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Abstract. In this paper we analyze the porous medium equation

(♦) ut = ∆um + a

∫
Ω
up − buq − c|∇

√
u|2 in Ω× I,

where Ω is a bounded and smooth domain of RN , with N ≥ 1, and I = [0, t∗)
is the maximal interval of existence for u. The constants a, b, c are positive,
m, p, q proper real numbers larger than 1 and the equation is complemented
with nonlinear boundary conditions involving the outward normal derivative
of u. Under some hypothesis on the data, including intrinsic relations be-
tween m, p and q, and assuming that for some positive and su�ciently regular
function u0(x) the Initial Boundary Value Problem (IBVP) associated to (♦)
possesses a positive classical solution u = u(x, t) on Ω× I:

. when p > q and in 2- and 3-dimensional domains, we determine a lower
bound of t∗ for those u becoming unbounded in Lm(p−1)(Ω) at such t∗;

. when p < q and in N -dimensional settings, we establish a global existence
criterion for u.

1. Introduction, state of the art and motivations

Reaction-di�usion equations are commonly employed to model several natural
phenomena appearing in various physical, chemical and biological applications.
This paper is devoted to this speci�c reaction-di�usion problem

(1)


ut = ∆um + a

∫
Ω
up − buq − c|∇

√
u|2 in Ω× I,

∇u · ν = uν = g (u) on ∂Ω× I,
u(x, 0) = u0(x) x ∈ Ω,

where u = u(x, t) is de�ned in the cylinder Ω× I, Ω being a bounded and smooth
domain of RN (N ≥ 1) with regular boundary ∂Ω, and I = [0, t∗) the maximal
interval of existence for the solution u. Further, ν = (ν1, . . . , νN ) stands for the
outward normal unit vector to the boundary ∂Ω and uν is the normal derivative of
u. Additionally, u0 := u0(x) > 0 and g = g(ξ) ≥ 0 are appropriate and su�ciently
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smooth functions of, respectively, x ∈ Ω and ξ ≥ 0, a, b, c arbitrarily positive
constants, whilst m, p, q > 1 are proper reals related one to the other.

Beyond problems arising in the mathematical models for gas or �uid �ow in
porous media (see [3] and [30]), the formulation in (1) also describes (see [9] and
[29]) the evolution of some biological population u (cells, bacteria, etc.) at some
time t and position x which lives in a certain domain Ω and whose growth is
induced by the law a

∫
Ω
up − buq − c|∇

√
u|2 (positive addends essentially represent

sources which increase the energy of the system and stimulate the occurrence of
an uncontrolled increasing of u through the time, whereas negative ones have a
damping/absorption e�ect, absorb the energy and, so, contrast the power of the
source terms); precisely, the term ∆um idealizes the spread of the population, the
parameter m > 1 indicating the speed of propagation/displacement, the non-local
term +a

∫
Ω
up the births of the species and −buq−c|∇

√
u|2 counts, respectively, its

natural and the accidental deaths. Moreover, the assumption uν = g (u) ≥ 0 on the
boundary virtually models an incoming �ux of the population u; in a particular way,
since realistically to a low (high) concentration of u on the boundary corresponds a
low (high) incoming �ux, g will be taken from a set including increasing functions.
(For interested readers, we mention the contributions [1, 17, 18, 31, 32, 33, 34],
where reactions terms similar to that in (1) have been also employed in chemotaxis
models.)

Coming back to the mathematical analysis of our problem, some general results
concerning existence of local or global solutions (i.e., respectively, I = [0, t∗), t∗ �-
nite or I = [0,∞)), have been already studied in the literature for a class of reaction-
di�usion models, where the �rst equation of (1) reads τut = ∇ · A(x, t, u,∇u) +
B(x, t, u,∇u), A and B verifying some standard ellipticity behaviors as well as
growth assumptions (we refer, for instance, to [10, 11, 12, 25] for the case τ = 1
and [24] for τ = 0). In particular, as to the questions concerning existence of
classical solutions to the previous equation and/or their nonnegativity (through
applications of maximum principles), some results for the case τ = 1 can preserved
if so called �non-degenerate� data u0 are considered (see [30, §3.1 and §3.2]).

