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Abstract: By means of a suitable degree theory, we prove persistence of eigenvalues and eigenvectors for
set-valued perturbations of a Fredholm linear operator. As a consequence, we prove existence of a bifurca-
tion point for a non-linear inclusion problem in abstract Banach spaces. Finally, we provide applications to
differential inclusions.
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1 Introduction
The present paper is devoted to the study of the following eigenvalue problemwith a set-valued perturbation:

{
Lx − λCx + εϕ(x) ∋ 0,

x ∈ ∂Ω.
(1.1)

Here L : E → F is a Fredholm linear operator of index 0 between two real Banach spaces E and F such that
ker L ̸= 0, C is another bounded linear operator, Ω is an open subset of E not necessarily bounded and con-
taining 0, ϕ : Ω → 2F is a locally compact, upper semicontinuous (u.s.c. for short) set-valuedmap of CJ-type
(see Section 4 for a precise definition), and λ, ε ∈ ℝ are parameters.

Problem (1.1) can be seen as a set-valued perturbation of a linear eigenvalue problem (which is retrieved
for ε = 0):

{
Lx − λCx = 0,

x ∈ ∂Ω.
(1.2)

So, it is reasonable to expect that, under suitable assumptions, solutions of (1.1) appear in a neighborhood
of the eigenpairs (x, λ) of (1.2). In fact, we show that this is the case for the trivial eigenpairs (x, 0), provided
dim(ker L) is odd, the set Ω ∩ ker L is compact, and the following transversality condition holds:

im L + C(ker L) = F. (1.3)

More precisely, we denote S0 = ∂Ω ∩ ker L the set of trivial solutions of (1.2). We prove that there exist
a rectangle R = [−a, a] × [−b, b] (a, b > 0) and c > 0 such that for all ε ∈ [−a, a] the set of real param-
eters λ ∈ [−b, b] for which (1.1) admits a nontrivial solution x ∈ E with dist(x, S0) < c is nonempty and
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depends on ε by means of an u.s.c. set-valued map. Similarly, for all ε ∈ [−a, a] the set of vectors x ∈ E with
dist(x, S0) < c that solve (1.1) for some λ ∈ [−b, b] is nonempty and depends on ε by means of an u.s.c.
set-valued map. This is usually referred to as a persistence result for eigenpairs. Using such persistence, we
prove that S0 contains at least one bifurcation point, i.e., a trivial solution x0 such that any neighborhood
of x0 in E contains a nontrivial solution.

The origin of this type of investigation of nonlinear eigenvalue problems goes back to a work of
Chiappinelli [11], in which the author investigates a persistence property of the eigenvalues and eigenvectors
of the system

{
Lx + εN(x) = λx,

‖x‖ = 1,
(1.4)

where L is a self-adjoint operator defined on a real Hilbert space H, N : H → H is a nonlinear continuous
(single-valued) map, ε, λ still are real parameters. Under the assumptions that λ0 ∈ ℝ is an isolated simple
eigenvalue of L and thatN is Lipschitz continuous, Chiappinelli proves that there exist twoH-valuedLipschitz
curves, ε 󳨃→ x1ε and ε 󳨃→ x2ε , defined in a neighborhood V of 0 in ℝ, as well as two real Lipschitz functions,
ε 󳨃→ λ1ε and ε 󳨃→ λ2ε , such that for i = 1, 2 and ε ∈ V one has

Lxiε + εN(xiε) = λiεxiε , ‖xiε‖ = 1,

i.e., the triples (xiε , ε, λiε) solve (1.4) for all ε ∈ V. In particular,when ε = 0, these four functions satisfy xi0 = xi,
λi0 = λ0, where x1 and x2 are the two unit eigenvectors of L corresponding to the simple eigenvalue λ0. After
the result of Chiappinelli, in a series of papers [12–15] the above property of local persistence of the eigen-
values and eigenvectors was extended to the case in which the multiplicity of the eigenvalue λ0 is bigger
than one.

In particular, in [4] the first author, with Calamai, Furi, and Pera, proved a persistence result for (1.2)
under a single-valued nonlinear map in general Banach spaces. The approach in [4] is topological, based on
a concept of degree, developed in [2, 3], for a class of noncompact (single-valued) perturbations of Fredholm
maps of index zero between Banach spaces.

We proceed here in the general spirit of [4], extending the result to the case of a set-valued perturba-
tion. Such an extension requires a more general degree theory for set-valued maps, which extends Brouwer’s
degree for nonlinear maps on C1-manifolds. Such a degree theory has been introduced in [30] and redefined
in [9] by a precise notion of orientation for set-valued perturbations of nonlinear Fredholm maps between
Banach spaces. The concept of orientation used in [9] (and reproduced here) is a natural extension of a notion
of orientation for nonlinear Fredholm maps in Banach spaces presented in [5, 6] and on which is also based
the approach in [4]. This orientation actually simplifies the method followed to define the degree in [30],
based on the so called concept of oriented Fredholm structure, introduced by Elworty and Tromba in [19, 20]
(where an orientation is constructed on the source and targets Banach spaces and manifolds).

Our abstract results find a natural application to differential inclusions. This type of problems, arising
from control theory and differential equations with discontinuous nonlinearities (see [1, 10, 21]), extends
classical differential equations bymeans of set-valued terms usually representing some degree of uncertainty
of the problem. Problem (1.1) can model several differential inclusions, with L being a Fredholm differen-
tial operator of index 0 between two function spaces, C being some linear operator, ∂Ω representing some
constraint, and ϕ being a set-valued mapping satisfying convenient conditions.

To fix ideas, we will consider the following ordinary differential inclusion with Neumann boundary con-
ditions and an integral constraint:

{{{
{{{
{

u󸀠󸀠 + u󸀠 − λu + εΦ(u) ∋ 0 in [0, 1],
u󸀠(0) = u󸀠(1) = 0,

‖u‖1 = 1.

Here Φ(u) : [0, 1] → 2ℝ is a set-valued map depending on u, to be chosen according to several requirements
(three different examples will be presented). We shall prove that the transversality condition (1.3) holds,
and hence the above problem admits at least one bifurcation point. This is by no means the only possible
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application of our method, for instance one could define the operator

Lu = −∆u − λ1u,

where λ1 > 0 denotes the first eigenvalue of the negative Laplacian on a domain with homogeneous Dirichlet
conditions. Then ker L has dimension 1, hence, by appropriately choosing the function spaces E and F, one
can rephrase L as a Fredholm operator of index 0, and accordingly define C andϕ in (1.1). Other examples for
the dynamic part of the problem are shown in [4]. Nevertheless, since the novelty of our work lies in the set-
valued term, we will restrict our attention on the above inclusion problem, focusing on the possible choices
of Φ.

For the convenience of the reader, most of our paper (Sections 2–5) is devoted to the construction of
the orientation and degree for the set-valued perturbations of Fredholm maps. Then, in Section 6, we prove
our persistence and bifurcation results. Finally, in the large Section 7 we will prove bifurcation results for
differential inclusions.

Notation. Whenever E, F are Banach spaces, we denote by L(E, F) the space of bounded linear operators
from E into F (in particular,L(E) = L(E, E)). We shall use the term operator for linear functions, andmap for
nonlinear ones.

2 A Remark on Orientation and Transversality
In this preliminary section we recall some facts regarding the classical notions of orientation and transver-
sality in finite dimension. We assume that the reader is familiar with the notion of orientation for finite-
dimensional Banach manifolds and spaces. Let M be a real C1-manifold, and let F be a real vector space
such that

dim(M) = dim(F) < ∞.

Definition 2.1. A subspace F1 ⊆ F and a map g ∈ C1(M, F) are transverse if for all x ∈ M,

imDg(x) + F1 = F.

In the situation described above, the map g is backward orientation-preserving on F1:

Lemma 2.2. LetM, F beoriented, and let F1 ⊆ F, g ∈ C1(M, F)be transverse. Thenanyorientation of F1 induces
an orientation of M1 = g−1(F1).
Proof. Since g is C1, M1 is a C1-submanifold of M with

dim(M1) = dim(F1).

Fix x ∈ M1, and let Tx(M), Tx(M1) be the tangent spaces to M, M1, respectively, at x. Then we have

Tx(M1) = (Dg(x))−1(F1).
Let E0 be a direct complement to Tx(M1) in Tx(M), and F0 = Dg(x)(E0). The restriction Dg(x)|E0 ∈ L(E0, F0)
is an isomorphism and F0 ⊕ F1 = F. Now let F1 be oriented so that any two positively oriented bases of F0,
F1 (in this order) form a positively oriented basis of F. Thus, we can orient E0 so that Dg(x)|E0 is orientation-
preserving.

Similarly, we can orient Tx(M1) so that any two positively oriented bases of E0, Tx(M1) (in this order)
form a positively oriented basis of Tx(M). Then this pointwise choice induces a global orientation onM1 (see
[24, p. 100] for details).

By Lemma 2.2 we have a natural way to orient M1:

Definition 2.3. Let M, F, F1 ⊆ F be oriented and g ∈ C1(M, F) transverse to F1. The manifold M1 = g−1(F1),
with the orientation induced by that of F1 is an oriented g-preimage of F1.
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Now let f ∈ C(M, F), and choose y ∈ F such that f−1(y) ⊂ M is compact. Brouwer’s degree for the triple
(f,M, y) is defined and denoted by

degB(f,M, y) ∈ ℤ.

For the definition and properties of Brouwer’s degree (both on open sets and manifolds) we refer to [28, 29].
We only need to add the following reduction property:

Proposition 2.4. Let M, F, F1 ⊂ F be oriented, let g ∈ C1(M, F) be transverse to F1, and let M1 be the oriented
g-preimage of F1. In addition, let f ∈ C(M, F), y ∈ F1 be such that f−1(y) is compact and

(f − g)(M) ⊆ F1.

