, namely, for all t ∈ R

0 ≤ f (t) ≤ a0(1 + |t|q−1) (a0 > 0, q ≤ 2∗
s ), (3)

where 2∗
s = 2N/(N − 2s) denotes the critical exponent for the fractional Sobolev space

Hs(RN) (see [1]). Finally, λ > 0 is a parameter.
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2 S. FRASSU AND A. IANNIZZOTTO

Problem (1) admits a variational formulation by means of the energy functional

Jλ(u) = [u]2s
2

− λ

∫
�

F(u) dx,

where [ · ]s denotes the Gagliardo seminorm and F is a primitive of f, i.e. weak solutions
of (1) coincide with critical points of Jλ in a convenient subspace ofHs(RN) (see Section 2
below for details). We note that, for λ = 1, problem (1) embraces the Dirichlet problem
with pure power nonlinearities:

(−�)s u = μup−1 + uq−1 in �

u > 0 in �

u = 0 in �c,

(4)

with 1 < p < q ≤ 2∗
s and μ > 0.

For a general introduction to the fractional Laplacian, we refer to [1–4]. The study of (1)
(or closely related problems) via variationalmethods started from thework of Servadei and
Valdinoci [5,6]. Here we distinguish between the subcritical (q < 2∗

s in (3)) and critical
(q = 2∗

s ) cases. In the subcritical case, we mention for instance the contributions of [7–14]
and the monograph [15].

In the critical case, the main difficulty lies in the fact that Jλ does not satisfy the (usual
in variational methods) Palais-Smale compactness condition. In particular, problem (4)
with p = 2, q = 2∗

s represents a fractional counterpart of the famous Brezis–Nirenberg
problem [16]. Again, the first result in this direction is due to Servadei and Valdinoci [17]
(see also [18–20]). Later, Barrios et al. [21] studied (4) with 1 < p < q = 2∗

s , which for
s = 1 reduces to the problem with concave–convex nonlinearities studied by Ambrosetti,
Brezis and Cerami in [22]. In particular, they proved that in the concave case 1<p<2, for
μ > 0 small enough, such problem has at least two positive solutions uμ < wμ, employing
both topological (sub-supersolutions) and variational methods.

Our approach to problem (1) is purely variational, mainly based on a critical point
theorem of Bonanno [23] and some of its consequences, presented in [24–26]. The main
feature of suchmethod is a strategy to find a local minimizer of a Jλ-type functional, which
only requires a local Palais-Smale condition. Our results are

(a) In the subcritical case (q < 2∗
s ), we apply an abstract result of [24] and explicitly

compute a real numberλ∗ > 0 s.t. problem (1) admits at least two positive solutions
uλ, vλ for all λ ∈ (0, λ∗).

(b) In the critical case (q = 2∗
s ), we first study a generalization of problem (4), explicitly

determining a real number μ∗ > 0 s.t. there exist at least one positive solution uμ

for all μ ∈ (0,μ∗). Then, we focus on (4) with 1 < p < 2 < q = 2∗
s and, applying

the mountain pass theorem, we produce a second positive solutionwμ > uμ for all
μ ∈ (0,μ∗) (here we mainly follow [26]).

To our knowledge, this is the first application of the ideas of [23] in the field of fractional
Laplacian equations. A noteworthy difference with respect to the classical elliptic case is:
in this approach it is essential to explicitly compute Jλ(ū) at some Sobolev-type function
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ū : � → R, which is usually chosen in such a way to have a piecewise constant |∇ū|. In the
fractional framework, functions may have no gradient at all, and the computation of the
Gagliardo seminorm is often prohibitive, so ūwill be chosen as (a multiple of) the solution
of a fractional torsion equation in a ball (see (7)).

We also remark that our main result in part (b) is formally equivalent to the main result
of [21], but with two substantial differences: the first solution uμ is found as a local mini-
mizer of Jλ (instead of being detected via sub-supersolutions, and a posteriori proved to be
aminimizer), andmoreover the interval (0,μ∗) is explicitly determined (although possibly
not optimal).

The paper has the following structure: in Section 2, we collect the necessary prelimi-
naries; in Section 3, we develop part (a) of our study; in Sections 4 and 5, we focus on
part (b).

Notation: Throughout the paper, for any A ⊂ RN , we shall set Ac = RN \ A. By |A| we
will denote either theN-dimensional Lebesguemeasure or the (N − 1)-dimensionalHaus-
dorffmeasure ofA, which will be clear from the context. For any twomeasurable functions
u, v, u = v in A will stand for u(x) = v(x) for a.e. x ∈ A (and similar expressions). We will
often write tν = |t|ν−1t for t ∈ R, ν > 1. For any t ∈ R, we set t± = max{±t, 0}. By Br(x),
we denote the openball centered at x ∈ RN of radius r>0. For all ν ∈ [1,∞], ‖ · ‖ν denotes
the standard norm of Lν(�) (or Lν(RN), which will be clear from the context). Every func-
tion u defined in � will be identified with its 0-extension to RN . Moreover, C will denote
a positive constant (whose value may change line by line).

2. Preliminaries

We begin by recalling some basic notions about fractional Sobolev spaces (for details we
refer to [1]). We define the Gagliardo seminorm by setting for all measurable u : RN → R

[u]s =
[∫∫

RN×RN

(u(x) − u(y))2

|x − y|N+2s dx dy
] 1

2

.

Accordingly, we define the space

Hs(RN) = {
u ∈ L2(RN) : [u]s < ∞}

.

