
Open Access. © 2019 Maria Alessandra Ragusa and Atsushi Tachikawa, published by De Gruyter. This work is licensed under
the Creative Commons Attribution alone 4.0 License.

Adv. Nonlinear Anal. 2020; 9: 710–728

Maria Alessandra Ragusa* and Atsushi Tachikawa

Regularity for minimizers for functionals of
double phase with variable exponents
https://doi.org/10.1515/anona-2020-0022
Received November 12, 2018; accepted March 2, 2019.

Abstract: The functionals of double phase type

H(u) :=
∫ (
|Du|p + a(x)|Du|q

)
dx, (q > p > 1, a(x) ≥ 0)

are introduced in the epoch-making paper by Colombo-Mingione [1] for constants p and q, and investigated
by them and Baroni. They obtained sharp regularity results for minimizers of such functionals. In this paper
we treat the case that the exponents are functions of x and partly generalize their regularity results.

1 Introduction and main theorem
The main goal of this paper is to provide a regularity theorem for minimizers of a class of integral func-
tionals of the calculus of variations called of double phase type with variable exponents de�ned for u ∈
W1,1(Ω;RN) (Ω ∈ Rn , n, N ≥ 2) as

F(u, Ω) :=
∫
Ω

(
|Du|p(x) + a(x)|Du|q(x)

)
dx, q(x) ≥ p(x) > 1, a(x) ≥ 0,

where p(x), q(x) and a(x) are assumed to be Hölder continuous. They do not only have strongly non-uniform
ellipticity but also discontinuity of growth order at points where a(x) = 0. The above functional is provided
by the following type of functionals with variable exponent growth

u 7→
∫
g(x, Du)dx, λ|z|p(x) ≤ g(x, z) ≤ Λ(1 + |z|)p(x), Λ ≥ λ > 0,

which are called of p(x)-growth. These p(x)-growth functionals have been introduced by Zhikov [2] (in this
article α(x) is used as variable exponents) in the setting of Homogenization theory. He showed higher integra-
bility for minimizers and, on the other hand, he gave an example of discontinuous exponent p(x) for which
the Lavrentiev phenomenon occurs ([3, 4]).

Such functionals provide a useful prototype for describing the behaviour of strongly inhomogeneous
materials whose strengthening properties, connected to the exponent dominating the growth of the gradient
variable, signi�cantly change with the point. In [3], Zhikov pointed out the relationship between p(x)-growth
functionals and some physical problems including thermistor. As another application, the theory of elec-
trorheological materials and �uids is known. About these objects see, for example, [5–8].

These kind of functionals have been the object of intensive investigation over the last years, starting
with the inspiring papers by Marcellini [9–11], where he introduced so-called (p, q)- or nonstandard growth

*Corresponding Author: Maria Alessandra Ragusa, Dipartimento di Matematica e Informatica, Viale Andrea Doria, 6-95125
Catania, Italy,
RUDN University”, 6 Miklukho - Maklay St, Moscow, 117198, Russia E-mail:maragusa@dmi.unict.it
Atsushi Tachikawa, Department of Mathematics, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba,
278-8510, Japan, E-mail:tachikawa_atsushi@ma.noda.tus.ac.jp

https://doi.org/10.1515/anona-2020-0022


M.A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals | 711

functionals:

u 7→
∫
f (x, u, Du)dx, λ|z|p ≤ f (x, u, z) ≤ Λ(1 + |z|)q , q ≥ p ≥ 1, Λ ≥ λ > 0.

About general (p, q)-growth functionals, see for example [3, 4, 12–19] and the survey [20].
For the continuous variable exponent case, nowadays many results on the regularity for minimizer are

known, see [21–24]. Further results in this direction can be, for instance, found in [25–41] for partial regularity
results for p(x)-energy type functionals:

u 7→
∫ (

Aαβij (x, u)Dαui(x)Dβuj(x)
)p(x)

dx, Aαβij (x, u)ziαzjβ ≥ λ|z|
2

In 2015 a new class of functional so-called functionals of double phase are introduced by Colombo-
Mingione [1]. In the primary model they have in mind are

u 7→ H(u;Ω) :=
∫
H(x, Du)dx, H(x, z) := |z|p + a(x)|z|q ,

where p and q are constants with q ≥ p > 1 and a(·) is a Hölder continuous non-negative function. By
Colombo-Mingione [1, 42, 43] and Baroni-Colombo-Mingione [44–46] many sharp results are given about the
regularity of local minimizers of the functional de�ned as

u 7→ G(u;Ω) :=
∫
Ω

G(x, u, Du)dx, (1.1)

where G(x, u, z) : Ω × R × Rn → R is a Carathéodory function satisfying the following growth condition for
some constants Λ ≥ λ > 0 besides several natural assumptions:

λH(x, z) ≤ G(x, u, z) ≤ ΛH(x, z).

For the scalar valued case, in [46] regularity results are given comprehensively. Under the conditions

a(·) ∈ C0,α(Ω), α ∈ (0, 1] and q
p ≤ 1 + α

n , (1.2)

or
u ∈ L∞(Ω), a(·) ∈ C0,α(Ω), α ∈ (0, 1] and q

p ≤ 1 + α
p , (1.3)

they showed that a local minimizer of G de�ned as (1.1) is in the class C1,β for some β ∈ (0, 1).
For the scaler valued case, see also [47]. They proved Harnack’s inequality and the Hölde continuity for

quasiminimizer of the functional fo type ∫
φ(x, |Du|)dx,

where φ is the so-called Φ-function. We mention that Harnack’s inequality is not valid in the vector valued
cases which we are considering in the present paper.

On the other hand, for vector valued case, in [1], under the condition

a(·) ∈ C0,α(Ω), α ∈ (0, 1] and q
p < 1 + α

n , (1.4)

C1,β-regularity, for some β ∈ (0, 1), of local minimizers is given.
Zhikov has given in [3, 4] examples of functionals with discontinuous growth order for which Lavrentiev

phenomenon occurs. So, in general settings, we can not expect regularity of minimizers for such functionals
which change their growth order discontinuously. So, conditions (1.2), (1.3) and (1.4), which guarantee the
regularity of minimizers, are very signi�cant.

In this paperwe dealwith a typical type of functionals of double phasewith variable exponents and show
a regularity result for minimizers.
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In our opinion these results present new and interesting features from the point of view of regularity
theory.