Finally, let f1 = f|M1 . Then
degB(f,M, y) = degB(f1,M1, y).

Proof. First we note that for all x ∈ M1,

f(x) = g(x) + (f − g)(x) ∈ F1,

so f1 ∈ C(M1, F1). In particular, f−11 (y) = f−1(y) is a compact subset of M1. We orient M1 and F1 as in
Lemma 2.2, so we can define Brouwer’s degree for the triple (f1,M1, y). Now, the conclusion follows from
[28, Lemma 4.2.3].

3 Orientation for Fredholm Maps
In order to develop a degree theory, we need a precise notion of orientability for Fredholm operators and
maps. The one we are going to recall here was introduced in [5, 6].

Let E, F be two (possibly, infinite-dimensional) real Banach spaces. We first recall a basic definition:

Definition 3.1. A bounded linear operator L ∈ L(E, F) is a Fredholm operator of index k ∈ ℤ if
(i) dim(ker L), dim(coker L) < ∞,
(ii) dim(ker L) − dim(coker L) = k.
The set of such operators is denoted Φk(E, F).

It is known that Φk(E, F) ⊂ L(E, F) is open for all k ∈ ℤ. We are mainly interested in Φ0(E, F), the set of
Fredholm operators of index 0, also denoted Φ0-operators. The following construction leads to a notion of
orientation for such operators:

Definition 3.2. Let L ∈ Φ0(E, F), A ∈ L(E, F). Then A is a corrector of L if
(i) dim(im A) < ∞ (finite rank),
(ii) L + A ∈ L(E, F) is an isomorphism.
The set of correctors of L is denoted C(L).

Clearly, C(L) ̸= 0 for all L ∈ Φ0(E, F). Following [5], we define an equivalence relation in C(L). Let A, B ∈ C(L),
and set

T = (L + B)−1(L + A), K = I − T = (L + B)−1(B − A).
By Definition 3.2, T ∈ L(E) is an automorphism, and K ∈ L(E) has finite rank. Let E0 ⊆ E be a non-trivial
finite-dimensional subspace such that im K ⊆ E0, and set T0 = T|E0 . We note that T0 ∈ L(E0) and is an auto-
morphism as well. Indeed, T0 is injective by injectivity of T, and for all x ∈ E0 we have

T0(x) = x − K(x) ∈ E0,

so T0 is surjective as well (recall that dim(E0) < ∞). Thus, as soon as we fix a basis for E0, the determinant
of T0 is well defined and denoted det T0 ∈ ℝ \ {0}. A remarkable fact is that det T0 does not depend on the
choice of E0 (by choosing the same basis in E0 both as the domain and as the codomain of T0), so we can
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provide T with a uniquely defined determinant by setting

det T = det T0.

The above notion of determinant for linear operators between (possibly) infinite dimensional spaces can be
found in [27].

Definition 3.3. Let L ∈ Φ0(E, F). Two correctors A, B ∈ C(L) are L-equivalent if

det((L + B)−1(L + A)) > 0.
It is easily seen that L-equivalence is actually an equivalence relation, splitting C(L) into two equivalence
classes. Now we can define a notion of orientation for Φ0-operators:

Definition 3.4. Let L ∈ Φ0(E, F).
(i) An orientation of L is any L-equivalence class α ⊂ C(L), then the pair (L, α) is an oriented Φ0-operator,

and a corrector A ∈ C(L) is positive for (L, α) if A ∈ α, negative if A ∈ C(L) \ α.
(ii) If L is an isomorphism, then α ⊂ C(L) is the natural orientation of L if 0 ∈ α, and in such case (L, α) is

naturally oriented.
(iii) If (L, α) is an oriented Φ0-operator, its sign is defined as follows:

sign(L, α) =
{{{
{{{
{

+1 if (L, α) is a naturally oriented isomorphism,
−1 if (L, α) is a non-naturally oriented isomorphism,
0 if (L, α) is not an isomorphism.

Let (L, α) be an oriented Φ0-operator, and let A ∈ α be a positive corrector. Since the set of isomorphisms is
open in L(E, F), we can find a neighborhood U ⊂ Φ0(E, F) of L such that A ∈ C(T) for all T ∈ U. Then any
operator T ∈ U can be oriented so that A ∈ C(T) is a positive corrector. In such a way, any orientation of L
induces orientations of nearbyΦ0-operators,which allowsus todefineorientability of Φ0(E, F)-valuedmaps:

Definition 3.5. Let X be a topological space, h ∈ C(X, Φ0(E, F)). An orientation of h is amap α that associates
to every x ∈ X an orientation, say α(x), of h(x) ∈ Φ0(E, F) satisfying the following continuity condition: there
exist A ∈ α(x) and a neighborhood V ⊂ X of x such that A ∈ α(y) for all y ∈ V. The map h is orientable if it
admits an orientation, and in such case (h, α) is an oriented Φ0(E, F)-valued map.

Now we can consider (nonlinear) Fredholm maps:

Definition 3.6. Let Ω ⊆ E be open. A map g ∈ C1(Ω, F) is a Φ0-map if Dg(x) ∈ Φ0(E, F) for all x ∈ Ω.

For instance, any Fredholm operator L ∈ Φ0(E, F) is a Φ0-map, since DL(x) = L for all x ∈ E.

Definition 3.7. Let Ω ⊆ E be open, and let g ∈ C1(Ω, F) be a Φ0-map.
(i) An orientation of g is any orientation of Dg ∈ C(Ω, Φ0(E, F)) (Definition 3.5).
(ii) The map g is orientable if it admits an orientation α, and in such case (g, α) is an oriented Φ0-map.

The existence (and number) of orientations of a Φ0-map dependmainly on the topology of its domain (see [5]
for the proof):

Proposition 3.8. Let Ω ⊆ E be open, and let g ∈ C1(Ω, F) be a Φ0-map.
(i) If g is orientable, then it admits at least two orientations.
(ii) If g is orientable and Ω is connected, then g admits exactly two orientations.
(iii) If Ω is simply connected, then g is orientable.

Another important use of Definition 3.5 is towards orientation of Fredholm homotopies:

Definition 3.9. Let Ω ⊆ E be open. A map h ∈ C(Ω × [0, 1], F) is a Φ0-homotopy if
(i) h( ⋅ , t) is a Φ0-map for all t ∈ [0, 1],
(ii) the map (x, t) 󳨃→ Dxh(x, t) is continuous from Ω × [0, 1] into Φ0(E, F), where we denote by Dxh(x, t) the

derivative of h( ⋅ , t) at x.
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Note that nodifferentiability in t is required. Condition (ii) here is crucial, as it allowsus to applyDefinition3.5
to the map (x, t) 󳨃→ Dxh(x, t), and thus define a notion of orientation for Φ0-homotopies:

Definition 3.10. Let Ω ⊆ E be open, and let h ∈ C(Ω × [0, 1], F) be a Φ0-homotopy.
(i) An orientation of h is any orientation of Dxh ∈ C(Ω × [0, 1], Φ0(E, F)) (Definition 3.5).
(ii) The homotopy h is orientable if it admits an orientation α, and in such case (h, α) is an oriented

Φ0-homotopy.

Let (h, α) be an oriented Φ0-homotopy. Clearly, α induces an orientation αt of the Φ0-map h( ⋅ , t), for all
t ∈ [0, 1]. Remarkably, the converse is also true, as shown by the following result on continuous transporta-
tion of orientations (see [5, Theorem 3.14]):

Proposition 3.11. Let Ω ⊆ E be open, let h ∈ C(Ω × [0, 1], F) be aΦ0-homotopy, and let t ∈ [0, 1] be such that
h( ⋅ , t) ∈ C1(Ω, F) admits an orientation αt. Then there exists a unique orientation α of h which induces αt.

We conclude this section by establishing a link between the orientation of Fredholm maps and that of
manifolds:

Proposition 3.12. Let Ω ⊆ E be open, let g ∈ C1(Ω, F) be an orientable Φ0-map, let F1 ⊆ F be a finite-dimen-
sional subspace, transverse to g, and let M1 = g−1(F1). Then:
(i) M1 ⊆ E is a C1-manifold with dim(M1) = dim(F1).
(ii) M1 is orientable.
(iii) Any orientation of g and any orientation of F1 induce an orientation of M1.

Proof. Assertion (i) is obvious (see Section 2). Assertion (ii) follows from [5, Remark 2.5, Lemma 3.1].
We prove (iii). Let α be an orientation of g, and x ∈ M1. By Definition 3.7, α(x) is an orientation

of Dg(x) ∈ Φ0(E, F). By transversality (Definition 2.1), we can find A ∈ α(x) such that im A ⊆ F1. Indeed,
since Dg(x) ∈ Φ0(E, F), we can split both Banach spaces as follows:

E = Dg(x)−1(F1) ⊕ E2, F = F1 ⊕ F2,

where E2 is anydirect complement ofDg(x)−1(F1) and F2 := Dg(x) (E2). Observe that kerDg(x) ⊆ Dg(x)−1(F1)
and the latter has the same dimension as F1. So we rephrase Dg(x) as

Dg(x) = [L1,1 0
0 L2,2

] ,

where L2,2 ∈ L(E2, F2) is an isomorphism. We may choose A ∈ L(E, F) with the structure

A = [A1,1 0
0 0
] ,

where A1,1 + L1,1 ∈ L(L−1(F1), F1) is an isomorphism. So A ∈ C(Dg(x)) and im A ⊆ F1. Choosing A1,1 in such
a way that A ∈ α(x) and assigning an orientation to F1, we orient the tangent space Tx(M1) ⊂ E so that the
isomorphism

(Dg(x) + A)|Tx(M1) ∈ L(Tx(M1), F1)

is orientation-preserving. As proved in [7], such orientation of Tx(M1) does not depend on A. This pointwise
choice induces a global orientation on M1.