The embedding Hs(RN) ↪→ L2∗
s (RN) is continuous, and the fractional Talenti constant is

given by the following lemma (see [27, Theorem 1.1] and [1, Proposition 3.6]):

Lemma 2.1: We have

T(N, s) = max
u∈Hs(RN)\{0}

‖u‖2∗
s

[u]s
= s

1
2 �(N−2s

2 )
1
2 �(N)

s
N

2
1
2 π

N+2s
4 �(1 − s)

1
2 �(N2 )

s
N

> 0,

the maximum being attained at the functions

u(x) = a

(b + |x − x0|2)N−2s
2

(a, b > 0, x0 ∈ R
N).
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Now we establish a variational formulation for (1), following [6] (see also [28]). Set

Hs
0(�) = {

u ∈ Hs(RN) : u = 0 in �c} ,
a Hilbert space under the inner product

〈u, v〉 =
∫∫

RN×RN

(u(x) − u(y))(v(x) − v(y))
|x − y|N+2s dx dy

and the corresponding norm ‖u‖ = [u]s (see [6, Lemma 7]). The dual space of Hs
0(�) is

denotedH−s(�). By Lemma 2.1 andHölder’s inequality, for any ν ∈ [1, 2∗
s ] the embedding

Hs
0(�) ↪→ Lν(�) is continuous and for all u ∈ Hs

0(�) we have

‖u‖ν ≤ T(N, s)|�|
2∗s −ν

2∗s ν ‖u‖. (5)

Further, the embedding is compact iff ν < 2∗
s (see [6, Lemma 8]).

In order to deal with problem (1) variationally, we assume the hypotheses on the
reaction f :

H0f ∈ C(R), F(t) = ∫ t
0 f (τ ) dτ , and

(i) f (t) ≥ 0 for all t ∈ R;
(ii) f (t) ≤ a0(1 + |t|2∗

s −1) for all t ∈ R (a0 > 0).

We set for all u ∈ Hs
0(�), λ > 0


(u) = ‖u‖2
2

, �(u) =
∫

�

F(u) dx, Jλ(u) = 
(u) − λ�(u)

(� is well defined by virtue of hypothesisH0 (i) (ii)). Then 
,� , Jλ ∈ C1(Hs
0(�)) with

〈J′λ(u),ϕ〉 = 〈u,ϕ〉 − λ

∫
�

f (u)ϕ dx

for all u,ϕ ∈ Hs
0(�). We say that u is a (weak) solution of problem (1) if J′λ(u) = 0 in

H−s(�), that is, for all ϕ ∈ Hs
0(�) we have

〈u,ϕ〉 = λ

∫
�

f (u)ϕ dx. (6)

The regularity theory for fractional Dirichlet problems was essentially developed in [29]
(see also [21,28]). While smooth in �, solutions are in general singular on ∂�, so the best
global regularity we can expect is weighted Hölder continuity, in the following sense. Set
for all x ∈ �

d�(x) = dist(x,�c),

then define the spaces

C0
s (�) =

{
u ∈ C0(�) :

u
ds�

∈ C0(�)

}
, ‖u‖0,s =

∥∥∥ u
ds�

∥∥∥∞
,

and for any α ∈ (0, 1)

Cα
s (�) =

{
u ∈ C0(�) :

u
ds�

∈ Cα(�)

}
,
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‖u‖α,s = ‖u‖0,s + sup
x �=y

|u(x)/ds�(x) − u(y)/ds�(y)|
|x − y|α .

The positive order cone of C0
s (�) has a nonempty interior given by

int(C0
s (�)+) =

{
u ∈ C0

s (�) :
u
ds�

> 0 in �

}
.

For the reader’s convenience, we recall from [28, Theorems 2.3, 3.2 and Lemma 2.7] the
main properties of weak solutions:

Proposition 2.2: LetH0 hold, u ∈ Hs
0(�) be a weak solution of (1). Then:

(i) (a priori bound) u ∈ L∞(�);
(ii) (regularity) u ∈ Cα

s (�) with α ∈ (0, s] depending only on s and �;
(iii) (Hopf ’s lemma) if u �= 0, then u ∈ int(C0

s (�)+).

By Proposition 2.2 (iii), we see that, whenever u ∈ Hs
0(�) \ {0} satisfies (6), then in

particular u>0 in �. Moreover, assuming further that f is locally Lipschitz in R, from
[29, Corollary 1.6], we deduce that u ∈ Cβ(�) for any β ∈ [1, 1 + 2s), which along with
Proposition 2.2 (ii) implies that for all x ∈ RN the mapping

y �→ u(x) − u(y)
|x − y|N+2s

lies in L1(RN). Then, testing (6) with any ϕ ∈ C∞
c (�) and applying (2), we have∫

�

(−�)s uϕ dx = 〈u,ϕ〉 =
∫

�

f (u)ϕ dx,

i.e. u solves (1) pointwisely.
We also recall the following result, relating the local minimizers of the energy functional

Jλ in Hs
0(�) and in C0

s (�), respectively (see [28, Theorem 1.1], [21, Proposition 2.5], and
[30, Theorem 1.1] for a nonlinear extension), namely an analog for the fractional case of
the main result of [31]:

Proposition 2.3: LetH0 hold, u ∈ Hs
0(�). Then, the following are equivalent:

(i) there exists ρ > 0 s.t. Jλ(u + v) ≥ Jλ(u) for all v ∈ Hs
0(�) ∩ C0

s (�), ‖v‖0,s ≤ ρ;
(ii) there exists σ > 0 s.t. Jλ(u + v) ≥ Jλ(u) for all v ∈ Hs

0(�), ‖v‖ ≤ σ .

As pointed out in the Introduction, we will make use of the fractional torsion equation
on a ball:

(−�)s uR = 1 in BR(x0)

uR = 0 in BR(x0)c,
(7)
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where x0 ∈ RN , R>0. The solution of (7) (defined as in (6)) is unique, given by

uR(x) = A(N, s)(R2 − |x − x0|2)s+, A(N, s) = s�(N2 )

2π
N
2 �(1 + s)�(1 − s)

(see [2, p. 33] or [29, Equation (1.4)]). This simple example is popular in fractional regular-
ity theory, as it shows that solutions of Dirichlet problemsmay be singular at the boundary.
For future use, we compute some norms of uR:

Lemma 2.4: For all x0 ∈ RN, R>0 we have

(i) ‖uR‖ν = A(N, s)[π
N
2 �(1+νs)RN+2νs

�(N+2νs+2
2 )

]
1
ν for all ν ≥ 1;

(ii) [uR]s = [ s�(N2 )RN+2s

2�(1−s)�(N+2s+2
2 )

]
1
2 .