Let Ω ⊂ Rn be a bounded domain, p(x), q(x) and a(x) functions on Ω satisfying

p, q ∈ C0,σ(Ω), q(x) ≥ p(x) ≥ p0 > 1, forall x ∈ Ω (1.5)

where p0 is a �xed constant strictly larger than one and

a ∈ C0,α(Ω), a(x) ≥ 0, (1.6)

for α, σ ∈ (0, 1]. Moreover, we assume that p(x) and q(x) satisfy

sup
x∈Ω

q(x)
p(x) < 1 + β

n , β = min{α, σ}, (1.7)

at every x ∈ Ω (compare these conditions with (1.2)). Let F : Ω ×RnN → [0,∞) be a function de�ned by

F(x, z) := |z|p(x) + a(x)|z|q(x). (1.8)

We consider the functional with double phase and variable exponents de�ned for u : Ω → RN and D b Ω as

F(u, D) =
∫
D

F(x, Du)dx. (1.9)

For a bounded open set Ω ⊂ Rn and a function p : Ω → [1, +∞), we de�ne Lp(x)(Ω;RN) and
W1,p(x)(Ω;RN) as follows:

Lp(x)(Ω;RN) := {u ∈ L1(Ω;RN) ;
∫
Ω

|u|p(x)dx < +∞}.

W1,p(x)(Ω;RN) := {u ∈ Lp(x) ∩W1,1(Ω;RN) ; Du ∈ Lp(x)(Ω;RnN)}.

In what follows we omit the target space RN . We also de�ne Lp(x)
loc (Ω) andW1,p(x)

loc (Ω) similarly. As mentioned
in [48], if p(x) is uniformly continuous and ∂Ω satis�es uniform cone property, then

W1,p(x)(Ω) = {u ∈ W1,1(Ω) ;Du ∈ Lp(x)(Ω)}.

Let us de�ne local minimizers of F as follows:

De�nition 1.1. A function u ∈ W1,1Ω) is called to be a local minimizer of F if F(x, Du) ∈ L1(Ω) and satis�es

F(u; suppφ) ≤ F(u + φ; suppφ),

for any φ ∈ W1,p(x)
loc (Ω) with compact support in Ω.

The main result of this paper is the following:

Theorem 1.2. Assume that the conditions (1.5), (1.6) and (1.7) are ful�lled. Let u ∈ W1,1(Ω)be a localminimizer
of F. Then u ∈ C1,γ

loc (Ω) for some γ ∈ (0, 1).

Remark 1.3 (About the symbols for Hölder spaces). If we follow the standard textbooks, Dacorogna [49],
Evans [50], Gilberg-Trudinger [51], etc., for k ∈ N, 0 < α ≤ 1, Ck,α(Ω) mean the subspaces of Ck(Ω) consist-
ing of functions whose k-th order partial derivatives are locally Hölder continuous. However, recently many au-
thors (especially ones who study regularity problems) write them as Ck,αloc (Ω), and they use Ck,α(Ω) for Ck,α(Ω̄)
(namely, for uniformly Hölder continuous cases). Anyway, with “loc" there is no doubt of misunderstanding. So,
in this paper we follow their usage for Hölder spaces.

In order to prove the above theorem, we employ a freezing argument; namely we consider a frozen functional
which is given by freezing the exponents, and compare a minimizer of the original functional under consid-
eration with that of frozen one.
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2 Preliminary results
In what follows, we use C as generic constants, which may change from line to line, but does not depend on
the crucial quantities. When we need to specify a constant, we use small letter c with index.

For double phase functional with constant exponents, namely for

H(u, D) :=
∫
D

H(x, Du)dx, H(x, z) = |z|p + a(x)|z|q , (2.1)

we prepare the following Sobolev-Poincaré inequality which is a slightly generalised version of [1, Theorem
1.6] due to Colombo-Mingione.

Theorem 2.1. Let a(x) ∈ C0,β(Ω) for some β ∈ (0, 1) and 1 < p < q constants satisfying

q
p < 1 + β

n ,

and let ω ∈ L∞(Rn) with ω ≥ 0 and
∫
BR ωdx = 1 for BR ⊂ Ω with R ∈ (0, 1). Then, there exists a constant C

depending only on n, p, q, [a]0,β , Rn‖ω‖L∞ and ‖Dw‖Lp(BR) and exponents d1 > 1 > d2 depending only on
n, p, q, β such that (∫

−
BR

[
H
(
x, u − 〈u〉ωR

)]d1

dx
) 1

d1

≤ C
(∫
−
BR

[H (x, Du)]d2 dx
) 1

d2
(2.2)

holds whenever u ∈ W1,p(BR), where
〈u〉ω :=

∫
BR

u(x)ω(x)dx.

Note that for the special choice ω = |BR|−1χBR we have

〈u〉ω =
∫
−
BR
u(x)dx.

Proof. We can proceed exactly as in the proof of [1, Theorem 1.6] only replacing (3.11) of [1] by

|u(x) − 〈u〉ω|
R ≤ CR

∫
BR

|Du(y)|
|x − y|n−1 dy,

which is shown by [52, Lemma 1.50] (see also the proof of [53, Theorem 7]).

From the above theorem, we have the following corollary.

Corollary 2.2. Assume that all conditions of Theorem 2.1 are satis�ed, and let D be a subset of BR with pos-
itive measure. Then, there exists a constant C depending only on n, p, q, [a]0,β , Rn/|D| and ‖Du‖Lp(BR) and
exponents d1 > 1 > d2 depending only on n, p, q, β such that the following inequality holds whenever
u ∈ W1,p(x)(BR) sati�es u ≡ 0 on D:(∫

−
BR

[
H
(
x, uR

)]d1
dx
) 1

d1
≤ C
(∫
−
BR

[H (x, Du)]d2 dx
) 1

d2
. (2.3)

Proof. Choosing ω so that

ω(x) =

0 x ∈ BR \ D
1
|D| x ∈ D

and applying Theorem 2.1, we get the assertion.
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Remark 2.3. In [1, Theorem6.1], and therefore also in theabove theoremandcorollary, the exponent d2 ∈ (0, 1)
is chosen so that the following conditions hold:

q
p < 1 + βd2

n (2.4)

p
q(n − 1) + 1 > 1

d2
. (2.5)

In fact, in [1], they choose a constant γ ∈ (1, p) so that

q
p < 1 + α

γn and p + q(n − 1)
γq(n − 1) > 1,

(see [1, (3.6), (3.14)]), and put d2 = 1/γ. Let us mention the that if d2 satis�es (2.4) and (2.5) for some q = q0
and p = p0, then the same d2 satis�es these inequalities for any q and p with q/p ≤ q0/p0.