Despite a deep research, to the best of our knowledge the problems on the ex-
istence and regularity of solutions to (1) are not directly indicated in the present
literature. For this reason, in this investigation we abstain from such an analy-
sis, but rather we follow the same approach used in largely cited papers (see, for
instance, [20, 21, 23, 26, 27] and references therein) where nonnegative classical so-
lutions are a priori assumed to exist for a period of time but, also, the may become
unbounded at some �nite time t∗. In particular, in [30, §1] a discussion on the
Porous Medium Equation, ut = ∆um, and the Signed Porous Medium Equation,
ut = ∆(|u|m−1u), is carried out: in agreement with our purpose, we indicate that
the default setting of the �rst case includes only nonnegative solutions.

As to well established results, there exists an important number of papers con-
cerning variants of the IBVP (1), some of which dealing with properties of classical
solutions: global and/or local existence, lower and upper bound of blow-up time,
blow-up rates and/or asymptotic behavior. In particular, we collect the following
results: I) m = 1, b = c = 0 and

∫
Ω
up replaced with up, for p > 1. When Ω is

a bounded and smooth domain of R3 and Dirichlet boundary conditions are as-
signed (i.e. u(x) = 0 for x ∈ ∂Ω), in [21] a lower bound for the blow-up time of
solutions, if blow-up occurs, is derived, and [22] essentially deals with blow-up and
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global existence questions for the same problem in the N -dimensional setting, with
N ≥ 2, and endowed with Robin boundary conditions (i.e. uν = −hu, h > 0, on
∂Ω). II) m > 1, b = c = 0 and

∫
Ω
up replaced with up, for p > 1. For Ω = RN ,

N ≥ 1, in [6], [7] and [13] it is shown that for 1 < p ≤ m + (2/N) the prob-
lem has no global positive solution, whilst for p > m + (2/N) there exist initial
data u0 emanating global solutions. When Ω is a bounded and smooth domain
of RN , N ≥ 1, and under Dirichlet boundary conditions, in [5] is proved that for
1 < p < m the problem admits global solutions for all u0 such that um−1

0 ∈ H1
0 (Ω),

while for m < p < m(1 + (2/N)) + (2/N) speci�c initial data produce unbounded
solutions. III) m > 1, a = 0 and −b

∫
Ω
uq − c|

√
u|2 replaced with +up − uµ|∇uα|q,

with p, q, α ≥ 1 and µ ≥ 0. With Ω bounded and smooth in RN , N ≥ 1, and
under Dirichlet boundary conditions, in [2] the authors treat the existence of the so
called admissible solutions and show that they are globally bounded if p < µ+mq
or m < p = µ + mq, as well as the existence of blowing up admissible solutions,
under the complementary condition 1 ≤ µ + mq < p. IV) m > 1, b = c = 0 and
+a
∫

Ω
up replaced with +up

∫
Ω
uq, with p, q > 1. In a bounded and smooth domain

Ω of R3 and under Robin boundary conditions, a lower bound for the blow-up
time if the solution blows up is determined under the assumption p + q > m > 1
whilst conditions which ensure that the blow-up does not occur are also presented
if p + q ≤ m (see [15]). V) m = 1 and c = 0, with p, q > 1. In a bounded and
smooth domain Ω of R3 and under proper nonlinear boundary conditions, in [16]
a lower bound for the blow-up time if the solution blows up is determined under
the assumption p > q. VI) m > 1, b = c = 0 and p ≥ 0. In a bounded and
smooth domain Ω of RN , N ≥ 1, and under Dirichlet boundary conditions, classi-
cal nonnegative solutions which are global or blow up in �nite time are derived for
any 0 ≤ u0 ∈ C2+α(Ω) ∩ C0(Ω̄), for some 0 < α < 1, provided some compatibility
conditions and assumptions on the data are given (see [14]). VII) m = 1, c = 0
and p, q ≥ 1. In a bounded and smooth domain Ω of RN , N ≥ 1, and under various
boundary conditions, in [35] for any compatible 0 ≤ u0 ∈ C1(Ω̄) classical nonnega-
tive solutions which are global are attained if p < q, whereas for p > q blowing up
ones are detected (see also [28]).