Proof: First we recall the well-known formulas

|∂B1(0)| = 2π
N
2

�(N2 )
,
∫ 1

0
(1 − ρ2)αρN−1 dρ = �(N2 )�(1 + α)

2�(N+2α+2
2 )

(α > 0),

then for all ν ≥ 1, we compute∫
BR(x0)

uν
R(x) dx = A(N, s)ν

∫
BR(x0)

(R2 − |x − x0|2)νs dx

= A(N, s)νRN+2νs|∂B1(0)|
∫ 1

0
(1 − ρ2)νsρN−1 dρ

= A(N, s)ν
π

N
2 �(1 + νs)RN+2νs

�(N+2νs+2
2 )

,

which implies (i). Furthermore, testing (7) with uR ∈ Hs
0(BR(x0)) and applying (i) with

ν = 1, we have

[uR]2s =
∫
BR(x0)

uR dx

= A(N, s)
π

N
2 �(1 + s)RN+2s

�(N+2s+2
2 )

= s�(N2 )RN+2s

2�(1 − s)�(N+2s+2
2 )

,

which gives (ii). �

Remark 2.5: We note that some results here are affected by the definition (2), which is the
same adopted in [21].Otherworks on the subject, for instance [1,2,27], define the fractional
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Laplacian as

(−�)s u(x) = C(N, s)P.V.
∫

RN

u(x) − u(y)
|x − y|N+2s dy, C(N, s) = 22ss�(N+2s

2 )

π
N
2 �(1 − s)

> 0,

where the multiplicative constant is required to equivalently define (−�)s bymeans of the
Fourier transform. In this paper, explicit constants are one of the main issues, so we decide
to follow the standard of [21] in order to easily compare similar results.

3. Two positive solutions under subcritical growth

In this section, following [24] as a model, we study (1) under the hypotheses:

H1f ∈ C(R), F(t) =
∫ t

0
f (τ ) dτ satisfy

(i) f (t) ≥ 0 for all t ∈ R;
(ii) f (t) ≤ ap|t|p−1 + aq|t|q−1 for all t ∈ R (1 ≤ p < 2 < q < 2∗

s , ap, aq > 0);
(iii) limt→0+ F(t)

t2 = ∞
(iv) 0 < ρF(t) ≤ f (t)t for all t ≥ M (ρ > 2,M>0).

Hypotheses H1 conjure for f a subcritical, superlinear growth at infinity, as well as a
sublinear growth near the origin, while (iv) is an Ambrosetti–Rabinowitz condition.

First, we recall the classical Palais-Smale condition at level c ∈ R, for a functional J ∈
C1(X) on a Banach space X:

(PS)c Every sequence (un) in X, s.t. J(un) → c and J′(un) → 0 in X∗, has a convergent
subsequence.

We say that J satisfies (PS), if J satisfies (PS)c for any c ∈ R.
We will apply the following abstract result, slightly rephrased from [24, Theorem 2.1]:

Theorem A: Let X be a Banach space, 
,� ∈ C1(X), Jλ = 
 − λ� (λ > 0), r ∈ R, ū ∈
X satisfy

(A1) infu∈X 
(u) = 
(0) = �(0) = 0;
(A2) 0 < 
(ū) < r;
(A3) sup
(u)≤r

�(u)
r <

�(ū)

(ū) ;

(A4) infu∈X Jλ(u) = −∞ for all λ ∈ Ir = (

(ū)
�(ū) , [sup
(u)≤r

�(u)
r ]−1).

Then, for all λ ∈ Ir for which Jλ satisfies (PS), there exist uλ, vλ ∈ X s.t.

J′λ(uλ) = J′λ(vλ) = 0, Jλ(uλ) < 0 < Jλ(vλ).

Let T(N, s) > 0 be defined by Lemma 2.1, set

λ∗ = 1

2T(N, s)2|�|
2∗s −2
2∗s

(
ap
p

) 2−q
q−p
(
aq
q

) p−2
q−p
(
2 − p
q − 2

) 2−p
q−p q − 2

q − p
> 0. (8)

We have the multiplicity result:
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Theorem 3.1: Let H1 hold, λ∗ > 0 be defined by (8). Then, for all λ ∈ (0, λ∗), (1) has at
least two solutions uλ, vλ ∈ int(C0

s (�)+).

Proof: Without loss of generality, we may assume f (t) = 0 for all t ≤ 0. We are going to
apply Theorem A. Set X = Hs

0(�) and define 
,� , Jλ as in Section 2, then clearly 
,� ∈
C1(Hs

0(�)) and

inf
u∈Hs

0(�)

(u) = 
(0) = �(0) = 0,

hence hypothesis (A1) holds. Set

r = |�|
2
2∗s

2T(N, s)2

[
apq(2 − p)
aqp(q − 2)

] 2
q−p

> 0. (9)

For all u ∈ Hs
0(�), 
(u) ≤ r, we have ‖u‖ ≤ (2r)

1
2 . So, by hypotheses H1 (i) (ii), along

with (5), (8) and (9), we obtain

�(u)
r

≤ ap
pr

‖u‖pp + aq
qr

‖u‖qq

≤ ap
pr

T(N, s)p|�|
2∗s −p
2∗s (2r)

p
2 + aq

qr
T(N, s)q|�|

2∗s −q
2∗s (2r)

q
2

= 2T(N, s)2|�|
2∗s −2
2∗s
(
ap
p

) q−2
q−p
(
aq
q

) 2−p
q−p
(
2 − p
q − 2

) p−2
q−p

+ 2T(N, s)2|�|
2∗s −2
2∗s
(
ap
p

) q−2
q−p
(
aq
q

) 2−p
q−p
(
2 − p
q − 2

) q−2
q−p

= 2T(N, s)2|�|
2∗s −2
2∗s
(
ap
p

) q−2
q−p
(
aq
q

) 2−p
q−p
(
2 − p
q − 2

) p−2
q−p q − p

q − 2
= 1

λ∗ .