For any y ∈ Ω and R > 0 with BR(x) ⊂ Ω let us put

p2(y, R) := sup
BR(y)

p(x), p1(y, R) := inf
BR(y)

p(x), (2.6)

q2(y, R) := sup
BR(y)

q(x), q1(y, R) := inf
BR(y)

q(x). (2.7)

We prove interior higher integrability of the gradient of a minimizer, similar results are contained in [54].

Proposition 2.4. Let u ∈ W1,p(x)
loc (Ω)bea localminimizer ofF. Then, for any compact subset K ⊂ Ω, F(x, Du) ∈

L1+δ0 (K) and there exists a positive constant δ0 and C depending only on the given data and K such that(∫
−
BR/2(y)

F(x, Du)1+δ0dx
) 1

1+δ0

≤ C + C
∫
−
BR(y)

F(x, Du)dx (2.8)

holds for any BR(y) b K.

Proof. Let K ⊂ Ω be a compact subset and R0 ∈ (0, dist(K, ∂Ω)) a constant such that

0 < Rσ0 ≤
p0

21+σ[q]0,σ

(
1 + β

n − sup
x∈Ω

q(x)
p(x)

)
. (2.9)

For any x0 ∈
◦
K, put

κ0 := 1
4

(
1 + β

n − sup
x∈BR(x0)

q(x)
p(x)

)
> 0. (2.10)

Then, letting x− ∈ B̄R0 (x0) be a such that p(x−) = p1(x0, R0), we have

q2(x0, R0)
p1(x0, R0) =

q(x−) +
(
q2(x0, R0) − q(x−)

)
p1(x0, R0)

≤ sup
x∈BR0 (x0)

q(x)
p(x) + 2σ[q]0,σRσ0

p0

≤ sup
x∈BR0 (x0)

q(x)
p(x) + 1

2

(
1 + β

n − sup
x∈BR0 (x0)

q(x)
p(x)

)

= 1
2

(
1 + β

n + sup
x∈BR0 (x0)

q(x)
p(x)

)
≤ 1 + β

n − 2κ0 (2.11)

The above estimate (2.11) implies that

q2(x0, R0) < (p1(x0, R0))* = np1(x0, R0)
n − p1(x0, R0) . (2.12)
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For any BR(y) ⊂ BR0 (x0) with 0 < R < 1, and 0 < t ≤ s ≤ R, let η be a cut-o� function such that η ≡ 1 on
Bt(y), η ≡ 0 outside Bs(y) and |Dη| ≤ 2

s−t . Put w := u − η(u − uR), where uR =
∫
−BR(y)udx. Since

Dw = (1 − η)Du + (u − uR)Dη,

we have

F(x, Dw) ≤ c0
[(

(1 − η)|Du|
)p(x) + (|u − uR||Dη|)p(x) + a(x)

(
(1 − η)|Du|

)q(x) + (|u − uR||Dη|)q(x) ],
where c0 is a constant depending only on maxK q(x). On the other hand, since F(x, Du) ∈ L1, we have

u ∈ W1,p(x) ⊂ W1,p1(x0 ,R0) ⊂ Lp1(x0 ,R0)* ⊂ Lp2(x0 ,R0) ⊂ Lq(x),

on BR0 (x0). Thus, mentioning also that w = u outside Bs(y), we see that F(x, Dw) ∈ L1(K), namely w is an
admissible function. In the following part of the proof, let us abbreviate

pi := pi(y, R), qi := qi(y, R) (i = 1, 2).

Then, we have∫
Bs(y)

F(x, Du)dx ≤
∫

Bs(y)

F(x, Dw)dx ≤ c0

∫
Bs(y)

(1 − η)p(x)(|Du|p(x) + a(x)|Du|q(x))dx
+ c0

∫
Bs(y)

[∣∣∣u − uRs − t

∣∣∣p(x)
+ a(x)

∣∣∣u − uRs − t

∣∣∣q(x)
]
dx

≤ c0

∫
Bs(y)\Bt(y)

F(x, Du)dx + c0
(s − t)p2

∫
Bs(y)

|u − uR|p(x)

+ c0
(s − t)q2

∫
Bs(y)

a(x)|u − uR|q(x)dx (2.13)

We can use hole-�lling method. Add c0
∫
Bs(y)\Bt(y) F(x, Du)dx to the both side and divide them by c0 + 1, then

we get

∫
Bt(y)

F(x, Du)dx ≤ c0
c0 + 1

 ∫
Bs(y)

F(x, Du)dx + 1
(s − t)p2

∫
Bs(y)

|u − uR|p(x)dx + 1
(s − t)q2

∫
Bs(y)

a(x)|u − uR|q(x)dx

 .

(2.14)

Using an iteration lemma [55, Lemma 6.1], we see, for some constant C = C(c0, p2, q2), that∫
Bt(y)

F(x, Du)dx ≤ C
(s − t)p2

∫
Bs(y)

|u − uR|p(x) + C
(s − t)q2

∫
Bs(y)

a(x)|u − uR|q(x)dx.

Putting s = R and t = R/2, we have∫
B R

2
(y)

F(x, Du)dx ≤ C
Rp2

∫
BR(y)

|u − uR|p(x) + C
Rq2

∫
BR(y)

a(x)|u − uR|q(x)dx

≤ CRp1−p2

∫
BR(y)

∣∣∣u − uRR

∣∣∣p(x)
dx + CRq1−q2

∫
BR(y)

a(x)
∣∣∣u − uRR

∣∣∣q(x)
dx

≤ CRp1−p2

∫
BR(y)

(
1 +
∣∣∣u − uRR

∣∣∣)p2
dx + CRq1−q2

∫
BR(y)

(
1 + a(x)

1
q(x)

∣∣∣u − uRR

∣∣∣)q2
dx. (2.15)
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Since Rp1−p2 and Rq1−q2 are bounded because of the Hölder continuity of exponents p(x) and q(x), putting

ã(x) :=
(
a(x)

) q2
q(x) ,

from (2.15), we obtain the estimate∫
B R

2
(y)

F(x, Du)dx ≤ CRn + CRn
∫
−
BR(y)

(∣∣∣u − uRR

∣∣∣p2
dx + ã(x)

∣∣∣u − uRR

∣∣∣q2
)
dx

=: I + II. (2.16)

In order to get the boundedness of Rp1−p2 and Rq1−q2 the so-called “log-Hölder continuity" (see [56, section
4.1]) is su�cient. On the other hand by virtue of the Hölder continuity of q(·), we have that ã ∈ C0,β (β =
min{α, σ}). Let d2 ∈ (0, 1) be a constant satisfying (2.4) and (2.5) for β = min{α, σ}, q = q2(x0, R0) and
p = p1(x0, R0). Then, for any BR(y) ⊂ BR0 (x0), this d2 satisfy (2.4) and (2.5)with q = q2(y, R) and p = p2(y, R).