Motivated by the discussion so far presented, aim of the present research is
expanding the underpinning theory of the mathematical analysis of problem (1),
which is not included in the above cases. In particular, the aforementioned state of
the art inspires our work, and even if we will use some ideas employed in those items
to address our statements, some further derivations will be necessarily required;
moreover we do not restrict to prove our main theorems but we complement the
general presentation of the manuscript by means of remarks and discussions.

To be precise, our contribution includes an analysis for the maximal interval
I = [0, t∗) of existence for classical solutions u (in the sense of the De�nition CS
given in §2 below) to system (1), where t∗ plays the role of the unknown and obeys
the following extensibility criterion ([4, 10]): either t∗ = +∞, so that u remains
bounded for all x ∈ Ω and all time t > 0 and I = (0,∞), or t∗ is �nite (blow-up
time), so that u exists only in I = (0, t∗) and ‖u(·, t)‖L∞(Ω) ↗ +∞ as t↘ t∗.

Thereof, we prove three theorems which provide its estimates or its precise value;
they are discussed in details in §3, whilst now they are brie�y summarized as follows:

• Lower bound of t∗ in R3 and R2: Theorem 3.1 and Theorem 3.2. If for
p > q > 3

2 , 2 < m < 8
5−p with 3

2 < p < 5, m > 2 with p ≥ 5, g(u) behaving
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as u
m(p−1)

4 −m+2 and u0 su�ciently regular problem (1) admits a positive
classical solution u which becomes unbounded in Lm(p−1)(Ω) at some �nite
time t∗, then there exists a computable T > 0 such that t∗ ≥ T .

• Criterion for global existence in RN , N ≥ 1: Theorem 3.3. If for q > p >
m > 1, 2p < m + q, g(u) behaving as up−m+1 and u0 su�ciently regular
problem (1) admits a positive classical solution u, then holds that t∗ =∞.

2. Assumptions, definitions and preparatory lemmas

In this section we �x crucial hypothesis and lemmas which will be considered
through the paper in the proofs of the main theorems. This preparatory material
is herein presented according to our purposes.

Assumption A. For any N ≥ 1, Ω is a bounded and smooth domain of RN , star-
shaped, convex in two orthogonal directions and such that, for some origin inside
x0, its geometry is characterized by

ρ0 := min
∂Ω

((x− x0) · ν) and d := max
Ω
|x− x0|.

De�nition CS. A classical solution to problem (1) is a positive function u ∈
C2,1(Ω× (0, t∗)) ∩ C1,0(Ω̄× [0, t∗)) which satis�es (1), for some 0 < t∗ ≤ +∞.

De�nition D. For any p > 3
2 and m > 2, let t∗ > 0 �nite. We say that a

nonnegative function V ∈ C0(Ω̄ × (0, t∗)) blows up in Lm(p−1)(Ω)-norm at �nite
time t∗ if

lim
t→t∗

∫
Ω

V m(p−1) =∞.

Lemma 2.1. Let Ω be a domain satisfying Assumption A. For any positive func-
tion V ∈ C1(Ω̄) and λ ≥ 1, we have

(2)

∫
∂Ω

V λ ≤ N

ρ0

∫
Ω

V λ +
dλ

ρ0

∫
Ω

V λ−1|∇V |.

Moreover for every arbitrary ε > 0 we also have that:
. If N = 2∫

Ω

V
3
2λ ≤

√
2

2ρ0

[( ∫
Ω

V λ
) 3

2

+
d+ ρ0

2ε2

(∫
Ω

V λ
)2

+
(d+ ρ0) ε2

2

∫
Ω

|∇V λ
2 |2
]
;(3)

. If N = 3∫
Ω

V
3
2λ ≤

√
2
[( 3

2ρ0

) 3
2 (∫

Ω

V λ
) 3

2

+
1

4ε3

(
1 +

d

ρ0

) 3
2 (∫

Ω

V λ
)3

+
3

4

(
1 +

d

ρ0

) 3
2

ε

∫
Ω

|∇V λ
2 |2
]
.