Summarizing,

sup

(u)≤r

�(u)
r

≤ 1
λ∗ . (10)

Now fix λ ∈ (0, λ∗). Since ∂� is C1,1, we can find x0 ∈ RN , R>0 largest s.t. BR(x0) ⊆ �.
Let K>0 be s.t.

K
s�(N2 )�(1 + 2s)�(N+2s+2

2 )R2s

π
N
2 �(1 + s)2�(1 − s)�(N+4s+2

2 )
>

1
λ
. (11)

ByH1 (iii), we can find ε > 0 s.t. for all t ∈ [0, ε]

F(t) ≥ Kt2. (12)

Finally, fix

0 < δ < min

⎧⎨
⎩
[
4�(1 − s)�(N+2s+2

2 )r
s�(N2 )RN+2s

]1/2
,
2π

N
2 �(1 + s)�(1 − s)ε

s�(N2 )R2s

⎫⎬
⎭ . (13)
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Now let uR be the solution of (7) in BR(x0), and set ū = δuR ∈ Hs
0(�). Then we have by

Lemma 2.4(ii) and (13)


(ū) = s�(N2 )RN+2sδ2

4�(1 − s)�(N+2s+2
2 )

< r,

which implies (A2). Besides, by (13) we have for all x ∈ �

0 ≤ ū(x) ≤ s�(N2 )R2sδ

2π
N
2 �(1 + s)�(1 − s)

< ε,

hence by (12) and Lemma 2.4(i)

�(ū) ≥
∫

�

Kū2 dx = Kδ2‖uR‖22 = K
s2�(N2 )2�(1 + 2s)RN+4s

4π
N
2 �(1 + s)2�(1 − s)2�(N+4s+2

2 )
δ2.

The relations above and (11) imply

�(ū)

(ū)

≥ K
s�(N2 )�(1 + 2s)�(N+2s+2

2 )R2s

π
N
2 �(1 + s)2�(1 − s)�(N+4s+2

2 )
>

1
λ
.

Recalling that λ < λ∗, by (10) we have

sup

(u)≤r

�(u)
r

<
1
λ

<
�(ū)

(ū)

,

which yields at once (A3) and λ ∈ Ir. ByH1 (iv) we can find C>0 s.t. for all t ≥ M

F(t) ≥ Ctρ . (14)

Now pick w ∈ C∞
c (�) \ {0}. By (14), and recalling that F(t) ≥ 0 for all t ∈ R, we have for

all τ > 0

Jλ(τw) ≤ ‖w‖2
2

τ 2 − λ

∫
{w≤M/τ }

F(τw) dx − λ

∫
{w>M/τ }

C(τw)ρ dx

≤ ‖w‖2
2

τ 2 − λ

∫
�

C(τw)ρ dx + λ

∫
{w≤M/τ }

CMρ dx

≤ ‖w‖2
2

τ 2 − λC‖w‖ρ
∞|�|τρ + λCMρ |�|

and the latter tends to −∞ as τ → ∞ (since ρ > 2). So we see that (A4) holds as well.
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Finally, we prove that Jλ satisfies (PS). Let (un) be a sequence inHs
0(�) s.t. |Jλ(un)| ≤ C,

J′λ(un) → 0 in H−s(�). Then, for all n ∈ N we have

‖un‖2
2

− λ

∫
�

F(un) dx ≤ C (15)

and for all ϕ ∈ Hs
0(�)

∣∣∣〈un,ϕ〉 − λ

∫
�

f (un)ϕ dx
∣∣∣ ≤ ‖J′λ(un)‖ ‖ϕ‖ (16)

Multiplying (15) by ρ > 2 (as inH1 (iv)), testing (16) with un, and subtracting,

ρ − 2
2

‖un‖2 ≤ λ

∫
�

(
ρF(un) − f (un)un

)
dx + ‖J′λ(un)‖ ‖un‖ + C

≤ λ

∫
{0≤un≤M}

C
(|un|p + |un|q

)
dx + ‖J′λ(un)‖ ‖un‖ + C

≤ λC(Mp + Mq)|�| + ‖J′λ(un)‖ ‖un‖ + C.

So (un) is bounded inHs
0(�). Passing to a subsequence, we have un ⇀ u inHs

0(�), un → u
in Lp(�), Lq(�), and un(x) → u(x) for a.e. x ∈ �. Testing (16) this time with un − u ∈
Hs
0(�), we have for all n ∈ N

‖un − u‖2 ≤ 〈u, un − u〉 + λ

∫
�

(
ap|un|p−1 + aq|un|q−1) |un − u| dx

+ ‖J′λ(un)‖ ‖un − u‖
≤ 〈u, un − u〉 + λ

(
ap‖un‖p−1

p ‖un − u‖p + aq‖un‖q−1
q ‖un − u‖q

)
+ ‖J′λ(un)‖ ‖un − u‖,

(where we used H1 (ii) and Hölder’s inequality), and the latter tends to 0 as n → ∞. So,
un → u in Hs

0(�). (Note that we actually proved that Jλ is unbounded from below and
satisfies (PS) for all λ > 0.)

By Theorem A, there exist uλ, vλ ∈ Hs
0(�) s.t.

J′λ(uλ) = J′λ(vλ) = 0, Jλ(uλ) < 0 < Jλ(vλ).

Therefore, uλ, vλ �≡ 0 solve (1). By H1 (i) and Proposition 2.2, finally, we have uλ, vλ ∈
int(C0

s (�)+). �

We focus now on problem (4), with 1 < p < 2 < q < 2∗
s (subcritical case) and μ > 0.

Set

μ∗ =
[
2T(N, s)2|�|

2∗s −2
2∗s
] p−q

q−2

p q
2−p
q−2

(
2 − p
q − 2

) 2−p
q−2
(
q − 2
q − p

) q−p
q−2

> 0. (17)

We have the multiplicity result:
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Corollary 3.2: Let 1 < p < 2 < q < 2∗
s , μ∗ > 0 be defined by (17). Then, for all μ ∈

(0,μ∗) (4) has at least two solutions uμ, vμ ∈ int(C0
s (�)+).