By Theorem 2.1, we can estimate II as follows.

II ≤ CRn
(∫
−
BR(y)

(
|Du|p2 + ã(x)|Du|q2

)d2 dx
) 1

d2

≤ CRn
(∫
−
BR(y)
|Du|d2p2dx

) 1
d2

+ CRn
(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)d2q2
dx
) 1

d2
. (2.17)

Asmentioned above, (2.17) holds for for any BR(y) ⊂ BR0 (x0) with same d2. Now, take R > 0 su�ciently small
so that

d2p2(y, R) < p1(y, R) and d2q2(y, R) < q1(y, R),

and let θ ∈ (d2, 1) be a constant satisfying

d2p2(y, R) < θp1(y, R) and d2q2(y, R) < θq1(y, R). (2.18)

Then, using Hölder inequality, we can estimate the �rst term of the right hand side of (2.17) as follows.

(∫
−
BR(y)
|Du|d2p2dx

) 1
d2
≤
(∫
−
BR(y)
|Du|θp1dx

) p2
θp1

=
(∫
−
BR(y)
|Du|θp1dx

) p2−p1
θp1

·
(∫
−
BR(y)
|Du|θp1dx

) 1
θ

≤
(∫
−
BR(y)

(1 + |Du|p(x))dx
) p2−p1

θp1
·
(∫
−
BR(y)

(
1 + |Du|θp1

)
dx
) 1

θ

.

(2.19)

Since, ∫
BR(y)

|Du|p(x)dx ≤ F(u, BR(y)) ≤ F(u, K)

and u locallyminimizesF,
∫
BR(y) |Du|

p(x)dx is bounded. On the other hand, asmentioned after (2.15), R−(p2−p1)

is bounded. So, there exists a constant c1 = c1(F(u, K), p(x), d2, n, θ)(∫
−
BR(y)
|Du|p(x)dx

) p2−p1
θp1

≤ (ωnRn)
−(p2−p1)
θp1 F(u, K)

p2−p1
θp1

≤ c1(F(u, K), p(x), d2, n, θ),

where ωn denotes the volume of a n-dimensional unit ball. Thus, from (2.19) we obtain for some positive
constant c2 = c2(c1, θ) (∫

−
BR(y)
|Du|d2p2dx

) 1
d2
≤ c2 + c2

(∫
−
BR(y)
|Du|θp(x)dx

) 1
θ

. (2.20)
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Similarly, we can estimate the second term of the left hand side of (2.17) as follows.(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)d2q2
dx
) 1

d2
≤
(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)θq1
dx
) q2

θq1

≤
(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)θq1
dx
) q2−q1

θq1
(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)θq1
dx
) 1

θ

≤
(∫
−
BR(y)

(
1 +
(
a(x)

1
q(x) |Du|

)q(x)
)
dx
) q2−q1

θq1
(∫
−
BR(y)

(
1 +
(
a(x)

1
q(x) |Du|

)θq(x)
)
dx
) 1

θ

. (2.21)

As above, using local minimality of u and the fact that R−(q2−q1) is bounded, we have for a positive constant
c3 = c3(F(u, K), q(x), d2, n, θ)(∫

−
BR(y)

(
a(x)

1
q(x) |Du|

)d2q2
dx
) q2−q1

θq1
≤ c3(F(u, K), q(x), d2, n, θ). (2.22)

Thus, we obtain for some positive constant c4 = c4(c3, θ)(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)d2q2
dx
) 1

d2
≤ c4 + c4

(∫
−
BR(y)

(
a(x)

1
q(x) |Du|

)θq(x)
dx
) 1

θ

. (2.23)

Combining (2.16), (2.17), (2.20) and (2.23), we see that there exists a constant C depending on the given data
and F(u, K) such that ∫

−
B R

2
(y)
F(x, Du)dx ≤ C + C

(∫
−
BR(y)

F(x, Du)θdx
) 1

θ

(2.24)

for any BR(y) ⊂ BR0 ⊂ K b Ω. Now, by virtue of the reverse Hölder inequality with increasing domain due to
Giaquinta-Modica [57], we get the assertion.

For δ0 determined in Proposition 2.4, in what follows, we always take R > 0 su�ciently small so that(
1 + δ0

2

)
p2(y, R) ≤ (1 + δ0)p1(y, R) and

(
1 + δ0

2

)
q2(y, R) ≤ (1 + δ0)q1(y, R). (2.25)

We need also higher integrability results on the neighborhood of the boundary. Let us use the following
notation: for T > 0 we put

BT := BT(0), B+
T := {x ∈ Rn ; |x| < T, xn > 0},

ΓT := {x ∈ Rn ; |x| < T, xn = 0},

We say “f = g on ΓT" when for any η ∈ C∞0 (BT) we have (f − g)η ∈ W1,1
0 (B+

T). For y ∈ BT , we write

Ωr := Br(y) ∩ B+
T .

Then,we have the following proposition on the higher integrability near the boundary, independently proved
in [58, Lemma 5] , see also [59, Lemma 5] for the manifold constrained case.

Proposition 2.5. Let a(x), q and p satisfy the same conditions in Theorem 2.1 and let for A ⊂ B+
T

H(w, A) :=
∫
A

H(x, w)dx, H(x, z) := |z|p + a(x)|z|q .

u ∈ W1,p(B+
T) be a given function with∫

B+
T

(
|Du|p + a(x)|Du|q

)1+δ0 dx < ∞,
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for some δ0 >. Assume that v ∈ W1,p(B+(T)) be a local minimizer ofH in the class

{w ∈ W1,p(B+
T) ; u = w on ΓT}

Then, for any S ∈ (0, T), there exists a constants δ ∈ (0, δ0)and C > 0 such that for any y ∈ B+
S and R ∈ (0, T−S)

we have (∫
−
ΩR/2

(
H(x, Dv)

)1+δ dx
) 1

1+δ

≤ C
∫
−
ΩR
H(x, Dv)dx + C

(∫
−
ΩR

(
H(x, Du)

)1+δ dx
) 1

1+δ

.