(4)

Proof. For the proofs see [19] and [31, Lemma 3.2]. �
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3. Analysis and proofs of the main results

After the preparations in §2, we are in the position to demonstrate the theorems
whose general overviews were summarized in §1.

3.1. Lower bounds of the blow-up time. The �rst theorem is concerned with
lower bounds of the blow-up time t∗, through which is identi�ed the maximal inter-
val I where solutions to system (1) are de�ned. We are not aware of general results
indicating assumptions on the data which straightforwardly infer the existence of
unbounded solutions to such a system; nevertheless, in the spirit of the results dis-
cussed in §1, for which blow-up may manifest for large initial data u0(x) and high
e�ects of source (coe�cient p), or low absorption or/and di�usion (coe�cient q
or/and m), we understand that also in view of the incoming �ow of the population
u, it seems reasonable to expect scenarios where unbounded solutions may appear.

Theorem 3.1. Let Ω be a domain of R3 satisfying Assumption A, a, b, c, k > 0
and q > 3

2 . Moreover for any p > q and

(5)

{
m ∈ (2, 8

5−p ) for 3
2 < p < 5,

m ∈ (2,∞) for p ≥ 5,

let g = g(ξ) be a continuous function such that 0 ≤ g(ξ) ≤ kξβ, for ξ ≥ 0 and

β = m(p−1)
4 −m+ 2 > 0. If u is a classical solution, in the sense of De�nition CS,

to (1) emanating from a positive initial data u0 := u0(x) ∈ C2+α(Ω) ∩ C1(Ω̄), for
some 0 < α < 1 and such that ∇u0 · ν = g(u0) on ∂Ω, which additionally complies
with De�nition D, then there exist computable constants c1 > 0 and c5 > 0 such

that for ϕ(0) =
∫

Ω
u
m(p−1)
0 > 0

t∗ ≥ 1

2c1
log

(
1 +

c1
c5
ϕ−2(0)

)
=: T.

In particular I = [0, t∗) ⊇ [0, T ).

Proof. If u is a positive classical solution of (1) de�ned in Ω× (0, t∗) and satisfying
uν = g(u) on ∂Ω, by setting s = p− 1 and using the integration by parts formula,
the evolution in time of t 7→

∫
Ω
ums ful�lls for all t ∈ (0, t∗)

d

dt

∫
Ω

ums = ms

∫
Ω

ums−1

[
∆um + a

∫
Ω

up − buq − c|∇
√
u|2
]

= m2s

∫
∂Ω

ums+m−2uν −m2s(ms− 1)

∫
Ω

ums+m−3|∇u|2

+ ams

∫
Ω

ums−1

∫
Ω

up − bms
∫

Ω

ums+q−1 − cms
∫

Ω

ums−1|∇
√
u|2.

Since by the Hölder inequality (recall p > 3
2 and m > 2) we have that

∫
Ω

ums−1

∫
Ω

up ≤
(∫

Ω

us(m+1)

) ms−1
s(m+1)

(∫
Ω

us(m+1)

) s+1
s(m+1)

|Ω| for all t ∈ (0, t∗),
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from assumption 0 ≤ g(u) ≤ kuβ , u > 0, and the pointwise identity |∇
√
u|2 =

1

4u
|∇u|2 , we get neglecting the nonpositive term −m2s(ms− 1)

∫
Ω
ums+m−3|∇u|2

d

dt

∫
Ω

ums ≤m2sk

∫
∂Ω

ums+m−2+β + ams|Ω|
∫

Ω

us(m+1)

− bms
∫

Ω

ums+q−1 − cms

4

∫
Ω

ums−2|∇u|2 for all t ∈ (0, t∗) .