Proof: Set for all t ∈ R, μ ∈ (0,μ∗)

f (t) = μ(t+)p−1 + (t+)q−1.

Then f satisfies H1 with ap = μ, aq = 1, and any ρ ∈ (2, q). In view of (17), here (8)
rephrases as

λ∗ = 1

2T(N, s)2|�|
2∗s −2
2∗s

p
q−2
q−p q

2−p
q−p

(
2 − p
q − 2

) 2−p
q−p q − 2

q − p
μ

2−q
q−p > 1.

Hence we can apply Theorem 3.1 with λ = 1 and find uμ, vμ ∈ int(C0
s (�)+) solutions

to (4). �

We present an example for Corollary 3.2:

Example 3.3: Set s = 1
2 , p = 3

2 , q = 3, N = 2 and

� =
{
(x, y) ∈ R

2 :
x2

4
+ y2

9
≤ 1

}
.

Then we have 2∗
1/2 = 4 > 3, |�| = 6π , while Lemma 2.1 gives

T
(
2,
1
2

)
= ( 12 )

1
2 �( 12 )

1
2 �(2)

1
4

2
1
2 π

3
4 �( 12 )

1
2 �(1)

1
4

= 1

2π
3
4
.

Therefore, (17) becomes

μ∗ =
[
2
(

1

2π
3
4

)2
(6π)

1
2

]− 3
2 3
2
3
1
2

(
1
2

) 1
2
(
2
3

) 3
2

= 2
3
4 π

3
2

3
3
4

.

By Corollary 3.2, for all μ ∈ (0,μ∗) (4) has at least two positive solutions.

4. One positive solution under critical growth

In this section, we study the slight generalization of problem (4):

(−�)s u = μg(u) + u2
∗
s −1 in �

u > 0 in �

u = 0 in �c,

(18)

with μ > 0 and assuming the hypotheses on g:
H2g ∈ C(R), G(t) = ∫ t

0 g(τ ) dτ satisfy
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(i) g(t) ≥ 0 for all t ∈ R;
(ii) g(t) ≤ ap|t|p−1 for all t ∈ R (p ∈ (1, 2∗

s ), ap > 0);
(iii) limt→0+ G(t)

t2 = ∞.

Note that, due to hypothesisH1 (iii), problem (18) reduces to (4) with g(t) = tp−1 only
for p ∈ (1, 2) (concave case). Although, the results of this section also embrace the case
p ∈ [2, 2∗

s ) (linear/convex case).
Due to the presence of the critical term u2∗

s −1 in (18), we cannot apply Theorem A,
as the associated energy functional does not satisfy (PS) in general. So we introduce the
local Palais-Smale condition for functionals of the type Jλ = 
 − λ� , with
,� ∈ C1(X),
λ > 0, defined on a Banach space X, and r>0:

(PS)r Every sequence (un) in X, s.t. (Jλ(un)) is bounded in R, J′(un) → 0 in X∗, and

(un) ≤ r for all n ∈ N, has a convergent subsequence.

In this case, our main tool is the local minimum result, slightly rephrased from [26,
Theorem 3.3]:

TheoremB: Let X be a Banach space,
,� ∈ C1(X), Jλ = 
 − λ� (λ > 0), r ∈ R; ū ∈ X
satisfy

(B1) infu∈X 
(u) = 
(0) = �(0) = 0;
(B2) 0 < 
(ū) < r;

(B3) sup
(u)≤r
�(u)
r

<
�(ū)

(ū)

.

Let

Ir =
⎛
⎝
(ū)

�(ū)
,

[
sup


(u)≤r

�(u)
r

]−1
⎞
⎠ .

Then, for all λ ∈ Ir for which Jλ satisfies (PS)r, there exists uλ ∈ X s.t.

0 < 
(uλ) < r, Jλ(uλ) = min
0<
(u)<r

Jλ(u).

Set for all μ > 0, t ∈ R

f (t) = μg(t) + (t+)2
∗−1, F(t) =

∫ t

0
f (τ ) dτ ,

then define
,� ∈ C1(Hs
0(�)) as in Section 2. Further, for all λ > 0 set Jλ = 
 − λ� . Set

for all r,μ > 0

λ∗
r = min

⎧⎪⎨
⎪⎩
⎡
⎢⎣2

2∗s
2 T(N, s)2∗

s r
2∗s −2
2

2∗
s

+ μ
2
p
2 apT(N, s)p|�|

2∗s −p
2∗s r

p−2
2

p

⎤
⎥⎦

−1

,
1

T(N, s)2∗
s

[ s
2Nr

] 2s
N−2s

⎫⎪⎬
⎪⎭ .

(19)
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We prove now that Jλ satisfies (PS)r for all r>0 and all λ > 0 small enough:

Lemma 4.1: Let r,μ > 0, λ∗
r > 0 be defined by (19). Then Jλ satisfies (PS)r for all λ ∈

(0, λ∗
r ).

Proof: Let (un) be a sequence in Hs
0(�) s.t. (Jλ(un)) is bounded, J′λ(un) → 0 in H−s(�),

and 
(un) ≤ r for all n ∈ N. Then (un) is bounded in Hs
0(�), hence in L2∗

s (�)

(Lemma 2.1). Passing to a subsequence we have un ⇀ u in Hs
0(�), L2∗

s (�), un → u in
Lp(�), un(x) → u(x) for a.e. x ∈ �, and Jλ(un) → c. First we see that

J′λ(u) = 0. (20)

Indeed, since (u2
∗
s −1
n ) is bounded in L(2∗

s )
′
(�), up to a further subsequence we have

u2
∗
s −1
n ⇀ u2∗

s −1 in L(2∗
s )

′
(�), while by H2 (i) (ii) we have g(un) → g(u) in Lp′

(�). So, for
all ϕ ∈ Hs

0(�) we have

〈J′λ(un),ϕ〉 = 〈un,ϕ〉 − λ

∫
�

u2
∗
s −1
n ϕ dx − λμ

∫
�

g(un)ϕ dx

→ 〈u,ϕ〉 − λ

∫
�

u2
∗
s −1ϕ dx − λμ

∫
�

g(u)ϕ dx = 〈J′λ(u),ϕ〉,

which along with J′λ(un) → 0 gives (20). Besides,

Jλ(u) > −r. (21)