Proof. For convenience, we extend u, v, Du, Dv to be zero in BT \ B+
T . Of course, because extended u, v may

have discontinuity on ΓT , they are not always inW1,p
loc (BT), and therefore Du, Dv do not necessarily coincide

with distributional derivatives of u, v on B(T). On the other hand, since u = v on Γ(T), u − v is in the class
W1,p(B(S)) and Du − Dv can be regarded as the weak derivatives of u − v on B(S) for any S < T.

Let R be a positive constant satisfying R ≤ (T − S)/2. For x0 ∈ B+
S, we treat the two cases xn0 ≤ 3

4R and
xn0 > 3

4R separately.

Case 1. Suppose that xn0 ≤ 3
4R. Take radii s, t so that 0 < R/2 ≤ t < s ≤ R and choose a η ∈ C∞0 (BT) such that

0 ≤ η ≤ 1, η ≡ 1 on Bt, supp η ⊂ Bs and |Dη| ≤ 2/(s − t). De�ning

φ := η(v − u),

we see that φ ∈ W1,1
0 (B+

T) with supp φ ⊂ Bs, and that

D(v − φ) = (1 − η)Dv − (v − u)Dη + ηDu.

Then, by virtue of the minimality of v, for a positive constant c4 depending only on q, we have∫
Ωt

H(x, Dv)dx ≤
∫
Ωs

H(x, Dv)dx ≤
∫
Ωs

H(x, D(v − φ))dx

=
∫
Ωs

(
|D(v − φ)|p + a(x)|D(v − φ)|q

)
dx

≤ c4

∫
Ωs\Ωt

(
|Dv|p + a(x)|Dv|q

)
dx + c4

∫
Ωs

(
|Du|p + a(x)|Du|q

)
dx

+ c4

∫
Ωs

((
2
s − t

)p
|v − u|p + a(x)

(
2
s − t

)q
|v − u|q

)
dx

≤ c4

∫
Ωs\Ωt

(
|Dv|p + a(x)|Dv|q

)
dx + c4

∫
Ωs

(
|Du|p + a(x)|Du|q

)
dx

+ c4

(
2
s − t

)p ∫
Ωs

|v − u|pdx + c4

(
2
s − t

)q ∫
Ωs

a(x)|v − u|qdx.

Now, we use the hole �lling method as in the proof of Proposition 2.4. Namely, adding

c4

∫
Ωt

(
|Dv|p + a(x)|Dv|q

)
dx

and dividing both side by c4 + 1, we obtain

∫
Ωt

H(x, Dv)dx ≤ c4
c4 + 1

∫
Ωs

H(x, Dv)dx +
∫
Ωs

H(x, Du)dx + 1
(s − t)p

∫
Ωs

|v − u|pdx + 1
(s − t)q

∫
Ωs

a(x)|v − u|qdx

 ,
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Using the iteration lemma [55, Lemma 6.1], we get for some constant C = C(c4, p, q)∫
Ωt

H(x, Dv)dx ≤ C
∫
Ωs

H(x, Du)dx + C
(s − t)p

∫
Ωs

|v − u|pdx + C
(s − t)q

∫
Ωs

a(x)|v − u|qdx.

Putting t = R/2 and s = R, we have∫
ΩR/2

H(x, Dv)dx ≤ C
∫
ΩR

H
(
x, v − uR

)
dx + C

∫
ΩR

H(x, Du)dx.

Let us now consider the mean integral in all the terms, we obtain∫
−
ΩR/2

H(x, Dv)dx ≤ C
∫
−
ΩR
H(x, Du)dx + C

∫
−
ΩR
H
(
x, v − uR

)
dx.

Since we are assuming that xn0 ≤ 3
4R we can apply Corollary 2.2 with a constant independent on R for the last

term in the right hand side and get∫
−
ΩR/2

H(x, Dv)dx ≤ C
∫
−
ΩR
H(x, Du)dx + C

(∫
−
ΩR

(H(x, D(v − u)))d2dx
) 1

d2
.

Taking into consideration that d2 < 1 we share in the last term Dv and Du, apply Hölder inequality for the
integral of H(x, Du)d2 , and obtain∫

−
ΩR/2

H(x, Dv)dx ≤ C
∫
−
ΩR
H(x, Du)dx + C

(∫
−
ΩR

(
H(x, Dv)

)d2 dx
) 1

d2
. (2.26)

Case 2. Let us deal with the case that xn0 > 3
4R. In this case, since B3R/4(x0) b B+

T , we can proceed as in [1, 9.
Proof of Theorem 1.1:(1.8)], slightly modifying the radii, to get∫

−
ΩR/2

H(x, Dv)dx =
∫
−
BR/2

H(x, Dv)dx

≤ C
(∫
−
B3R/4

(
H(x, Dv)

)d2 dx
) 1

d2

≤ C′
(∫
−
ΩR

(
H(x, Dv)

)d2 dx
) 1

d2
. (2.27)

Thus, we see that (2.26) holds for every 0 < R < (S − T)/2. Now, the reverse Hölder inequality allows us
to obtain (∫

−
ΩR

(
H(x, Dv)

)1+δ dx
) 1

1+δ

≤ C
∫
−
Ω R

2

H(x, Dv)dx + C
(∫
−
ΩR

(
H(x, Du)

)1+δ dx
) 1

1+δ

.

By virtue of [1, Theorem1.1] andProposition 2.5,wehave the followingglobal higher integrability for functions
which minimizeH with Dirichlet boundary condition.

Corollary 2.6. Let a(x), q and p satisfy the same conditions in Theorem 2.1 and δ2 ∈ (0, 1) be a some constant.
Assume that u ∈ W1,(1+δ1)p(BR(y)) be a given function with∫

BR(y)

H(x, Du)1+δ1dx :=
∫

BR(y)

(
|Du|p + a(x)|Dv|q

)1+δ1 dx ≤ C

for some constant C > 0. Let v ∈ W1,p(BR(y)) be a minimizer of

H(w, BR(y) :=
∫

BR(y)

H(x, Dw)dx
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in the class
u + W1,p

0 (BR(y)) = {w ∈ W1,p(BR(y)) ; u − w ∈ W1,p
0 (BR(x0))}.