For the value of β as in our assumptions, the above relations reads

d

dt

∫
Ω

ums ≤m2sk

∫
∂Ω

u
5
4ms + ams|Ω|

∫
Ω

us(m+1)

− bms
∫

Ω

ums+q−1 − cms

4

∫
Ω

ums−2|∇u|2 for all t ∈ (0, t∗),

(6)

so that (2) with λ = 5
4ms > 1 and V = u provides∫

∂Ω

u
5
4ms ≤ 3

ρ0

∫
Ω

u
5
4ms +

5msd

4ρ0

∫
Ω

u
5
4ms−1|∇u| for all t ∈ (0, t∗),

and by plugging this gained estimate into (6), one achieves for all t ∈ (0, t∗)

d

dt

∫
Ω

ums ≤m2sk

[
3

ρ0

∫
Ω

u
5
4ms +

5msd

4ρ0

∫
Ω

u
5
4ms−1|∇u|

]
+ ams|Ω|

∫
Ω

us(m+1) − bms
∫

Ω

ums+q−1 − cms

4

∫
Ω

ums−2|∇u|2.
(7)

On the other hand, applications of the Hölder and the Young inequalities allow us
to control some terms in (7). Precisely for all t ∈ (0, t∗) holds that∫

Ω

u
5
4ms ≤ 1

2

∫
Ω

u
3
2ms +

1

2

∫
Ω

ums,∫
Ω

ums+q−1 ≥ |Ω|
1−q
ms

(∫
Ω

ums
)ms+q−1

ms

,∫
Ω

u
5
4ms−1|∇u| = 2

ms

∫
Ω

u
3
4ms|∇ums2 | ≤ 1

2ε1

∫
Ω

u
3
2ms +

2ε1
m2s2

∫
Ω

|∇ums2 |2,∫
Ω

us(m+1) =

∫
Ω

u3sums−2s ≤ 2

m

∫
Ω

u
3ms

2 +
m− 2

m

∫
Ω

ums,

(8)

which infer through (7) and on the entire interval (0, t∗)

d

dt

∫
Ω

ums ≤m2sk
3

2ρ0

[∫
Ω

u
3
2ms +

∫
Ω

ums
]

+m2sk
5mds

4ρ0

[
1

2ε1

∫
Ω

u
3
2ms +

2ε1
m2s2

∫
Ω

|∇ums2 |2
]

+ ams|Ω|
[

2

m

∫
Ω

u
3
2ms +

m− 2

m

∫
Ω

ums
]

− bms|Ω|
1−q
ms

(∫
Ω

ums
)ms+q−1

ms − cms

4

∫
Ω

ums−2|∇u|2.

(9)



ON THE LIFESPAN OF SOLUTIONS TO A NON-LOCAL POROUS MEDIUM PROBLEM 7

As to
∫

Ω
u

3
2ms, we invoke (4) to get on (0, t∗)∫

Ω

u
3
2ms ≤ 3

3
2

2ρ
3
2
0

(∫
Ω

ums
) 3

2

+
√

2

(
d

ρ0
+ 1

) 3
2
[

1

4ε32

(∫
Ω

ums
)3

+
3ε2
4

∫
Ω

|∇ums2 |2
]
,

so that, using the identity ums−2|∇u|2 =
4

m2s2
|∇ums2 |2 and introducing the con-

stants

c1 = a (m− 2) s|Ω|+ 3m2sk

2ρ0
, c2 =

(
as|Ω|+ 3m2sk

4ρ0
+

5m3s2kd

16ρ0ε1

)
3

3
2

ρ
3
2
0

,

c3 =
( d
ρ0

+ 1
) 3

2 1

4ε32

(
2
√

2as|Ω|+ 3
√

2m2sk

2ρ0
+

5
√

2m3s2kd

8ρ0ε1

)
,

c4 =
( d
ρ0

+ 1
) 3

2

ε2

(3

2

√
2as|Ω|+ 9

√
2m2sk

8ρ
+

15
√

2m3s2kd

32ε1ρ0

)
+

5mdkε1
2ρ0

− c

ms
,

after some tedious computations, inequality (9) is simpli�ed to

ϕ′ ≤ c1ϕ+ c2ϕ
3
2 + c3ϕ

3 + c4

∫
Ω

|∇ums2 |2 − bms|Ω|
1−q
ms ϕ

ms+q−1
ms on (0, t∗),

where for convenience we have set ϕ(t) = ϕ :=
∫

Ω
ums on (0, t∗).