Indeed, since un ⇀ u in Hs
0(�) and 
 is convex, we have 
(u) ≤ r, i.e. ‖u‖ ≤ (2r)

1
2 . So

using Lemma 2.1, (5) with ν = p, (19), and λ < λ∗
r , we have

Jλ(u) ≥ −λ�(u)

≥ − λ

2∗
s
‖u‖2∗

s
2∗
s
− λμap

p
‖u‖pp

≥ − λ

2∗
s
T(N, s)2

∗
s (2r)

2∗s
2 − λμap

p
T(N, s)p|�|

2∗s −p
2∗s (2r)

p
2

≥ −λr

⎡
⎢⎣2

2∗s
2 T(N, s)2∗

s r
2∗s −2
2

2∗
s

+ μ
2
p
2 apT(N, s)p|�|

2∗s −p
2∗s r

p−2
2

p

⎤
⎥⎦

≥ −λr
λ∗
r
,

and the latter gives (21) since λ > λ∗
r . Now set vn = un − u. We have

lim
n

[

(vn) − λ

2∗
s
‖vn‖2

∗
s
2∗
s

]
= c − Jλ(u). (22)

Indeed, since vn ⇀ 0 in Hs
0(�), we have

‖vn‖2 = ‖un‖2 − 2〈un, u〉 + ‖u‖2 = ‖un‖2 − ‖u‖2 + o(1)
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(as n → ∞). Since vn ⇀ 0 in L2∗
s (�), by the Brezis-Lieb Lemma [32, Theorem 1] we have

‖vn‖2
∗
s
2∗
s

= ‖un‖2
∗
s
2∗
s
− ‖u‖2∗

s
2∗
s
+ o(1).

Since un → u in Lp(�), we have G(un) → G(u) in L1(�). So,


(vn) − λ

2∗
s
‖vn‖2

∗
s
2∗
s

= [
(un) − 
(u)] − λ

2∗
s

[
‖un‖2

∗
s
2∗
s
− ‖u‖2∗

s
2∗
s

]

− λμ

∫
�

[G(un) − G(u)] dx + o(1)

= Jλ(un) − Jλ(u) + o(1) → c − Jλ(u).

On the other hand,

lim
n

[
‖vn‖2 − λ‖vn‖2

∗
s
2∗
s

]
= 0. (23)

Indeed, arguing as above and recalling that g(un)un → g(u)u in L1(�), we have

‖vn‖2 − λ‖vn‖2
∗
s
2∗
s

= [‖un‖2 − ‖u‖2] − λ
[
‖un‖2

∗
s
2∗
s
− ‖u‖2∗

s
2∗
s

]
− λμ

∫
�

[g(un)un − g(u)u] dx + o(1)

= 〈J′λ(un), un〉 − 〈J′λ(u), u〉 + o(1),

and the latter tends to 0 as n → ∞, by J′λ(un) → 0, boundedness of (un), and (20). Recall-
ing that (vn) is bounded inHs

0(�), up to a subsequence we have ‖vn‖ → β ≥ 0. We prove
that

β = 0, (24)

arguing by contradiction. Assume β > 0. Then, by (23) we have

β2 = lim
n

λ‖vn‖2
∗
s
2∗
s

≤ λT(N, s)2
∗
s β2∗

s ,

hence

β ≥
[

1
λT(N, s)2∗

s

] 1
2∗s −2

.

By (21) and (22), we also have(
1
2

− 1
2∗
s

)
β2 = c − Jλ(u) < 2r,

hence

β <

[
2Nr
s

] 1
2
.
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Comparing the last inequalities and recalling (19), we get

λ >
1

T(N, s)2∗
s

[ s
2Nr

] 2s
N−2s ≥ λ∗

r ,

a contradiction. So (24) is proved, which means un → u inHs
0(�). Thus, Jλ satisfies (PS)r.

�

Set

μ∗ = min

⎧⎨
⎩
[

2∗
s

2
2∗s +2
2 T(N, s)2∗

s

] 2
2∗s −2

,
s

3NT(N, s)
N
s

⎫⎬
⎭

2−p
2

p

2
p+2
2 apT(N, s)p|�|

2∗s −p
2∗s

> 0.

(25)
We have the existence result for problem (18):

Theorem 4.2: Let H2 hold, μ∗ > 0 be defined by (25). Then, for all μ ∈ (0,μ∗), (18) has
at least one solution uμ ∈ int(C0

s (�)+).

Proof: Fix μ ∈ (0,μ∗) and set

r = min

⎧⎨
⎩
[

2∗
s

2
2∗s +2
2 T(N, s)2∗

s

] 2
2∗s −2

,
s

3NT(N, s)
N
s

⎫⎬
⎭ > 0. (26)

By (25), (26) we have

2
2∗s
2 T(N, s)2∗

s r
2∗s −2
2

2∗
s

+ μ
2
p
2 apT(N, s)p|�|

2∗s −p
2∗s r

p−2
2

p
≤ 1

2
+ μ

2μ∗ < 1,

as well as

1
T(N, s)2∗

s

[ s
2Nr

] 2s
N−2s ≥ 1

T(N, s)2∗
s

[
s
2N

3NT(N, s)
N
s

s

] 2s
N−2s

=
(
3
2

) 2s
N−2s

> 1,

hence by (19) we have λ∗
r > 1.

We intend to apply Theorem B. First, we see that hypothesis (B1) holds. Then, for all
u ∈ Hs

0(�), 
(u) ≤ r we have byH2 (i) (ii), Lemma 2.1, and (5)

�(u)
r

≤
‖u‖2∗

s
2∗
s

2∗
s r

+ μ
ap‖u‖pp
pr

≤ T(N, s)2
∗
s (2r)

2∗s
2

2∗
s r

+ μ
apT(N, s)p|�|

2∗s −p
2∗s (2r)

p
2

pr

≤ 1
λ∗
r
.
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On the other hand, byH2 (iii) we have

lim
t→0+

F(t)
t2

= ∞.