Then, for some δ2 ∈ (0, δ1) and for any δ3 ∈ (0, δ2), we have H(x, Dv) ∈ L1+δ(BR(y)) and∫
BR

(
H(x, Dv)

)1+δ3 dx ≤ C
∫
BR

(
H(x, Du)

)1+δ3 dx. (2.28)

Proof. From [1, Theorem 1.1], Proposition 2.5 and covering argument, we have(∫
−
BR

(
H(x, Dv)

)1+δ dx
) 1

1+δ

≤ C
∫
−
BR
H(x, Dv)dx + C

(∫
−
BR

(
H(x, Du)

)1+δ dx
) 1

1+δ

and then, by the minimality of v,(∫
−
BR

(
H(x, Dv)

)1+δ dx
) 1

1+δ

≤ C
∫
−
BR
H(x, Du)dx + C

(∫
−
BR

(
H(x, Du)

)1+δ dx
) 1

1+δ

Once againweuse theHölder inequality for the �rst termof the right-hand side that gives us the assertion.

3 Proof of the main theorem
In this section we prove Theorem 1.2. We employ the so-called direct approach, namely we consider a frozen
functional for which the regularity theory has been established in [1] and compare a local minimizer of the
frozen functional with u under consideration.

For a constant p > 1, let us de�ne the auxiliary vector �eld Vp : Rn → Rn as

Vp(z) := |z|p−2z. (3.1)

Let mention that Vp satis�es

|Vp(z)|2 = |z|p and |Vp(z1) − Vp(z2)| ≈ (|z1| + |z2|)
p−2

2 |z1 − z2|. (3.2)

Proof of Theorem 1.2. We divide the proof into two parts. We prove the Hölder continuity of u in Part 1, and
of the gradient Du in Part 2.

Part 1. Let K and BR0 (x0), are as in the Proposition 2.4. For BR(y) ⊂ B2R(y) ⊂ BR0 (x0), let us de�ne pi and qi
as in the Proposition 2.4. We de�ne a frozen functional F0 as

F0(x, z) := |z|p2 + a(x)
q2
q(x) |z|q2 (3.3)

F0(w, D) =
∫

BR(y)

F0(x, Dw)dx. (3.4)

In what follows, let us abbreviate ã(x) =
(
a(x)

) q2
q(x) as in the proof of Proposition 2.4.

Let v ∈ Wp2 (BR(y)) be a minimizer of F0 in the class

u + Wp2
0 (BR(y)) := {w ∈ Wp2 (BR(y)) ; w − u ∈ Wp2

0 (BR(y))}.

Then, by [1, Theorem1.3], for any γ ∈ (0, 1) there exists a constant C > 0 dependent on
n, p2, q2, λ, Λ, [ã]0,β , ‖ã‖∞, ‖Dv‖Lp2 (BR(y)) and γ such that∫

Bρ(y)

F0(x, Dv)dx ≤ C
( ρ
R

)n−γ ∫
BR(y)

F0(x, Dv)dx ≤ C
( ρ
R

)n−γ ∫
BR(y)

F0(x, Du)dx, (3.5)
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where we used the minimality of v. Here, we mention that by the coercivity of the functional and the mini-
mality of v we have the following:

‖Dv‖p2
Lp2 (BR(y)) ≤ F0(v, BR(y)) ≤ F0(u, BR(y)). (3.6)

On the other hand, since we are taking R > 0 su�ciently small so that (2.25) holds, there exists a constant
C(p2, q2) > 0 such that

F0(x, ξ ) ≤ C(p2, q2)(1 + F(x, ξ ))1+δ0 (3.7)

holds for any (x, ξ ) ∈ BR(y) × RnN . Now, by virtue of above 2 estimates and Proposition 2.4, we can see, for a
constant C > 0 depending only on the given data on the functional, that

‖Dv‖p2
Lp2 (BR(y)) ≤ F0(v, BR(y)) ≤ C

(
1 + F(u, K)

)1+δ . (3.8)

Because of the local minimality of u, the last quantity is �nite. Consequently, we can regard the constant in
(3.5) is a constant depending only on given data and F(u, K).

For further convenience, let us mention that from (3.5), is nothing to see that∫
Bρ(y)

(1 + F0(x, Dv))dx ≤ C
( ρ
R

)n−γ ∫
BR(y)

(1 + F0(x, Dv))dx

≤ C
( ρ
R

)n−γ ∫
BR(y)

(1 + F0(x, Du))dx. (3.9)

Let us compare Du and Dv. Mentioning the elementary equality for a twice di�erentiable function

f (1) − f (0) = f ′(0) +
1∫

0

(1 − t)f ′′(t)dt,

as [21, (9)], and using the fact that v satis�es the Euler-Lagrange equation of F0, we can see that

F0(u) − F0(v) =
∫

BR(y)

d
dt F0(x, tDu − (1 − t)Dv)

∣∣
t=0dx

+
∫

BR(y)

dx
1∫

0

(1 − t) d
2

dt2 F0(x, tDu + (1 − t)Dv)dt

=
∫

BR(y)

DzF0(x, Dv)(Du − Dv)

+
∫

BR(y)

dx
1∫

0

(1 − t)DzDzF0(x, tDu + (1 − t)Dv)(Du − Dv)(Du − Dv)dt

≥ C
∫

BR(y)

dx
1∫

0

(1 − t)
[
|tDu + (1 − t)Dv|p2−2

+ã(x)|tDu + (1 − t)Dv|q2−2
]
|Du − Dv|2dt

≥ C
∫

BR(y)

(
|Du|p2−2 + |Dv|p2−2

)
|Du − Dv|2dx

+
∫

BR(y)

ã(x)
(
|Du|q2−2 + |Dv|q2−2

)
|Du − Dv|2dx. (3.10)
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On the other hand, by the minimality of v, we have

F0(u) − F0(v) ≤ F0(u) − F(u, BR(y)) + F(v, BR(y)) − F0(v). (3.11)

Since we are assuming p(x), q(x) ∈ C0,σ, using the inequality [21, (7)], we can see that, for any ε ∈ (0, 1),
there exists a positive constant C such that

F0(u) − F(u, BR(y)) ≤
∫

BR(y)

[(
|Du|p2 − |Du|p(x)

)
+
((
a(x)