We can now give a Fredholm analogue of Definition 2.3:

Definition 3.13. Let Ω ⊆ E be open, let (g, α) be an oriented Φ0-map, let F1 ⊆ F be a finite-dimensional sub-
space, transverse to g, and let M1 = g−1(F1). With the orientation induced by α and the orientation of F1,
M1 is an oriented (Φ0, g)-preimage of F1.

Remark 3.14. In what follows, we will denote an oriented Φ0-operator (L, α) simply by L, as long as no
confusion arises. We will do the same for oriented Φ0-maps, Φ0-homotopies, and so on.
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4 Topological Properties of Set-Valued Maps
In this section, for the reader’s convenience, we recall some definitions and properties of set-valued maps
between metric spaces, referring to [22] for details. Let X, Y be metric spaces with distance functions dX, dY ,
respectively. Then X × Y is a metric space under the distance

d((x, y), (x󸀠, y󸀠)) = max{dX(x, x󸀠), dY (y, y󸀠)}.
For all A ⊂ X, x ∈ X we set

dist(x, A) = inf
z∈A dX(x, z),

and for all ε > 0 we set
Bε(A) = {x ∈ X : dist(x, A) < ε}

(if A = {x}, then we set Bε(A) = Bε(x)). A set-valued map ϕ : X → 2Y is a map from X to the set of all parts
of Y.We will always assume that ϕ is compact-valued, i.e., that ϕ(x) ⊆ Y is either 0 or compact, for all x ∈ X.
The graph of ϕ is defined by

graphϕ = {(x, y) ∈ X × Y : y ∈ ϕ(x)}.

We also recall a classical definition:

Definition 4.1. A set-valued map ϕ : X → 2Y is upper semicontinuous (u.s.c.) if for all open V ⊆ Y the set

ϕ+(V) = {x ∈ X : ϕ(x) ⊆ V}

is open.

Any (single-valued) map f : X → Y coincides with the set-valued map ϕ(x) = {f(x)}, in such case ϕ is u.s.c.
iff f is continuous. A remarkable property of u.s.c. set-valued maps is that they preserve compactness, in the
following sense: ifϕ : X → 2Y is a u.s.c. set-valuedmap and C is a compact subset of X, thenϕ(C) is compact.

Remark 4.2. Any compact subset of a product space can be seen as the graph of a u.s.c. set-valued mapping.
Precisely, ifK ⊂ X × Y is compact, define for all x ∈ X,

ϕ(x) = {y ∈ Y : (x, y) ∈ K}.

Then ϕ : X → 2Y is u.s.c. (see [22, Proposition 14.5] or [26, Theorem 1.1.5]).

We introduce the notion of approximability:

Definition 4.3. Let ϕ : X → 2Y .
(i) For all ε > 0, f ∈ C(X, Y) is an ε-approximation of ϕ if for all x ∈ X there exists x󸀠 ∈ Bε(x) such that

f(x) ∈ Bε(ϕ(x󸀠)) (the set of ε-approximations of ϕ is denoted Bε(ϕ)).
(ii) ϕ is approximable if Bε(ϕ) ̸= 0 for all ε > 0.

Note that all approximations of a set-valued map are required to be continuous. A characterization (whose
proof is an obvious consequence of Definition 4.3):

Lemma 4.4. Let ϕ : X → 2Y , ε > 0, f ∈ C(X, Y). Then the following are equivalent:
(i) f ∈ Bε(ϕ).
(ii) f(x) ∈ Bε(ϕ(Bε(x))) for all x ∈ X.
(iii) graph f ⊆ Bε(graphϕ).

Approximation of an u.s.c. set-valued map is a special case, enjoying several properties (see [22, Proposi-
tion 22.3]):

Proposition 4.5. Let ϕ : X → 2Y be u.s.c. Then:
(i) For all compact X1 ⊆ X, ε > 0 there exists δ > 0 such that for all f ∈ Bδ(ϕ) we have f|X1 ∈ Bε(ϕ|X1 ).
(ii) If X is compact, then for any metric space Z, g ∈ C(Y, Z), and ε > 0 there exists δ > 0 such that for all

f ∈ Bδ(ϕ) we have g ∘ f ∈ Bε(g ∘ ϕ).
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(iii) If X is compact, then for any u.s.c. set-valued map ψ : X × [0, 1] → 2Y , ε > 0, and t ∈ [0, 1] there exists
δ > 0 such that for all f ∈ Bδ(ψ) we have f( ⋅ , t) ∈ Bε(ψ( ⋅ , t)).

(iv) For any metric space Z, any u.s.c. set-valued map ψ : X → 2Z , and ε > 0 there exists δ > 0 such that for all
f ∈ Bδ(ϕ), g ∈ Bδ(ψ) we have (f, g) ∈ Bε(ϕ × ψ).

Approximability of a set-valuedmap is strongly influenced by the topology of its values, the easiest case being
in general that of convex-valuedmapsbetweenBanach spaces. In the general case of ametric space, convexity
makes no sense and it must be replaced by a more general notion, of topological nature. We recall from [22]
some definitions and properties (here 𝕊n−1, 𝔹n denote the unit sphere and closed ball, respectively, inℝn):
Definition 4.6. A set A ⊂ Y is aspheric if for any ε > 0 there exists δ ∈ (0, ε) such that for all n ∈ ℕ and all
g ∈ C(𝕊n−1, Bδ(A)) there is g̃ ∈ C(𝔹n , Bε(A)) such that g̃|𝕊n−1 = g.
The following characterization of aspheric sets holds in ANR-spaces (absolute neighborhood retracts, see
[22, Definition 1.7]):

Proposition 4.7. Let Y be an ANR-space, A ⊆ Y. Then the following are equivalent:
(i) A is aspheric.
(ii) There exists a decreasing sequence (An) of compact, contractible subsets of Y such that ⋂∞n=1 An = A

(Rδ-set).

We go back to set-valued maps:

Definition 4.8. A set-valuedmap ϕ : X → 2Y is a J-map if ϕ is u.s.c. and ϕ(x) is aspheric for all x ∈ X. The set
of J-maps from X to Y is denoted by J(X, Y).

Some sufficient conditions (see [22, Definition 1.7] the definition of AR-set):

Lemma 4.9. Let Y be an ANR-space, let ϕ : X → 2Y be u.s.c., and let one of the following hold:
(i) ϕ(x) an Rδ-set for all x ∈ X;
(ii) ϕ(x) is an AR-set (absolute retract) for all x ∈ X.
Then ϕ ∈ J(X, Y).

By Lemma 4.9, in particular, if either ϕ has contractible values, or Y is a Banach space and ϕ has convex
values, then ϕ ∈ J(X, Y).

In our results, we shall need a slightly more general class of set-valued maps:

Definition 4.10. A set-valued map ϕ : X → 2Y is a CJ-map if there exist a metric space Z, ψ ∈ J(X, Z), and
k ∈ C(Z, Y) such that ϕ = k ∘ ψ. The set of CJ-maps from X to Y is denoted by CJ(X, Y).

The following result ensures that CJ-maps are approximable (the proof is easily deduced from [22, Theo-
rems 23.8, 23.9, and Section 26]):

Proposition 4.11. Let X be a compact ANR-space, ϕ ∈ CJ(X, Y). Then:
(i) ϕ is approximable.
(ii) For all ε > 0 there exists δε > 0 such that for all δ ∈ (0, δε) and all f, g ∈ Bδ(ϕ) we can find a homotopy

h ∈ C(X × [0, 1], Y) such that h( ⋅ , 0) = f , h( ⋅ , 1) = g, and h( ⋅ , t) ∈ Bε(ϕ) for all t ∈ [0, 1].

5 Degree for Multitriples
In this section we develop a degree theory for set-valued maps, extending Brouwer’s degree. This degree has
been presented in [9] and its construction basically follows [30], except for the notion of orientation. In fact,
our approach is based on the notion of orientation for Fredholm maps, introduced in [6, 7] and recalled
here in Section 3, while the construction in [30] makes use of the concept of oriented Fredholm structures,
introduced in [19, 20]. For a comprehensive presentation of degree theory for set-valuedmaps the reader can
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see the very rich textbook of Väth [32]. Throughout this section E, F are real Banach spaces and Ω ⊆ E is an
open set.

Definition 5.1. Let g ∈ C1(Ω, F) be an oriented Φ0-map, let U ⊆ Ω be open, and let ϕ ∈ CJ(Ω, F) be locally
compact. Then (g, U, ϕ) is an admissible (multi)triple if the coincidence set

C(g, U, ϕ) = {x ∈ U : g(x) ∈ ϕ(x)}

is compact.

We construct our degree as an integer-valued functiondefinedon the set of admissible triples. Firstwe assume

dim(ϕ(U)) < ∞. (5.1)

Since C(g, U, ϕ) is compact, we can find an open neighborhood W ⊂ U of C(g, U, ϕ) and a subspace F1 ⊆ F
such that dim(F1) = m < ∞, ϕ(U) ⊂ F1 (by virtue of (5.1)), and F1 is transverse to g in W (Definition 2.1),
as it can be seen as follows: given any x ∈ C(g, U, ϕ), take a finite-dimensional subspace Fx of F containing
ϕ(U) and transverse to g at x. This is possible since Dg(x) is Fredholm. By the continuity of z 󳨃→ Dg(z), there
exists a neighborhoodWx of x in U such that g is transverse to Fx at any z ∈ Wx. Then F1 andW as above are
obtained by the compactness of C(g, U, ϕ).

We orient F1 and setM = g−1(F1), henceM is an orientable C1-manifold in E with dim(M) = m. We then
orient M so that it is an oriented (Φ0, g)-preimage of F1 (Definition 3.13). Then C(g, U, ϕ) ⊂ M is compact
even as a subset of M, and the following open covering of C(g, U, ϕ) exists:

Lemma 5.2. Let (g, U, ϕ) be an admissible triple satisfying (5.1), and let W, F1, M be defined as above. Then
there exist k ∈ ℕ, and bounded open sets V1, . . . , Vk ⊂ M such that
(i) V j ⊂ M, j = 1, . . . , k (by V j we denote the closure of Vj in E),
(ii) C(g, U, ϕ) ⊂ V := ⋃kj=1 Vj,
(iii) V j is diffeomorphic to a closed convex subset ofℝm, j = 1, . . . , k.