Additionally, for any �xed 0 < ε1 <
2ρ0c

5m2sdk there exists ε2 > 0 such that c4 ≤ 0,
leading to

(10) ϕ′ ≤ c1ϕ+ c2ϕ
3
2 + c3ϕ

3 − bms|Ω|
1−q
ms ϕ

ms+q−1
ms for all t ∈ (0, t∗).

In order to obtain an explicit estimate (see Remark 1 below) of lower bounds for

t∗, we do not neglect the negative addendum −bms|Ω|
1−q
ms ϕ

ms+q−1
ms but rather we

treat it in terms of ϕ
3
2 and ϕ3. In this sense, by using Young's inequality, we can

write (recall m > 2 and p > q) for any ε3 > 0

ϕ
3
2 =

(
ϕ
ms+q−1
ms ε

4ms−2q+2
3ms

3

) 3ms
4ms−2q+2

(
ϕ3ε
− 4ms−2q+2
ms−2q+2

3

) ms−2q+2
4ms−2q+2

≤ 3ms

4ms− 2q + 2
ε

4ms−2q+2
3ms

3 ϕ
ms+q−1
ms +

ms− 2q + 2

4ms− 2q + 2
ε
− 4ms−2q+2
ms−2q+2

3 ϕ3 on (0, t∗),

from which (10) is transformed into

ϕ′ ≤c1ϕ+
(
c2

3ms

4ms− 2q + 2
ε

4ms−2q+2
3ms

3 − bms|Ω|
1−q
ms

)
ϕ
ms+q−1
ms

+

(
c2
ms− 2q + 2

4ms− 2q + 2
ε
− 4ms−2q+2
ms−2q+2

3 + c3

)
ϕ3 on (0, t∗).

Finally, choosing ε3 =
[
b

3c2
(4ms− 2q + 2) |Ω|

1−q
ms

] 3ms
4ms−2q+2

> 0 and, in turn, setting

c5 = c2
ms−2q+2
4ms−2q+2ε

− 4ms−2q+2
ms−2q+2

3 + c3 we have

(11) ϕ(t)′ ≤ c1ϕ(t) + c5ϕ
3(t) for all (0, t∗).

Now, since we are assuming that ϕ(t)↗∞ as t↘ t∗, ϕ(t) can be non decreasing,
so that ϕ(t) ≥ ϕ(0) > 0 with t ∈ (0, t∗), or non increasing (possibly presenting
oscillations), so that there exists a time t1 where ϕ(t1) = ϕ(0). In any case,
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ϕ(t) ≥ ϕ(0) for all t ∈ [t1, t
∗), where 0 ≤ t1 < t∗. Henceforth, by integrating (11)

between t1 and t∗, we arrive at (recall ϕ(t1) = ϕ(0)) this explicit estimate for t∗:

t∗ ≥
∫ +∞

ϕ(0)

dτ

c1τ + c5τ3
=

1

2c1
log

(
1 +

c1
c5
ϕ−2(0)

)
.

�

Remark 1. We point out that if in (10) we ignored the negative term associated

to ϕ
ms+q−1
ms , instead of (11) we would write

ϕ(t)′ ≤ c1ϕ(t) + c2ϕ
3
2 (t) + c3ϕ

3(t) for all t ∈ (0, t∗),

and the claim of the theorem would read

t∗ ≥
∫ +∞

ϕ(0)

dτ

c1τ + c2τ
3
2 + c5τ3

,

being in this case the last integral convergent but not explicitly computable.

Through some straightforward manipulations we can prove that the previous
theorem holds even in 2-dimensional settings, precisely as established in this

Theorem 3.2. Let Ω be a domain of R2 satisfying Assumption A. Then, under
the remaining assumptions of Theorem 3.1, there exist computable constants c̄1 > 0

and c̄5 > 0 such that for ϕ(0) =
∫

Ω
u
m(p−1)
0 > 0

t∗ ≥ 1

c̄1
log

(
1 +

c̄1
c̄5
ϕ−1(0)

)
=: T.

In particular I = [0, t∗) ⊇ [0, T ).