So, arguing as in the proof of Theorem 3.1, we can find ū ∈ Hs
0(�) s.t.

0 < 
(ū) < r,
�(ū)

(ū)

>
1
λ∗
r
,

which ensures (B2) and (B3). Finally, since λ∗
r > 1, by Lemma 4.1 the functional J1 satisfies

(PS)r.
Since 1 ∈ Ir, from Theorem B, we deduce the existence of a (relabeled) function uμ ∈

Hs
0(�) s.t.

0 < 
(uμ) < r, J1(uμ) = min
0<
(uμ)<r

J1(u).

In particular, we have J′1(uμ) = 0 inH−s(�). Thus, by Proposition 2.2, uμ ∈ int(C0
s (�)+)

is a solution of (18). �

Remark 4.3: The proof of Theorem 4.2 gives additional information: uμ is a local mini-
mizer of J1 in Hs

0(�), satisfies the bound ‖uμ‖ < (2r)
1
2 , and the mapping μ �→ J1(uμ) is

decreasing in (0,μ∗).

5. Two positive solutions under critical growth

Finally, we turn to problem (4) with q = 2∗
s , namely, the Ambrosetti–Brezis–Cerami

problem for the fractional Laplacian:

(−�)s u = μup−1 + u2
∗
s −1 in �

u > 0 in �

u = 0 in �c,

(27)

with p ∈ (1, 2),μ > 0. This is a special case of (18) with g(t) = (t+)p−1, which satisfiesH2
with ap = 1. We know from [21, Theorem 1.1] that (27) has at least two positive solutions
for all μ > 0 small enough. Our last result yields an explicitly estimate of ’how small’ μ
should be, given by (25) which in the present case rephrases as

μ∗ = min

⎧⎨
⎩
[

2∗
s

2
2∗s +2
2 T(N, s)2∗

s

] 2
2∗s −2

,
s

3NT(N, s)
N
s

⎫⎬
⎭

2−p
2

p

2
p+2
2 T(N, s)p|�|

2∗s −p
2∗s

> 0. (28)

Indeed, we have the multiplicity result:

Theorem 5.1: Let p ∈ (1, 2), μ∗ > 0 be defined by (28). Then, for all μ ∈ (0,μ∗), (27) has
at least two solutions uμ,wμ ∈ int(C0

s (�)+), uμ < wμ in �.
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Proof: Fix μ ∈ (0,μ∗), define f ∈ C(R), 
,� ∈ C1(Hs
0(�)) as in Section 4, and set for

brevity J = J1 = 
 − � . From Theorem 4.2 and Remark 4.3, we know that there exists
uμ ∈ Hs

0(�) ∩ int(C0
s (�)+) which solves (27) and is a local minimizer of J. Set for all

(x, t) ∈ � × R

f̃ (x, t) = f (uμ(x) + t+) − f (uμ(x)),

F̃(x, t) =
∫ t

0
f̃ (x, τ) dτ = F(uμ(x) + t+) − F(uμ(x)) − f (uμ(x))t+.

For all v ∈ Hs
0(�) set

�̃(v) =
∫

�

F̃(x, v) dx, J̃(v) = 
(v) − �̃(v).

As in Section 2, it is easily seen that J̃ ∈ C1(Hs
0(�)) and all its critical points solve the

(nonautonomous) auxiliary problem

(−�)s v = f̃ (x, v) in �

v = 0 in �c.
(29)

The functionals J̃ and J are related to each other by the inequality for all v ∈ Hs
0(�):

J̃(v) ≥ J(uμ + v+) − J(uμ) + ‖v−‖2
2

. (30)

Indeed, we have v± ∈ Hs
0(�) and, setting

�+ = {x ∈ � : v(x) > 0} , �− = � \ �+,

from v = v+ − v− we have

‖v‖2 = ‖v+‖2 + ‖v−‖2 − 2
∫∫

RN×RN

(v+(x) − v+(y))(v−(x) − v−(y))
|x − y|N+2s dx dy

≥ ‖v+‖2 + ‖v−‖2,

as the integrand vanishes everywhere but in �+ × �− and in �− × �+, where is is
negative. So we have

J̃(v) = ‖v‖2
2

−
∫

�

F̃(x, v) dx

≥ ‖v+‖2
2

+ ‖v−‖2
2

−
∫

�

[
F(uμ + v+) − F(uμ) − f (uμ)v+] dx

= ‖uμ + v+‖2
2

− ‖uμ‖2
2

− 〈uμ, v+〉 + ‖v−‖2
2

−
∫

�

[
F(uμ + v+) − F(uμ) − f (uμ)v+] dx
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= J(uμ + v+) − J(uμ) + ‖v−‖2
2

(where we used that uμ solves (27)).
We claim that 0 is a local minimizer of J̃. Indeed, by Proposition 2.3, there exists ρ > 0

s.t. for all v ∈ Hs
0(�) ∩ C0

s (�), ‖v‖0,s ≤ ρ we have J(uμ + v) ≥ J(uμ). Then, for any such
v we have as well ‖v+‖0,s ≤ ρ, which along with (30) implies

J̃(v) ≥ J(uμ + v+) − J(uμ) + ‖v−‖2
2

≥ 0 = J̃(0).

So, 0 is a local minimizer of J̃ in C0
s (�) and hence, by Proposition 2.3 again, it is such also

in Hs
0(�). In particular, J̃′(0) = 0 in H−s(�), i.e. 0 solves (29).

From now on we closely follow [21]. Arguing by contradiction, assume that 0 is the only
critical point of J̃ in Hs

0(�). Under such assumption, by [21, Lemma 2.10] J̃ satisfies (PS)c
at any level c < c∗, where

c∗ = s

NT(N, s)
N
s
. (31)

Fix x0 ∈ �, and for all ε > 0, define vε ∈ Hs(RN) by setting for all x ∈ RN

vε(x) = ε
N−2s
2

(ε2 + |x − x0|2)N−2s
2

.