By (iii), V1, . . . , Vk , V are compact ANR-spaces. So, Lemma4.9 implies thatϕ|V ∈ CJ(V , F1). Thus, by Propo-
sition 4.11, ϕ|V is approximable. In addition, observe that, by the construction of V, one has

g(∂V) ∩ ϕ(∂V) = 0.

Recalling that g(∂V) and ϕ(∂V) are compact sets (since ∂V is compact and ϕ is u.s.c.), they have positive
distance, say d > 0. Hence, taking (for example) ε ∈ (0, d2 ), every f ∈ Bε(ϕ|V ) satisfies

dist(0, (g − f)(∂V)) > 0.

So, Brouwer’s degree for the triple (g|V − f, V, 0) is well defined and it enjoys the reduction property displayed
in Proposition 2.4. Now we prove that such degree is invariant:

Lemma 5.3. Let (g, U, ϕ) be an admissible triple satisfying (5.1), and let F1, V, f be defined as above. Then
degB(g|V − f, V, 0) does not depend on F1, V, and f .

Proof. We prove our assertion in three steps (backward):
(a) Let F1, V be fixed, and let f 󸀠, f 󸀠󸀠 ∈ Bε(ϕ|V ) be two approximations of ϕ. By homotopy invariance of

Brouwer’s degree and Proposition 4.11, by reducing ε > 0 if necessary we can apply [30, Lemma 3.4] and get

degB(g|V − f
󸀠, V, 0) = degB(g|V − f 󸀠󸀠, V, 0).

(b) Let F1 be fixed, and let V󸀠, V󸀠󸀠 ⊂ M be open such that C(g, U, ϕ) ⊂ V󸀠 ∩ V󸀠󸀠 and V󸀠, V󸀠󸀠 are compact
ANR-spaces. Without loss of generality we may assume V󸀠 ⊂ V󸀠󸀠. By Proposition 4.5 (i), by reducing ε > 0 if
necessarywe canfind f ∈ Bε(ϕ|V󸀠󸀠 ) such that f|V󸀠 ∈ Bε(ϕ|V󸀠 ). So, by the excisionproperty of Brouwer’s degree,
we have

degB(g|V󸀠 − f|V󸀠 , V󸀠, 0) = degB(g|V󸀠󸀠 − f, V󸀠󸀠, 0).
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(c) Finally, let F󸀠1, F󸀠󸀠1 befinite-dimensional subspaces of F, transverse to g inW, such thatϕ(U) ⊂ F󸀠1 ∩ F󸀠󸀠1 .
Then, by Proposition 2.4, we have for any choice of V, f the same degB(g|V − f, V, 0).

So, degB(g|V − f, V, 0) is independent of F1, V, and f .

By virtue of Lemma 5.3, we can define a degree for the triple (g, U, ϕ):

Definition 5.4. Let (g, U, ϕ) be an admissible triple satisfying (5.1), and let F1, V, f be defined as above. The
degree of (g, U, ϕ) is defined by

deg(g, U, ϕ) = degB(g|V − f, V, 0).

The following is a special homotopy invariance result, which will be useful in the forthcoming construction:

Lemma 5.5. Let U ⊆ E be open, let h : U×[0, 1] → F be an orientedΦ0-homotopy, and let ϕ ∈ CJ(U×[0, 1], F)
be locally compact such that
(i) the coincidence set

C(h, U × [0, 1], ϕ) = {(x, t) ∈ U × [0, 1] : h(x, t) ∈ ϕ(x, t)}

is compact,
(ii) dim(ϕ(U × [0, 1])) < ∞.
Then the map t 󳨃→ deg(h( ⋅ , t), U, ϕ( ⋅ , t)) is constant in [0, 1].

Proof. By (i) and (ii) we can find an open neighborhoodW ⊂ U × [0, 1] of C(h, U × [0, 1], ϕ) and a subspace
F1 ⊆ F such that dim(F1) = m < ∞, ϕ(U × [0, 1]) ⊂ F1, and for all t ∈ [0, 1], F1 is transverse to h( ⋅ , t) in
the set

Wt := {x ∈ U : (x, t) ∈ W}.

Set M1 = h−1(F1) ∩W; then M1 is an (m + 1)-dimensional C1-manifold in E × ℝ with boundary

∂M1 = {(x, t) ∈ M1 : t = 0, 1}.

We orient F1, so that the orientations of h, F1 induce an orientation ofM1 in a uniqueway (Proposition 3.11).
Now let V ⊂ M1 be an open (in M1) neighborhood of C(h, U × [0, 1], ϕ) such that V ⊂ M1 is a compact
ANR-space (the construction is analogous to that of Lemma 5.2). By Propositions 4.5 and 4.11, the restric-
tion ϕ|V ∈ CJ(V , F1) is approximable, and for all ε > 0 small enough we can find f ∈ Bε(ϕ|V ) such that for all
t ∈ [0, 1],

deg(h( ⋅ , t), U, ϕ( ⋅ , t)) = degB(h( ⋅ , t)|V − f( ⋅ , t), V, 0)

(Definition 5.4). By homotopy invariance of Brouwer’s degree, the latter does not depend on t ∈ [0, 1], which
concludes the proof.

Nowwe remove assumption (5.1). Let (g, U, ϕ) be an admissible triple, not necessarily satisfying (5.1). Since
g is locally proper, ϕ is locally compact, and C(g, U, ϕ) is compact (Definition 5.1), we can find a bounded
open neighborhood U1 ⊂ U of C(g, U, ϕ) such that g|U1

is proper and ϕ|U1
is compact. Recalling that ϕ has

closed graph, being u.s.c., one can see that g − ϕ : U1 → 2F is a closed set-valuedmap, and 0 ∉ (g − ϕ)(∂U1).
Since (g − ϕ)(∂U1) is closed, there exists δ > 0 such that

Bδ(0) ∩ (g − ϕ)(∂U1) = 0.

The set K = ϕ(U1) is compact. Sowe can find a finite-dimensional subspace F1 ⊂ F and a (single-valued)map
jδ ∈ C(K, F1) such that for all x ∈ K,

‖jδ(x) − x‖F <
δ
2

(this is a classical result in nonlinear functional analysis, see e.g. [17, Proposition 8.1]). Set

ϕ1 = jδ ∘ ϕ ∈ CJ(U1, F)

(Definition 4.10); then it satisfies
Bδ/2(0) ∩ ϕ1(∂U1) = 0,
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and C(g, U1, ϕ1) is compact. So, (g, U1, ϕ1) is an admissible triple satisfying (5.1). Definition 5.4 then
applies, and produces a degree deg(g, U1, ϕ1). Moreover, such a degree is invariant:

Lemma 5.6. Let (g, U, ϕ) be an admissible triple, and let U1, jδ be defined as above. Then deg(g, U1, ϕ1) does
not depend on U1, jδ.

Proof. Just as in Lemma 5.3, we divide the proof in two steps backward:
(a) Let U1 be fixed, let F1, K, δ be defined as above, and let j󸀠δ , j󸀠󸀠δ ∈ C(K, F1) be such that for all x ∈ K,

‖j󸀠δ(x) − x‖F , ‖j󸀠󸀠δ (x) − x‖F < δ2 .
Set for all (x, t) ∈ U1 × [0, 1],

h(x, t) = g(x), ϕ̃(x, t) = (1 − t)j󸀠δ(ϕ(x)) + tj󸀠󸀠δ (ϕ(x)).
Then themap h : U1 × [0, 1] → F is a Φ0-homotopy (Definition 3.9). Amore delicate question is proving that
ϕ̃ ∈ CJ(U1 × [0, 1], F), since this map is not explicitly defined as a composition of a J-map and a continuous
single-valued function (Definition 4.10). Since ϕ ∈ CJ(U, F), there exist a metric space Z, ψ ∈ J(U1, Z), and
k ∈ C(Z, F) such that ϕ = k ∘ ψ. Set for all (x, t) ∈ U1 × [0, 1],

ψ̃(x, t) = ψ(x) × {t},

so clearly ψ̃ ∈ J(U1 × [0, 1], Z × [0, 1]); and set for all (z, t) ∈ Z × [0, 1],

k̃(z, t) = (1 − t)j󸀠δ(k(z)) + tj󸀠󸀠δ (k(z)),
so k̃ ∈ C(Z × [0, 1], F). Then

ϕ̃ = k̃ ∘ ψ̃ ∈ CJ(U1 × [0, 1], F).

Now we prove that the coincidence set

C(h, U1 × [0, 1], ϕ̃) = {(x, t) ∈ U1 × [0, 1] : h(x, t) ∈ ϕ̃(x, t)}

is compact. Let (xn , tn) be a sequence in C(h, U1 × [0, 1], ϕ̃). Passing to a subsequence, we have tn → t. For
all n ∈ ℕ there exist y󸀠n , y󸀠󸀠n ∈ ϕ(xn) such that

g(xn) = (1 − tn)j󸀠δ(y󸀠n) + tn j󸀠󸀠δ (y󸀠󸀠n ).
By compactness of ϕ|U1

, passing again to a subsequence we have y󸀠n → y󸀠, y󸀠󸀠n → y󸀠󸀠, which implies

g(xn) → (1 − t)j󸀠δ(y󸀠) + tj󸀠󸀠δ (y󸀠󸀠).
By properness of g|U1

, we can find x ∈ U1 such that up to a further subsequence xn → x. We need to prove
that x ∈ U1. Arguing by contradiction, let x ∈ ∂U1. Then, by the choice of δ > 0, we have

dist(g(x), ϕ(x)) ⩾ δ.