Proof. Similarly to what done throughout the proof of Theorem 3.1, let us rely on
(7) and (8). Conversely, in order to estimate

∫
Ω
u

3
2ms we have now to refrain from

using (4) but (3), which yields for ε̄ > 0∫
Ω

u
3
2ms ≤

√
2

2ρ0

(∫
Ω

ums
) 3

2

+

√
2 (d+ ρ0)

4ρ0ε̄22

(∫
Ω

ums
)2

+

√
2 (d+ ρ0) ε̄22

4ρ0

∫
Ω

|∇ums2 |2 for all t ∈ (0, t∗).

Subsequently, for ϕ(t) = ϕ :=
∫

Ω
ums on t ∈ (0, t∗), manipulations of the previous

bound in conjunction with (7) and (8) provide computable positive constants c̄1,
c̄2 = c̄2(ε1), c̄3 = c̄3(ε̄2) (which we omit to calculate) and

c̄4 = c̄4(ε1, ε̄2) =

√
2

4ρ0
(d+ ρ0)ε̄22

(
2as|Ω|+ 3m2sk

2ρ0
+

5m3s2kd

8ε1ρ0

)
+

5mdkε1
2ρ0

− c

ms
,

with the property that the following is ensured:

ϕ′ ≤ c̄1ϕ+ c̄2ϕ
3
2 + c̄3ϕ

2 + c̄4

∫
Ω

|∇ums2 |2 − bms|Ω|
1−q
ms ϕ

ms+q−1
ms on (0, t∗).

As before, for any �xed 0 < ε1 <
2ρ0c

5m2sdk there exists ε̄2 > 0 such that c̄4 ≤ 0 and
henceforth

(12) ϕ′ ≤ c̄1ϕ+ c̄2ϕ
3
2 + c̄3ϕ

2 − bms|Ω|
1−q
ms ϕ

ms+q−1
ms on (0, t∗).
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Using Hölder's and Young's inequality, we can estimate on (0, t∗) the term involving

ϕ
3
2 by means of a combination of ϕ

ms+q−1
ms and ϕ2, precisely obtaining

ϕ
3
2 ≤ ms

2ms− 2q + 2
ε̄

2ms−2q+2
ms

3 ϕ
ms+q−1
ms +

ms− 2q + 2

2ms− 2q + 2
ε̄
− 2ms−2q+2
ms−2q+2

3 ϕ2.

In this way, expression (12) reads

ϕ′ ≤c̄1ϕ+

(
c̄2

ms

2ms− 2q + 2
ε̄

2ms−2q+2
ms

3 − bms|Ω|
1−q
ms

)
ϕ
ms+q−1
ms

+
(
c̄3 + c̄2

ms− 2q + 2

2ms− 2q + 2
ε̄
− 2ms−2q+2
ms−2q+2

3

)
ϕ2 for all t ∈ (0, t∗),

and for ε̄3 =
[

2ms−2q+2
c̄2

b|Ω|
1−q
ms

] ms
2ms−2q+2

and c̄5 = ms−2q+2
2ms−2q+2 c̄2ε̄

− 2ms−2q+2
ms−2q+2

3 + c̄3 we

�nally have

(13) ϕ(t)′ ≤ c̄1ϕ(t) + c̄5ϕ
2(t) for all t ∈ (0, t∗).

As a consequence of these operations, and reasoning as in Theorem 3.1, our claim
is given since

t∗ ≥
∫ +∞

ϕ(0)

dτ

c̄1τ + c̄5τ2
=

1

c̄1
log

(
1 +

c̄1
c̄5
ϕ−1(0)

)
.

�

Remark 2. In line with Remark 1, but unlike its conclusion, if in (12) we neglected
the last negative part, instead of (13) we would have

ϕ(t)′ ≤ c̄1ϕ(t) + c̄2ϕ
3
2 (t) + c̄3ϕ

2(t) on (0, t∗),

and the claim of the theorem would read

t∗ ≥
∫ +∞

ϕ(0)

dτ

c̄1τ + c̄2τ
3
2 + c̄3τ2

=: T,

being the last integral also explicitly computable if (and only if) Υ := 4c̄1c̄3− c̄22 ≥ 0.
More exactly, properties of inverse hyperbolic functions give

T =


−
c̄2π−2c̄2 arctan

(
c̄2+2c̄3

√
ϕ(0)√

−c̄22+4c̄1 c̄3

)
c̄1
√
−c̄22+4c̄1c̄3

− 1
c̄1

log
( c̄3ϕ(0)

c̄1+c̄2
√
ϕ(0)+c̄3ϕ(0)

)
if Υ > 0,

−2
√
c1(
√
c1+
√
c1ϕ(0))

− 1
c̄1

log
(

ϕ(0)(√
c̄1+
√
ϕ(0)
√
c̄3

)2

)
+ 1

c̄1
log
(

1
c̄3

)
if Υ = 0.