By Lemma 2.1, we have

‖vε‖2∗
s = T(N, s)[vε]s. (32)

Now fix r>0 s.t. Br(x0) ⊂ �, η ∈ C∞(RN) s.t. η = 1 in B r
2
(x0), η = 0 in Bc1(x0), and 0 ≤

η ≤ 1 in RN , then define wε ∈ Hs
0(�) by setting for all x ∈ RN

wε(x) = η(x)vε(x)
‖ηvε‖2∗

s

.

Clearly ‖wε‖2∗
s = 1. Besides, we will prove that for all ε > 0 small enough

max
τ≥0

J̃(τwε) < c∗. (33)

Assume N>4s. Then, by [5, Propositions 21, 22] we find for all ε > 0 small enough

‖wε‖2 ≤ 1
T(N, s)2

+ CεN−2s

‖wε‖22 ≥ Cε2s − CεN−2s

(C>0 denotes several constants, independent of ε). By convexity we have for all x ∈ �,
t ≥ 0

F̃(x, t) ≥ t2∗
s

2∗
s

+ C
2
uμ(x)2

∗
s −2t2.

Using (32) and the relations above, we see that for all ε > 0 small enough and all τ ≥ 0

J̃(τwε) ≤ τ 2

2
‖wε‖2 − τ 2

∗
s

2∗
s

‖wε‖2
∗
s
2∗
s
− Cτ 2

2

∫
�

u2
∗
s −2

μ w2
ε dx
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≤ τ 2

2

[
1

T(N, s)2
+ CεN−2s − C′ε2s

]
− τ 2

∗
s

2∗
s

=: hε(τ ) (34)

(C,C′ > 0 independent of ε). Now we focus on the mapping hε ∈ C1(R+). First we note
that

lim
τ→∞ hε(τ ) = −∞,

so there exists τε ≥ 0 s.t.

hε(τε) = max
τ≥0

hε(τ ).

If τε = 0, from (34) we immediately deduce (33). So, let τε > 0. Differentiating hε , we get

τε =
[

1
T(N, s)2

+ CεN−2s − C′ε2s
] 1

2∗s −2
,

which tends to T(N, s)
− 2

2∗s −2 > 0 as ε → 0+. So, taking ε > 0 small enough, we have τε ≥
τ0 > 0. Set

τ̃ε =
[

1
T(N, s)2

+ CεN−2s
] 1

2∗s −2
,

and note that the mapping

τ �→ τ 2

2

[
1

T(N, s)2
+ CεN−2s

]
− τ 2

∗
s

2∗
s

is increasing in [0, τ̃ε]. So we have

hε(τε) = τ 2ε
2

[
1

T(N, s)2
+ CεN−2s

]
− τ

2∗
s

ε

2∗
s

− C′ε2sτ 2ε
2

≤ τ̃ 2ε
2

[
1

T(N, s)2
+ CεN−2s

]
− τ̃

2∗
s

ε

2∗
s

− C′′ε2s

= s
N

[
1

T(N, s)2
+ CεN−2s

] N
2s

− C′′ε2s.

Since N−2s>2s, for all ε > 0 small enough we have by (31)

hε(τε) <
s

NT(N, s)
N
s

= c∗.

Then, by (34) we obtain (33). The cases 2s < N ≤ 4s are treated in similar ways, see [21,
Lemma 2.11]. As a byproduct of (34) we have that J̃(τwε) → −∞ as τ → ∞, so we can
find τ̄ > 0 s.t.

J̃(τ̄wε) < 0.

Since J̃ has a local minimum at 0 and no other critical point, we can find σ ∈ (0, ‖τ̄wε‖)
s.t. J̃(v) > 0 for all v ∈ Hs

0(�), ‖v‖ = σ . That is, J̃ exhibits a mountain pass geometry
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around 0. Set

� = {
γ ∈ C([0, 1],Hs

0(�)) : γ (0) = 0, γ (1) = τ̄wε

}
, c = inf

γ∈�
max
t∈[0,1]

J̃(γ (t)).

Clearly, γ (t) = tτ̄wε define a path of the family �, so by (33) we have

c ≤ max
t∈[0,1]

J̃(tτ̄wε) < c∗.

Thus, J̃ satisfies (PS)c. By the Mountain Pass Theorem, there exists v ∈ Hs
0(�) \ {0}

s.t. J̃′(v) = 0 inH−s(�), a contradiction. So we have proved the existence of vμ ∈ Hs
0(�) \

{0} s.t. J̃′(vμ) = 0 in H−s(�). Such vμ solves (29), and by monotonicity of f we have for
a.e. x ∈ �

f̃ (x, vμ(x)) = f (uμ(x) + v+
μ(x)) − f (uμ(x)) ≥ 0,

so by the fractional Hopf lemma (see for instance [28, Lemma 2.7], as Proposition 2.2 here
does not apply) we have vμ ∈ int(C0

s (�)+). Now set

wμ = uμ + vμ ∈ int(C0
s (�)+).

Clearly wμ > uμ in �, and for all ϕ ∈ Hs
0(�) we have

〈J′(wμ),ϕ〉 = 〈uμ + vμ,ϕ〉 −
∫

�

f (uμ + vμ)ϕ dx

=
[
〈uμ,ϕ〉 −

∫
�

f (uμ)ϕ dx
]

+
[
〈vμ,ϕ〉 −

∫
�

f̃ (x, vμ)ϕ dx
]

= 〈J′(uμ),ϕ〉 + 〈J̃′(vμ),ϕ〉 = 0,

so wμ solves (27), which concludes the proof. �

Finally, we present an example:

Example 5.2: Let s = 1
2 ,N = 2, p = 3

2 and� ⊂ R2 be as in Example 3.3, but set this time
q = 2∗

1/2 = 4. Recall that in such case

T
(
2,
1
2

)
= 1

2π
3
4
.

So, (28) yields

μ∗ = 3
1
8 π

5
4

2
11
8

.

By Theorem 5.1, for all μ ∈ (0,μ∗) problem (27) has at least two positive solutions
uμ < wμ.
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