Besides, since ϕ is u.s.c., we have y󸀠, y󸀠󸀠 ∈ ϕ(x), hence by the metric properties of the maps j󸀠δ, j󸀠󸀠δ we have
dist(g(x), ϕ(x)) ⩽ (1 − t)dist(j󸀠δ(y󸀠), ϕ(x)) + t dist(j󸀠󸀠δ (y󸀠󸀠), ϕ(x))

⩽ (1 − t)‖j󸀠δ(y󸀠) − y󸀠‖F + t‖j󸀠󸀠δ (y󸀠󸀠) − y󸀠󸀠‖F ⩽ δ2 ,
a contradiction. So, x ∈ U1 and we deduce that C(h, U1 × [0, 1], ϕ̃) is compact. In addition, ϕ̃ has a finite-
dimensional rank. Then, by Lemma 5.5, deg(h( ⋅ , t), U1, ϕ̃( ⋅ , t)) is independent of t ∈ [0, 1]. In particular,
taking t = 0, 1 we get

deg(g, U1, j󸀠δ ∘ ϕ) = deg(g, U1, j󸀠󸀠δ ∘ ϕ).
(b) Let U󸀠1, U󸀠󸀠1 ⊂ U be open neighborhoods of C(g, U, ϕ) such that the restrictions of g to both U󸀠1, U󸀠󸀠1

are proper and the restrictions of ϕ to U󸀠1, U󸀠󸀠1 are compact, respectively. Without loss of generality we may
assume U󸀠1 ⊆ U󸀠󸀠1 , hence we continue the construction in U󸀠󸀠1 . Then independence of the degree follows from
the excision property of Brouwer’s degree.

So, deg(g, U1, ϕ1) does not depend on the choice of U1, jδ.
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By virtue of Lemma 5.6, we can define a degree for the triple (g, U, ϕ) extending Definition 5.4:

Definition 5.7. Let (g, U, ϕ)be anadmissible triple, and letU1,ϕ1 bedefinedas above. Thedegreeof (g, U, ϕ)
is defined by

deg(g, U, ϕ) = deg(g, U1, ϕ1).

The degree theory we just introduced enjoys some classical properties:

Proposition 5.8. The following properties hold:
(i) (Normalization) If U ⊂ E is open such that 0 ∈ U, and I is the naturally oriented identity of E, then

deg(I, U, 0) = 1.

(ii) (Domain additivity) If (g, U, ϕ) is an admissible triple, U1, U2 ⊂ U are open such that U1 ∩ U2 = 0,
C(g, U, ϕ) ⊂ U1 ∪ U2, then (g, U1, ϕ), (g, U2, ϕ) are admissible triples and

deg(g, U, ϕ) = deg(g, U1, ϕ) + deg(g, U2, ϕ).

(iii) (Homotopy invariance) If U ⊂ E is open, h :U×[0, 1]→ F is an orientedΦ0-homotopy, ϕ ∈ CJ(U×[0, 1], F)
is locally compact such that C(h, U × [0, 1], ϕ) is compact, then for all t ∈ [0, 1], (h( ⋅ , t), U, ϕ( ⋅ , t)) is an
admissible triple and the function

t 󳨃→ deg(h( ⋅ , t), U, ϕ( ⋅ , t))
is constant in [0, 1].

Proof. Properties (i) and (ii) follow fromDefinition 5.7 and the corresponding properties of Brouwer’s degree
(the proof is straightforward, so we omit it).

To prove (iii), we first fix t ∈ [0, 1]. By compactness, we can find σ > 0 and a bounded open neighborhood
W ⊂ U of the section

Ct = {x ∈ U : (x, t) ∈ C(h, U × [0, 1], ϕ)}
such that h|W×Iσ is proper and ϕ|W×Iσ is compact, where we have set

Iσ = [t − σ, t + σ] ∩ [0, 1].

We also introduce a finite rankmap j ∈ C(K, F), close enough to the identity of K = ϕ(W × Iσ). By the excision
property of Brouwer’s degree and the construction above, for all s ∈ Iσ we have

deg(h( ⋅ , s), U, ϕ( ⋅ , s)) = deg(h( ⋅ , s),W, j ∘ ϕ( ⋅ , s)).

Besides, by Lemma 5.5 the function

s 󳨃→ deg(h( ⋅ , s),W, j ∘ ϕ( ⋅ , s))

is constant in Iσ, hence deg(h( ⋅ , s), U, ϕ( ⋅ , s)) turns out to be locally constant in [0, 1]. Since [0, 1] is con-
nected, we get the conclusion.

Remark 5.9. Proposition 5.8 (iii) holds in a stronger form, i.e., for subsets of E × ℝwhich are not necessarily
products, as it can be seen from the proof. In fact, consider the case in which the domain of h and ϕ is an
open subset U of the product E × [0, 1]. Fix t ∈ [0, 1] and call

Ut := {x ∈ E : (x, t) ∈ U}.

By the compactness of C(h, U, ϕ) we can find an open subsetWt of E and a positive σ such that
(a) Ct(h, U, ϕ) ⊂ Wt ⊂ W t ⊂ Ut,
(b) W t × Iσ ⊂ U,
(c) Cs(h, U, ϕ) ⊂ Wt for every s ∈ Iσ,
where Cs(h, U, ϕ) := {x ∈ E : (x, t) ∈ C(h, U, ϕ)} and Iσ is as in the proof of (iii). Now, item (iii) of Proposi-
tion 5.8 implies that

s 󳨃→ deg(h( ⋅ , s),Wt , ϕ( ⋅ , s))
is constant in Iσ. The constance of deg(h( ⋅ , s), Us , ϕ( ⋅ , s)) follows from the excision property of the degree,
which is straightforward (we omit the proof). This property is usually called generalized homotopy invariance.
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6 Persistence Results and Bifurcation Points
We can now prove the main results of the present paper, as announced in the Introduction. Throughout this
section, E and F are two real Banach spaces, Ω ⊂ E is an open (not necessarily bounded) set such that 0 ∈ Ω,
L ∈ Φ0(E, F) satisfy ker L ̸= 0, C ∈ L(E, F) is another bounded linear operator, and ϕ ∈ CJ(Ω, F) is locally
compact. The linear operators L, C satisfy the transversality condition (1.3). For all ε, λ ∈ ℝ we consider the
perturbed problem (1.1), whose solutions are meant in the following sense:

Definition 6.1. A solution of (1.1) is a triple (x, ε, λ) ∈ ∂Ω × ℝ × ℝ such that

Lx − λCx + εϕ(x) ∋ 0.

The set of solutions is denoted by S. A solution (x, ε, λ) ∈ S is a trivial solution if ε = λ = 0. Finally, we say
that x0 ∈ ∂Ω is a bifurcation point if (x0, 0, 0) ∈ S and any neighborhood of (x0, 0, 0) in E × ℝ × ℝ contains at
least one non-trivial solution.

Clearly, any trivial solution (x, 0, 0) of (1.1) identifies with its first component x. The set of such vectors is

S0 = ∂Ω ∩ ker L.

Regarding our definition of a bifurcation point, we note that it is analogous to that of [4], and fits in the very
general definition given in [16, p. 2]. Finally, we note that, whenever (x, 0, λ) ∈ S, (x, λ) is an eigenpair of the
eigenvalue problem (1.2): thus, we keep the names eigenvector for x and eigenvalue for λ, respectively, for
any triple (x, ε, λ) ∈ S.

As observed in [4, Remark 5.1], transversality condition (1.3) is in fact equivalent to

im L ⊕ C(ker L) = F.

Thus, we can find b > 0 such that L − λC ∈ Φ0(E, F) is invertible for all 0 < |λ| ⩽ b. Besides, since 0 ∉ ∂Ω,
for any bifurcation point x0 ∈ S0 we can find a neighborhoodW ⊂ E × ℝ × ℝ of (x0, 0, 0) such that any triple
(x, ε, λ) ∈ S ∩W actually must have ε ̸= 0.

The map λ 󳨃→ L − λC (which is orientable according to Definition 3.5 since its domain is simply con-
nected, see Proposition 3.8 (iii)) exhibits a sign jump property (a special case of [8, Corollary 5.1]):

Lemma 6.2. Let b > 0 be defined as above, and let h ∈ C([−b, b], Φ0(E, F)) be defined by

h(λ) = L − λC,

and oriented. Then:
(i) The map λ 󳨃→ sign h(λ) is constant in both [−b, 0) and (0, b].
(ii) sign h(b) ̸= sign h(−b) iff dim(ker L) is odd.

Lemma 6.2 above is the reason why the assumption that dim(ker L) is odd is so important in our theory. Now
we prove an existence result on bounded subdomains, which is the core of our argument:

Proposition 6.3. Let dim(ker L) be odd, let (1.3) hold, and let U ⊆ Ω be an open, bounded set such that 0 ∈ U
and ϕ|U ∈ CJ(U, F) is compact. Then there exist a, b > 0 such that for all ε ∈ [−a, a] there exist λ ∈ [−b, b],
x ∈ ∂U such that

Lx − λCx + εϕ(x) ∋ 0.

Proof. Let b > 0 be as in Lemma 6.2, and fix a > 0 (to be better determined later). Set

R = [−a, a] × [−b, b],

and define the set
K = {(x, ε, λ) ∈ ∂U × R : Lx − λCx + εϕ(x) ∋ 0}. (6.1)

The set K ⊂ E × ℝ × ℝ is compact. Indeed, let (xn , εn , λn) be a sequence in K. Then (εn , λn) is a bounded
sequence in R, hence passing to a subsequence we have (εn , λn) → (ε, λ) for some (ε, λ) ∈ R. As seen above,
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we have eventually εn ̸= 0. Now set for all n ∈ ℕ

yn = −
1
εn
(Lxn − λnCxn) ∈ ϕ(xn).