1
q(x) |Du|

)q2
−
(
a(x)

1
q(x) |Du|

)q(x)
)]

dx

≤ C(ε)Rσ
∫

BR(y)

(
1 + |Du|(1+ε)p2

)
dx

+ C(ε)Rσ
∫

BR(y)

(
1 +
(
a(x)

1
q(x) |Du|

)(1+ε)q2
)
dx

≤ CRn+σ + C(ε)Rσ
∫

BR(y)

(
1 + |Du|p2(1+ε) +

(
1 + ã(x)|Du|q2

)1+ε
)
dx

≤ CRn+σ + C(ε)Rσ
∫

BR(y)

F0(x, Du)1+εdx (3.12)

Similarly we have

F(v, BR(y)) − F0(v) ≤
∫

BR(y)

[(
|Dv|p2 − |Dv|p(x)

)
+
((
a(x)

1
q(x) |Dv|

)q2
−
(
a(x)

1
q(x) |Dv|

)q(x)
)]

dx

≤C(ε)Rσ
∫

BR(y)

(
1 + |Dv|(1+ε)p2

)
dx

+ C(ε)Rσ
∫

BR(y)

(
1 +
(
a(x)

1
q(x) |Dv|

)(1+ε)q2
)
dx

≤ CRn+σ + C(ε)Rσ
∫

BR(y)

(
1 + |Dv|p2(1+ε) +

(
1 + ã(x)|Dv|q2

)1+ε
)
dx

≤ CRn+σ + C(ε)Rσ
∫

BR(y)

F0(x, Dv)1+εdx. (3.13)

Now, for δ0 of Proposition 2.4, choose δ3 > 0 so that (2.28) of Corollary 2.6 holds, and let us take ε so that
ε ∈ (0, min{δ0/2, δ3}/2). Since we are choosing R so that (2.25) holds, we have

F0(x, ·)1+ε ≤ (1 + F0(x, ·))1+min{δ0/2,δ3} ≤ C(1 + F(x, ·))1+δ0 . (3.14)

By Proposition 2.4 and (3.14), we deduce from (3.12) that

F0(u) − F(u, BR(y)) ≤ CRn+σ + C(ε)Rσ
∫

BR(y)

(
1 + F(x, Du)

)1+δ0 dx

≤ CRn+σ + CRσ
∫

BR(y)

F(x, Du)1+δ0dx

≤ CRn+σ + CRσ−nε

 ∫
B2R(y)

F(x, Du)dx


1+δ0

≤ CRn+σ + CRσ−nε
∫

B2R(y)

F(x, Du)dx, (3.15)
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where we used the fact that ∫
B2R(y)

F(x, Du)dx ≤
∫
K

F(x, Du)dx ≤ M0

for some constant M0. The existence of M0 guaranteed by the local minimality of u.
For (3.13) we use Proposition 2.6, Proposition 2.4 and (3.14), to get

F(v, BR(y)) − F0(v) ≤ CRn+σ + C(ε)Rσ
∫

BR(y)

F0(x, Du)1+εdx

≤ CRn+σ + CRσ−nε
∫

B2R(y)

F(x, Du)dx. (3.16)

On the other hand, by the de�nition of F0, we have

F(x, Du) ≤ C
(

1 + F0(x, Du)
)
.

So we have, combining (3.10), (3.11), (3.15) and (3.16), that∫
BR(y)

(
|Du|p2−2 + |Dv|p2−2

)
|Du − Dv|2dx +

∫
BR(y)

ã(x)
(
|Du|q2−2 + |Dv|q2−2

)
|Du − Dv|2dx

≤ F0(u) − F0(v)

≤ CRn+σ + CRσ−nε
∫

B2R(y)

(1 + F0(x, Du))dx. (3.17)

By virtue of (3.2) and (3.9), we can see that∫
Bρ(y)

(1 + F0(x, Du))dx =
∫

Bρ(y)

(1 + F0(x, Dv))dx +
∫

Bρ(y)

(
F0(x, Du) − F0(x, Dv)

)
dx

≤ C
( ρ
R

)n−γ ∫
B(y)

(1 + F0(x, Dv))dx

+
∫

Bρ(y)

[
|Vp2 (Du)|2 + ã(x)|Vq2 (Du)|2 −

(
|Vp2 (Dv)|2 + ã(x)|Vq2 (Dv)|2

)]
dx

≤ C
( ρ
R

)n−γ ∫
B(y)

(1 + F0(x, Dv))dx

+
∫

BR(y)

[(
|Vp2 (Du)|2 − |Vp2 (Dv)|2

)
+ ã(x)

(
|Vq2 (Du)|2 − |Vq2 (Dv)|2

)]
dx

≤ C
( ρ
R

)n−γ ∫
B(y)

(1 + F0(x, Dv))dx

+
∫

BR(y)

|Vp2 (Du) − Vp2 (Dv)|2dx +
∫

BR(y)

ã(x)|Vq2 (Du) − Vq2 (Dv)|2dx

≤ C
( ρ
R

)n−γ ∫
B(y)

(1 + F0(x, Dv))dx

+
∫

BR(y)

(
|Du|p2−2 + |Dv|p2−2

)
|Du − Dv|2dx

+
∫

BR(y)

ã(x)
(
|Du|q2−2 + |Dv|q2−2

)
|Du − Dv|2dx
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≤ C
( ρ
R

)n−γ ∫
BR(y)

(1 + F0(x, Dv))dx

+ CRn+σ + CRσ−nε
∫

B2R(y)

(1 + F0(x, Du))dx

≤ C
[( ρ
R

)n−γ
+ Rσ−nε

] ∫
B2R(y)

(1 + F0(x, Du))dx + CRn+σ . (3.18)

Using well-known lemma (see for example [60, Lemma 5.13]), for su�ciently small R > 0, we can see that for
any γ′ ∈ (γ, 1) there exists a constant C depending given data and ζ such that∫

Bρ(y)

F0(x, Du)dx ≤ C
( ρ
R

)n−γ′ ∫
B2R(y)

F0(x, Du)dx + Cρn−γ
′

(3.19)

hold for any ρ ∈ (0, R). Now, since (3.9) holds for any γ ∈ (0, 1), we can choose γ′ ∈ (0, 1) arbitrarily in (3.19).
On the other hand, since we are supposing that p(x) ≥ p0 > 1, for any ζ ∈ (0, 1), choosing γ′ ∈ (0, 1) so that
γ′ ≤ p0(1 − ζ ), we see that there exists a positive constant C dependent on the given data, K b Ω and F(u, K)
such that ∫

Bρ(y)

|Du|p0dx ≤ Cρn−p0(1−ζ )

holds for any Bρ(y) with 4ρ ≤ dist(K, ∂Ω). So, we conclude that u ∈ C0,ζ
loc (Ω) for any ζ ∈ (0, 1) by virtue of

Morrey’s theorem.