Since ϕ(U) is compact, passing if necessary to a further subsequence, we have yn → y for some y ∈ F, which
implies

lim
n
(Lxn − λCxn) = limn (Lxn − λnCxn) + limn (λn − λ)Cxn = −εy

(recall that (xn) is a bounded sequence and C is a bounded operator). The operator L − λC ∈ Φ0(E, F) is proper
on closed and bounded subsets of E, hence passing again to a subsequence if necessary we have xn → x for
some x ∈ ∂U. Thus, (xn , εn , λn) → (x, ε, λ) for some (x, ε, λ) ∈ K.

Clearly, the projection ofK onto R, namely the set

Γ = {(ε, λ) ∈ R : (x, ε, λ) ∈ K for some x ∈ ∂U},

is compact as well. Nowwe choose an orientation of L ∈ Φ0(E, F) (Definition 3.4), and fix (ε, λ) ∈ R \ Γ. Then
(L − λC, U, −εϕ) is an admissible triple (Definition 5.1), since the coincidence set

C(L − λC, U, −εϕ) = {x ∈ U : Lx − λCx + εϕ(x) ∋ 0}

is compact. Indeed, arguing as above, for any sequence (xn) in C(L − λC, U, −εϕ) we can find a relabeled
subsequence such that xn → x for some x ∈ U. It remains to prove that x ∈ U. Otherwise, we would have
x ∈ ∂U, hence (ε, λ) ∈ Γ, a contradiction.

So, the integer-valued map
(ε, λ) 󳨃→ deg(L − λC, U, −εϕ)

is well defined in the relatively open set R \ Γ (Definition 5.7), and constant on any connected component
of R \ Γ by homotopy invariance (Proposition 5.8 (iii)).

By the choice of b > 0, both operators L ± bC are invertible. Hence, (0, ±b) ∈ R \ Γ (recall that 0 ∉ ∂U).
We claim that

deg(L + bC, U, 0) ̸= deg(L − bC, U, 0). (6.2)

Indeed, let L + bC ∈ Φ0(E, F) be naturally oriented; then

sign(L + bC) = 1

(Definition 3.4 (ii), (iii)).We fix a non-trivial, finite-dimensional subspace F1 ⊂ F and set E1 = (L + bC)−1(F1),
then we orient F1 and E1 so that E1 is the oriented (L + bC)-preimage of F1. With such an orientation of the
involved spaces and maps, recalling Definitions 5.7 and 5.4, we have

deg(L + bC, U, 0) = degB((L + bC)|E1 , U ∩ E1, 0) = 1.

The second of the above two equalities is consequence of classical properties in Brouwer degree (see e.g.
[25, Chapter 5, Section 1]). Since dim(ker L) is odd, by Lemma 6.2 (ii) we have

sign(L − bC) = −1,

which, repeating the construction above with the same orientations, leads to

deg(L − bC, U, 0) = −1.

Similar arguments can be developed if different orientations are chosen, so (6.2) holds in any case.
By (6.2), we deduce that (0, ±b) lie in different connected components ofR \ Γ. By reducing further a > 0

if necessary, we may assume that (ε, ±b) lie in different connected components of R \ Γ, for all ε ∈ [−a, a]
(the situation is depicted in Figure 1). So, for all ε ∈ [−a, a]we can find λ ∈ [−b, b] such that (ε, λ) ∈ Γ, which
concludes the proof.
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(−a, −b) (a, −b)

(−a, b) (a, b)

(0, −b)

(0, b)

R

Γ

Figure 1: The set Γ cutting the rectangle R.

Proposition 6.3 is the main tool for proving persistence of the eigenpairs under a set-valued perturbation,
with the additional assumption that the set Ω0 := Ω ∩ ker L is compact (note that Ω0 ̸= 0 as 0 ∈ Ω). We begin
with eigenvalues:

Theorem 6.4. Let dim(ker L) be odd, let (1.3) hold, and let Ω0 := Ω ∩ ker L be non-empty and compact. Then,
for all c > 0 small enough, there exist a, b > 0 such that the set-valued map Γ : [−a, a] → 2[−b,b] defined by

Γ(ε) = {λ ∈ [−b, b] : (x, ε, λ) ∈ S for some x ∈ ∂Ω ∩ Bc(S0)}

has the following properties:
(i) Γ(ε) ̸= 0 for all ε ∈ [−a, a],
(ii) Γ is u.s.c.

Proof. Since the set Ω0 is compact, we can find a bounded open neighborhoodW ⊂ E of Ω0 such that ϕ|U is
compact, where we have set U = W ∩ Ω. Clearly, U is a bounded open set such that 0 ∈ U. Then we can apply
Proposition 6.3 and thus find a rectangle

R = [−a, a] × [−b, b] (a, b > 0)

such that for all ε ∈ [−a, a] there exist λ ∈ [−b, b], x ∈ ∂U such that

Lx − λCx + εϕ(x) ∋ 0.

Besides, let c > 0 be small enough that Bc(S0) ⊂ W (recall that S0 = ∂Ω ∩ ker L). We define K ⊂ E × R as
in (6.1). As in the proof of Proposition 6.3, we see thatK is compact. We define a set-valued map ψ : R→ 2F

by setting
ψ(ε, λ) = {x ∈ ∂U : (x, ε, λ) ∈ K}.

We claim that
ψ(0, 0) = S0 ⊂ Bc(S0).

Indeed, for all x ∈ S0 we have x ∈ Ω0 ⊂ W, which along with x ∈ ∂Ω implies x ∈ ∂U, while (x, 0, 0) ∈ S, so
(x, 0, 0) ∈ K. Conversely, if x ∈ ψ(0, 0), then x ∈ ∂U ⊆ ∂Ω ∪ ∂W, while x ∈ Ω0 ⊂ W, so we deduce x ∈ ∂Ω and
since (x, 0, 0) ∈ K we have x ∈ S0.

Plus, the set graphψ ⊂ R × E is obtained as a continuous image ofK (by a swapof coordinates) andhence
is compact. So, recalling Remark 4.2, ψ is u.s.c.

Therefore by reducing a, b > 0 if necessary we have for all (ε, λ) ∈ R,

ψ(ε, λ) ⊂ Bc(S0). (6.3)

Nowwe can prove both assertions. Fix ε ∈ [−a, a]. By Proposition 6.3 there exist λ ∈ [−b, b] and x ∈ ∂U such
that x ∈ ψ(ε, λ), so by (6.3) we have x ∈ Bc(S0). Then x ∈ ∂U ∩W ⊂ ∂Ω, so (x, ε, λ) ∈ S. Thus λ ∈ Γ(ε), which
proves (i).
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To prove (ii), we just need to note that

graph Γ = {(ε, λ) ∈ R : (x, ε, λ) ∈ K for some x ∈ ∂Ω ∩ Bc(S0)}

is but the projection ofK onto R, hence compact. As above, Γ : [−a, a] → 2[−b,b] is u.s.c.
A similar persistence result holds for the eigenvectors:

Theorem 6.5. Let dim(ker L) be odd, let (1.3) hold, and let Ω0 be compact. Then, for all c > 0 small enough,
there exist a, b > 0 such that the set-valued map Σ : [−a, a] → 2E defined by

Σ(ε) = {x ∈ ∂Ω ∩ Bc(S0) : (x, ε, λ) ∈ S for some λ ∈ [−b, b]}

has the following properties:
(i) Σ(ε) ̸= 0 for all ε ∈ [−a, a],
(ii) Σ is u.s.c.

Proof. As in the proof of Theorem 6.4, for all c > 0 small enough we find a rectangle R = [−a, a] × [−b, b]
(a, b > 0) and an open neighborhoodW ⊂ E of Ω0 such that, setting U = W ∩ Ω, the setK defined by (6.1) is
compact, and in addition x ∈ Bc(S0) whenever (x, ε, λ) ∈ K (see (6.3)).

In particular, for all (x, ε, λ) ∈ K we have x ∈ Σ(ε). Then Proposition 6.3 implies (i). Besides, since

graph Σ = {(ε, x) ∈ [−a, a] × (∂Ω ∩ Bc(S0)) : (x, ε, λ) ∈ K for some λ ∈ [−b, b]}

is the projection ofK onto [−a, a] × E, hence compact, we also deduce (ii) (recall Remark 4.2).

As a consequence, we prove that the set S0 contains at least one bifurcation point (Definition 6.1):

Theorem 6.6. Let dim(ker L) be odd, let (1.3) hold, and let Ω0 be compact. Then problem (1.1) has at least one
bifurcation point.

Proof. Weargueby contradiction: assume thatS0 containsnobifurcationpoints, i.e., for all x ∈ S0 there exists
an open neighborhood Ux ⊂ E × ℝ × ℝ of (x, 0, 0) such that for all (x, ε, λ) ∈ S ∩ Ux we have (ε, λ) = (0, 0).
The family (Ux)x∈S0 is an open covering of the compact set S0 × {(0, 0)} in E × ℝ × ℝ, so we can find a finite
sub-covering, which we relabel as (Ui)mi=1.

Let a, b, c > 0 be such that
Bc(S0) × R ⊂

m
⋃
i=1Ui ,

where as usual R = [−a, a] × [−b, b]. Thus, we have

S ∩ (Bc(S0) × R) = S0 × {(0, 0)}

(i.e., there are no solutions in Bc(S0) × R except the trivial ones). By reducing a, b, c > 0 if necessary, Theo-
rem 6.5 applies. So, for all ε ∈ [−a, a] \ {0} there exist x ∈ ∂Ω ∩ Bc(S0), λ ∈ [−b, b] such that (x, ε, λ) ∈ S,
a contradiction.

Remark 6.7. Since ker L has finite dimension, compactness of Ω0 (which is assumed in the statements of the
last theorems) is clearly verified as long as Ω is bounded. On the other hand, trivial examples in Euclidean
spaces show that, if Ω is unbounded, then Ω0 may fail to be compact. We want to present a special type
of (possibly unbounded) domains which satisfy our assumption: let γ : E → ℝ be a continuous norm (not
necessarily coinciding with the norm ‖ ⋅ ‖ of E) and set

Ω = {x ∈ E : γ(x) < 1}.

Let (xn) be a sequence in Ω0 = Ω ∩ ker L. Without loss of generality we may assume xn ̸= 0 for all n ∈ ℕ.
Setting yn = xn/‖xn‖, we define a bounded sequence (yn) in the finite-dimensional space ker L, so passing to
a subsequence if necessary we have yn → y, ‖y‖ = 1. By continuity, γ(yn) → γ(y) > 0, so

‖xn‖ =
γ(xn)
γ(yn)
⩽

1
γ(yn)

is bounded. Passing to a further subsequence, we have ‖xn‖ → μ ⩾ 0, and hence xn → μy. So, Ω0 is compact.
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We conclude this section by presenting a special case of Theorem 6.6:

Corollary 6.8. Let dim(ker L) be odd, let (1.3) hold, let γ ∈ C(E,ℝ) be a norm, and let

Ω = {x ∈ E : γ(x) < 1}.

Then problem (1.1) has at least one bifurcation point.

Proof. Clearly, Ω ⊂ E is an open set such that 0 ∈ Ω and ∂Ω = γ−1(1). In addition, by Remark 6.7, the set
Ω0 = Ω ∩ ker L is compact. Thus, we can apply Theorem 6.6 and conclude.

7 Applications to Differential Inclusions
We devote this final section to an application of our abstract results in the field of differential inclusions. We
consider the problem stated in the Introduction:

{{{
{{{
{

u󸀠󸀠 + u󸀠 − λu + εΦ(u) ∋ 0 in [0, 1]
u󸀠(0) = u󸀠(1) = 0
‖u‖1 = 1.

(7.1)

We recall that Φ(u) : [0, 1] → 2ℝ is a set-valued mapping depending on u, to be defined later, while ε, λ ∈ ℝ
are parameters and ‖ ⋅ ‖1 is the usual L1-norm on [0, 1]. Problem (7.1) falls into the general pattern (1.1),
with the following definitions. Set

E = {u ∈ C2([0, 1],ℝ) : u󸀠(0) = u󸀠(1) = 0}, F = C0([0, 1],ℝ),

endowed with the usual norms. Then E, F are real Banach spaces, in particular E is a 2-codimensional
subspace of C2([0, 1],ℝ). Set for all u ∈ E,

Lu = u󸀠󸀠 + u󸀠, Cu = u.

Then L, C ∈ L(E, F). Besides, L ∈ Φ0(E, F) as the composition of the embedding E 󳨅→ C2([0, 1],ℝ) (which is
Fredholmof index−2) and the linear differential operator u 󳨃→ u󸀠󸀠 + u󸀠 (which is Fredholmof index 2 between
C2([0, 1],ℝ) and F). In order to check the transversality condition (1.3), we need more detailed information
about L. It is easily seen that ker L is the space of constant functions, i.e.,

ker L = ℝ,

in particular dim(ker L) = 1 (odd). In addition, we have

im L = {f ∈ F :
1

∫
0

f(t)et dt = 0}.

Indeed, for all f ∈ im L there exists u ∈ E such that u󸀠󸀠 + u󸀠 = f , so integrating by parts we deduce
1

∫
0

f(t)et dt =
1

∫
0

u󸀠󸀠(t)et dt + 1

∫
0

u󸀠(t)et dt = 0.
Besides, since L ∈ Φ0(E, F), we have dim(coker L) = 1 (Definition 3.1), so the condition above is also suffi-
cient. Now we prove (1.3), or equivalently

im L ⊕ C(ker L) = F.

Indeed, C(ker L) = ℝ is not contained in the 1-codimensional subspace im L, hence it is a (direct) complement
for it in F.
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The integral constraint rephrases as u ∈ ∂Ω, where we have set

Ω = {u ∈ E : ‖u‖1 < 1}.

Since ‖ ⋅ ‖1 is a continuous norm on E, Ω is an (unbounded) open set such that Ω0 = Ω ∩ ker L is compact
(Remark 6.7). Besides, from the characterization of ker L we have S0 = {±1}.

The construction of Φ requires some care. We are going to consider a set-valued map ϕ ∈ CJ(Ω, F), and
then set for all u ∈ Ω, t ∈ [0, 1],

Φ(u)(t) = {w(t) : w ∈ ϕ(u)}

(this can be seen as a set-valued superposition operator). Details will be given in Examples 7.2, 7.3, and 7.7
below. We can now apply our abstract results to prove existence of a bifurcation point:

Theorem 7.1. Let E, F, L, C, Ω, and Φ be as above, being ϕ ∈ CJ(Ω, F) locally compact. Then there exist
sequences (un) in ∂Ω, (εn) inℝ \ {0}, (λn) inℝ such that (un , εn , λn) is a solution of (7.1) for all n ∈ ℕ, and

un → ±1, εn → 0, λn → 0.

Proof. By Remark 6.7 and Corollary 6.6, problem (1.1) has at least one bifurcation point in S0, that is, either
the constant 1 or −1. So, we can find a sequence (un , εn , λn) if non-trivial solutions of (1.1) (more precisely,
with εn ̸= 0) converging to either (1, 0, 0) or (−1, 0, 0) in E × ℝ × ℝ. By the definition of Φ, for all n ∈ ℕ and
all t ∈ [0, 1] we have

u󸀠󸀠n (t) + u󸀠n(t) − λnun(t) + εnΦ(un)(t) ∋ 0,
so (un , εn , λn) solves (7.1).

We present three examples of locally compact CJ-maps ϕ : Ω → 2F . The first and second examples are quite
easy, ϕ being defined by means of finite-dimensional reduction.

Example 7.2. We define a set-valued map ϕ : Ω → 2F whose values consist of piecewise affine functions
along a decomposition of [0, 1], satisfying some bounds at the nodal points. Fix m ∈ ℕ, points 0 = t0 < t1 <
⋅ ⋅ ⋅ < tm = 1, and ρ ∈ (0, 1). For all u ∈ Ω we define ϕ(u) as the set of all functions w ∈ F such that
(a) w is affine in [tj−1, tj], j = 1, . . . ,m,
(b) u(tj) − ρ ⩽ w(tj) ⩽ u(tj) + ρ, j = 0, . . . ,m.
We first prove that ϕ has convex values. For any u ∈ Ω, w0, w1 ∈ ϕ(u), and μ ∈ [0, 1], by (a) the function
w = (1 − μ)w0 + μw1 is affine in any interval [tj−1, tj] (j = 1, . . . ,m), while (b) implies

u(tj) − ρ ⩽ w(tj) ⩽ u(tj) + ρ (j = 0, . . . ,m).

Then we prove that ϕ has compact values. Let u ∈ Ω, and let (wn) be a sequence in ϕ(u). By (a) we can find
α1, . . . , αm > 0 such that |w󸀠n(t)| ⩽ αj for all t ∈ (tj−1, tj), j = 1, . . . ,m, and n ∈ ℕ. So the sequence (wn) is
uniformly bounded and equi-continuous (by (b)), hence by Ascoli’s theorem we can pass to a subsequence
such that wn → w in F. Due to uniform convergence, w is piecewise affine and satisfies the bounds at tj
(j = 0, . . . ,m), so w ∈ ϕ(u). Thus, ϕ(u) is compact.

In addition, the set-valued map ϕ is locally compact. Indeed, let (un) be a bounded sequence in Ω and
let (wn) be a sequence in F such that wn ∈ ϕ(un) for all n ∈ ℕ. Recalling that (u󸀠n) is uniformly bounded, we
can argue as above to find a relabeled subsequence wn such that wn → w in F. Thus, ϕ(un) is compact.

We prove finally that graphϕ is closed in Ω × F. Indeed, let (un , wn) be a sequence in Ω × F such that
wn ∈ ϕ(un) for all n ∈ ℕ, and (un , wn) → (u, w). Then w ∈ ϕ(u). By [22, Proposition 4.15], ϕ is u.s.c. We
conclude that ϕ ∈ CJ(Ω, F) and is locally compact.

Example 7.3. In this second example, ϕ(u) depends on u in a single-valued sense, but is multiplied by an
interval depending on the mean value of u (non-local dependence). Fix f ∈ C0(ℝ,ℝ), α, β : ℝ → ℝ such that
α is lower semicontinuous, β is upper semicontinuous, and α(s) ⩽ β(s) for all s ∈ ℝ. For all u ∈ Ω set

ū =
1

∫
0

u(τ) dτ.
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We define ϕ(u) as the set of all functions w ∈ F of the form

w(t) = cf(u(t)), α(ū) ⩽ c ⩽ β(ū).

Obviously, ϕ : Ω → 2F has convex values.
We prove that ϕ has compact values. Let u ∈ Ω, (wn) be a sequence in ϕ(u). Then, for all n ∈ ℕ, there

exists cn ∈ [α(ū), β(ū)] such that wn = cn f(u). The sequence (cn) is bounded, so passing to a subsequence we
have cn → c for some c ∈ ℝ. Set w = cf(u), then clearly wn → w in F and w ∈ ϕ(u). Thus, ϕ(u) is compact.

Themapϕ is locally compact. Indeed, let (un)be a bounded sequence in Ω and let (wn)be a sequence in F
such that wn ∈ ϕ(un) for all n ∈ ℕ. Then for all n ∈ ℕwe can find cn ∈ [α(ūn), β(ūn)] such that wn = cn f(un).
Since (un) is uniformly bounded and equi-continuous, passing to a subsequence we have un → u uniformly
in [0, 1] (note that u ∉ E in general). Hence, ūn → ū. So (cn) turns out to be bounded, andup to a subsequence
cn → c. Passing to the limit, due to the properties of α and β, we have

α(ū) ⩽ c ⩽ β(ū).