Part 2.Now,we are going to show theHölder continuity of the gradient Du. For y ∈
◦
K let R1 ∈ (0, R0) be a con-

stant such that BR1 (y) ⊂ K, and for 0 < R < R1/4 let v be as in Part 1. Then, by the estimate given by Colombo-
Mingione at [1, p.484, l.-6], we see that there exist constants C > 0, dependent on n, p2, q2, λ, Λ, ‖ã‖∞,
dist(K, ∂Ω), F0(v, BR(y)) and α̃ ∈ (0, 1)∫

−
Bρ(y)
|Dv − (Dv)ρ|p2dx ≤ Cρ

α̃β
64n , (3.20)

holds for any ρ ≤ R/2. Here, as in Part 1, let usmention thatF0(v, BR(y)) can be controlled byF(u, K) as (3.8).
So, we can choose the above constant in (3.20) to be dependent only on the given data of the functional, the
local minimizer u under consideration and K.

In what follows, let us abbreviate
ᾱ := α̃β

64n .

By virtue of (3.20), for ρ and R as above, we get

∫
Bρ(y)

|Du − (Du)ρ|p2dx ≤ C
∫

Bρ(y)

|Du − (Dv)ρ|p2dx ≤ C

 ∫
Bρ(y)

∣∣Dv − (Dv)ρ
∣∣p2 dx + C

∫
Bρ(y)

|Du − Dv|p2 dx


≤ Cρn+ᾱ + C

∫
BR(y)

|Du − Dv|p2 dx. (3.21)

For the case that p2 ≥ 2, since there exists a constant such that

|z1 − z2|p2 ≤ C
(
|z1|p2−2 + |z2|p2−2

)
|z1 − z2|2

for any z1, z2 ∈ Rn, using (3.17), we can estimate the last term of the right hand side of (3.21) as∫
BR(y)

|Du − Dv|p2dx ≤ CRn+σ + CRσ−nε
∫

B2R(y)

F0(x, Du)dx. (3.22)
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We use (3.19) replacing ρ by 2R and R by R0 to see that∫
B2R(y)

F0(x, Du)dx ≤ CRn−ζRζ0
∫
−
BR0

F0(x, Du)dx + CRn−ζ .

Since R0 is determined in the beginning of the proof, we can regard Rζ0
∫
−BR0

F0(x, Du)dx as a constant. So, we
get ∫

B2R(y)

F0(x, Du)dx ≤ CRn−ζ . (3.23)

By (3.22) and (3.23), we obtain∫
BR(y)

|Du − Dv|p2dx ≤ CRn+σ + CRn−ζ+σ−nε ≤ CRn−ζ+σ−nε . (3.24)

When 1 < p2 < 2, using Hölder’s inequality, (3.2) and (3.17), we can see that∫
BR(y)

|Du − Dv|p2dx ≤ C
∫

BR(y)

∣∣Vp2 (Du) − Vp2 (Dv)
∣∣p2 (|Du| + |Dv|)

p2(2−p2)
2 dx

≤ C

 ∫
BR(y)

∣∣Vp2 (Du) − Vp2 (Dv)
∣∣2 dx


p2
2
 ∫
BR(y)

(|Du| + |Dv|)
p2
2 dx


2−p2

2

≤

 ∫
BR(y)

(|Du| + |Dv|)p2−2|Du − Dv|2dx


p2  ∫

BR(y)

F0(x, Du)dx


2−p2

2

≤

CRn+σ + CRσ−nε
∫

B2R(y)

F0(x, Du)dx


p2
2
 ∫
B2R(y)

F0(x, Du)dx


2−p2

2

≤ CR
(n+σ)p2

2

 ∫
B2R(y)

F0(x, Du)dx


2−p2

2

+ CR
(σ−nε)p2

2

∫
B2R(y)

F0(x, Du)dx. (3.25)

By (3.25) and (3.23), we obtain∫
BR(y)

|Du − Dv|p2dx ≤ CR
p2(n+σ)

2 R
(2−p2)(n−ζ )

2 + CR
(σ−nε)p2

2 Rn−ζ

= CRn−ζ+ p2(σ+ζ )
2 + CRn−ζ+ p2(σ−nε)

2

≤ 2CRn−ζ+ p2(σ−nε)
2 ≤ 2CRn−ζ+ (σ−nε)

2 . (3.26)

For the last inequality we used the following facts:

0 < R ≤ 1, 0 < σ − nε, p2 > 1.

Mentioning the above facts again and comparing (3.24) and (3.26), we see that, for p2 > 2, the estimate
(3.26) holds. Now, combining (3.21) and (3.26), we obtain∫

Bρ(y)

|Du − (Du)ρ|p2dx ≤ C
(
ρn+ᾱ + Rn−ζ+ σ−nε

2
)
.
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This holds for any 0 < ρ < R/2 ≤ R0/8. For k > 1, let us put ρ = Rk/2 (bearing in mind that Rk/2 ≤ R/2 holds
for k > 1), then

ρn+ᾱ + Rn−ζ+ σ−nε
2 = ρn+ᾱ + (2ρ)

2n−2ζ+σ−nε
2k .

So, we have ∫
Bρ(y)

|Du − (Du)ρ|p2dx ≤ ρn+ᾱ + (2ρ)
2n−2ζ+σ−nε

2k . (3.27)

Since
ᾱ = α̃

64n β = α̃
64n min{α, σ} ≤ σ

64 ,

we can take ε su�ciently small so that ᾱ < (σ − nε)/2 then, for su�ciently small ζ ,

n − ζ + σ − nε
2 > n + ᾱ

holds. Now, for such a choice of ε and ζ , putting

k = 2n − 2ζ + σ − nε
2(n + ᾱ) (> 1)

in (3.27), we get ∫
Bρ(y)

|Du − (Du)ρ|p2dx ≤ Cρn+ᾱ ,

and therefore we obtain the Hölder continuity of Du by virtue of the Campanato’s theorem.
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