So, setting w = cf(u), we deduce wn → w in F. Thus, ϕ(un) is compact.
Alternatively, we can prove that graphϕ is closed in Ω × F. Indeed, let (un , wn) be a sequence in Ω × F

such that wn ∈ ϕ(un) for all n ∈ ℕ, and (un , wn) → (u, w). For all n ∈ ℕwe find cn ∈ [α(ūn), β(ūn)] such that
wn = cn f(un). Then ūn → ū, and f(un) → f(u) uniformly in [0, 1]. We prove now that (cn) converges, indeed
avoiding trivial cases we may assume that f(u(t)) ̸= 0 at some t ∈ [0, 1], then

lim
n
cn =

wn(t)
f(un(t))

=
w(t)
f(u(t))
= c,

with c ∈ [α(ū), β(ū)]. So w ∈ ϕ(u). By [22, Proposition 4.15] again, ϕ is u.s.c. We conclude that ϕ ∈ CJ(Ω, F)
and is locally compact.

The last example is more sophisticated, since in the construction of ϕ we preserve the infinite dimension,
and we apply some classical results from functional analysis to prove all required compactness properties.
We recall such results, starting from a weak notion of compactness in L1 (see [23, Definition 2.94] and
[26, Definition 4.2.1]):

Definition 7.4. A sequence (vn) in L1([0, 1],ℝ) is said to be semicompact if
(i) it is integrably bounded, i.e., if there exists g ∈ L1([0, 1],ℝ) such that |vn(t)| ⩽ g(t) for a.e. t ∈ [0, 1] and

all n ∈ ℕ,
(ii) the image sequence (vn(t)) is relatively compact inℝ for a.e. t ∈ [0, 1].

The following result follows from the Dunford–Pettis Theorem (see also [26, Proposition 4.21]):

Proposition 7.5. Every semicompact sequence is weakly compact in L1(0, 1).

We also recall Mazur’s well-known theorem (see e.g. [18]):

Theorem 7.6. Let E be a normed space, and let (xn) be a sequence in E weakly converging to x. Then there
exists a sequence of convex linear combinations

yn =
n
∑
k=1 an,kxk , an,k ∈ (0, 1],

such that yn → x (strongly) in E.

We can now present our last example:

Example 7.7. Let α, β : [0, 1] × ℝ → ℝ be continuous functions such that

α(t, s) ⩽ β(t, s) for all (t, s) ∈ [0, 1] × ℝ,

and for all u ∈ Ω define ϕ(u) as the set of all functions w ∈ F for which there exists v ∈ L1(0, 1) such that for
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all t ∈ [0, 1],

w(t) =
t

∫
0

v(τ) dτ,

and for a.e. t ∈ [0, 1],
v(t) ∈ [α(t, u(t)), β(t, u(t))].

In short, we might define ϕ(u) as a set-valued integral in the sense of Aumann

ϕ(u)(t) =
t

∫
0

[α(τ, u(τ)), β(τ, u(τ))] dτ

(see [9, 26]). Clearly, for all u ∈ Ω, anyw ∈ ϕ(u) is absolutely continuous andhence a.e. differentiable in [0, 1]
with derivative v.We first prove thatϕ has convex values. Let u ∈ Ω,w0, w1 ∈ ϕ(u), and μ ∈ [0, 1]. There exist
v0, v1 ∈ L1(0, 1) such that

wi(t) =
t

∫
0

vi(τ) dτ, vi(t) ∈ [α(t, u(t)), β(t, u(t))] (a.e.).

Set w = (1 − μ)w0 + μw1 and v = (1 − μ)v0 + μv1; then we have in [0, 1]

w(t) =
t

∫
0

v(τ) dτ, v(t) ∈ [α(t, u(t)), β(t, u(t))] (a.e.),

which implies w ∈ ϕ(u).
We prove now that ϕ has compact values (this is not immediate andwill require several steps). Let u ∈ Ω,

and let (wn) be a sequence in ϕ(u); then there exists a sequence (vn) in L1(0, 1) such that for all n ∈ ℕ,

wn(t) =
t

∫
0

vn(τ) dτ, vn(t) ∈ [α(t, u(t)), β(t, u(t))] (a.e.).

Clearly, (wn) is bounded in F. Also, since (vn) is essentially bounded, (wn) turns out to be equi-absolutely
continuous. By Ascoli’s theorem, passing if necessary to a subsequence, we have wn → w in F and w is the
primitive of some v ∈ L1(0, 1), i.e., for all t ∈ [0, 1] we have

w(t) =
t

∫
0

v(τ) dτ. (7.2)

On the other side, (vn) is a semicompact sequence in L1(0, 1) (Definition 7.4), so by Proposition 7.5 we
can pass to a further subsequence and have (vn) weakly converging in L1(0, 1) to some v̂ ∈ L1(0, 1). For all
t ∈ [0, 1], the linear functional

f 󳨃→
t

∫
0

f(τ) dτ

is bounded in L1(0, 1), so weak convergence is enough to deduce that for all t ∈ [0, 1],

wn(t) =
t

∫
0

vn(τ) dτ →
t

∫
0

v̂(τ) dτ.

Comparing to (7.2), we see that v = v̂ in L1(0, 1). So (vn) converges weakly to v in L1(0, 1). By Theorem 7.6,
we can find a sequence (ṽn) of convex linear combinations of (vn) such that ṽn → v in L1(0, 1) (strongly).
Clearly, for all n ∈ ℕ and a.e. t ∈ [0, 1] we have

ṽn(t) ∈ [α(t, u(t)), β(t, u(t))],

so we can pass to the limit and deduce the same property for v. So, by (7.2), we have w ∈ ϕ(u). Thus, ϕ(u) is
compact. By similar arguments, we prove that ϕ is locally compact.
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Upper semicontinuity ofϕ canbeprovedas in theprevious cases, applying [22, Proposition4.1.5]. Never-
theless, in order to give the reader amore complete picture, we present a direct proof based on Definition 4.1.

Let V ⊂ F be open, and let ū ∈ ϕ+(V). We claim that there exists a neighborhood of ū contained in ϕ+(V).
Indeed, by compactness of ϕ(ū), there exist w1, . . . , wn ∈ ϕ(ū) and ε1, . . . , εn > 0 such that
(i) Bεi (wi) ⊆ V (i = 1, . . . , n),
(ii) ϕ(ū) ⊂ ⋃ni=1 Bεi/2(wi).
Consider now the following compact subset ofℝ2:

C = {(t, y) ∈ ℝ2 : t ∈ [0, 1], α(t, ū(t)) ⩽ y ⩽ β(t, ū(t))},

and let A be the open ball of [0, 1] × ℝ centered at C with radius 1. Then set

ε̄ := min{ε1, . . . , εn}
2 .

Since α, β are uniformly continuous in A, we can find δ ∈ (0, 1) such that

max{|α(t, y) − α(t, z)|, |β(t, y) − β(t, z)|} < ε̄ for all (t, y), (t, z) ∈ A, dist((t, y), (t, z)) < δ. (7.3)

We claim that ϕ(Bδ(ū)) ⊆ V. Indeed, fix u ∈ Bδ(ū). Clearly, we have |u(t) − ū(t)| < δ for all t ∈ [0, 1]. Take now
w ∈ ϕ(u), which can be written as

w(t) =
t

∫
0

v(τ) dτ

with v ∈ L1(0, 1) satisfying for a.e. t ∈ [0, 1],

α(t, u(t)) ⩽ v(t) ⩽ β(t, u(t)).

If for a.e. t ∈ [0, 1],
α(t, ū(t)) ⩽ v(t) ⩽ β(t, ū(t)),

then w ∈ ϕ(ū) ⊆ V and we are done. Otherwise, consider the truncated map v̄ : [0, 1] → ℝ defined by

v̄(t) =
{{{
{{{
{

α(t, ū(t)) if v(t) < α(t, ū(t)),
v(t) if α(t, ū(t)) ⩽ v(t) ⩽ β(t, ū(t)),
β(t, ū(t)) if v(t) > β(t, ū(t)),

which is an L1-function (see e.g. [31]), and denote

w̄(t) =
t

∫
0

v̄(τ) dτ,

so w̄ ∈ ϕ(ū). By the bounds above we have for all t ∈ [0, 1] that (t, u(t)), (t, ū(t)) ∈ A with

dist((t, u(t)), (t, ū(t))) < δ,

so by (7.3) we have |v(t) − v̄(t)| < ε̄ for a.e. t ∈ [0, 1]. This in turn implies ‖w − w̄‖∞ < ε̄. By (ii), we can find
i ∈ {1, . . . , n} such that w̄ ∈ Bεi/2(wi). So, recalling the definition of ε̄, we have

‖w − wi‖∞ ⩽ ‖w − w̄‖∞ + ‖w̄ − wi‖∞ < εi ,
hence by (i)w ∈ V. Thus,ϕ(Bδ(ū)) ⊆ V andϕ turns out to be u.s.c. In conclusion,ϕ ∈ CJ(Ω, F) and it is locally
compact.

Remark 7.8. Comparing Definition 6.1 and problem (7.1), one may be left in doubt that the non-trivial solu-
tions ensured by Theorem 7.1 might be triples (±1, ε, 0) with ε ̸= 0 (quite trivial in fact). But this case may
only occur if 0 ∈ ϕ(±1). Easy computations show that in Example 7.2 we have 0 ∉ ϕ(±1), due to the choice
ρ ∈ (0, 1). Similarly, in Example 7.3 it is enough to choose functions f , α, and β to be positive in order to have
0 ∉ ϕ(±1), thus avoiding such difficulty. Also in Example 7.7, we can easily find α, β such that 0 ∉ ϕ(±1).
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