3.2. A criterion for global existence. In the last result, we are interested to
examine the opposite situation described in Theorems 3.1 and 3.2. More exactly,
we establish that when the e�ect of the source (coe�cient p) is enough stronger
than that of the di�usion (coe�cient m) but weaker than the one of the dampening
(coe�cient q), if a double stabilizing e�ect from the di�usion and the absorption
somehow surpasses the same action of the source, system (1) does not su�er from
blow-up phenomena, even for arbitrary large initial data u0(x) and in presence of
an incoming �ow of the population u.

Theorem 3.3. Let Ω be a domain of RN , N ≥ 1, satisfying Assumption A. More-
over, for a, b, c, k > 0, q > p > m > 1, 2p < m + q let 0 ≤ g(ξ) ≤ kξp−m+1, with
ξ ≥ 0. If u is a classical solution, in the sense of De�nition CS, to (1) emanating
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from a positive initial data u0 := u0(x) ∈ C2+α(Ω) ∩ C1(Ω̄), for some 0 < α < 1
and such that ∇u0 · ν = g(u0) on ∂Ω, then t∗ =∞, or equivalently I = [0,∞).

Proof. If u is a positive classical solution of (1) de�ned in Ω× (0, t∗) and satisfying
uν = g(u) on ∂Ω, by di�erentiating

∫
Ω
u2 we derive

d

dt

∫
Ω

u2 = 2

∫
Ω

u

(
∆um + a

∫
Ω

up − buq − c|∇
√
u|2
)

≤ 2mk

∫
∂Ω

up+1 − 2m

∫
Ω

um−1|∇u|2 + 2a|Ω|
∫

Ω

up+1 − 2b

∫
Ω

uq+1

− 2c

∫
Ω

u|∇
√
u|2 for all t ∈ (0, t∗),

(14)

where we have employed the following bound, consequence of the Hölder inequality:∫
Ω

u

∫
Ω

up ≤
(∫

Ω

up+1

) 1
p+1

|Ω|
p
p+1

(∫
Ω

up+1

) p
p+1

|Ω|
1
p+1 = |Ω|

∫
Ω

up+1 on (0, t∗) .

An application of (2) and the identity
m+ 1

2
up|∇u| = u

2p−m+1
2 |∇um+1

2 | provide

(15)

∫
∂Ω

up+1 ≤ N

ρ0

∫
Ω

up+1 +
2d (p+ 1)

ρ0 (m+ 1)

∫
Ω

u
2p−m+1

2 |∇u
m+1

2 | on (0, t∗) .

Now, by considering that

−2m

∫
Ω

um−1|∇u|2 = − 8m

(m+ 1)
2

∫
Ω

|∇u
m+1

2 |2 on (0, t∗),

relation (14) becomes by virtue of (15)

d

dt

∫
Ω

u2 ≤2kNm

ρ0

∫
Ω

up+1 +
4kdm (p+ 1)

ρ0 (m+ 1)

∫
Ω

u
2p−m+1

2 |∇u
m+1

2 |

− 8m

(m+ 1)
2

∫
Ω

|∇u
m+1

2 |2 + 2a|Ω|
∫

Ω

up+1

− 2b

∫
Ω

uq+1 for all t ∈ (0, t∗) ,

(16)

where, evidently, we have neglected the nonpositive term −2c
∫

Ω
u|∇
√
u|2.

Additionally, from the Young inequality we obtain that for any σ > 0∫
Ω

u
2p−m+1

2 |∇u
m+1

2 | ≤ σ

2

∫
Ω

u2p−m+1 +
1

2σ

∫
Ω

|∇u
m+1

2 |2 on (0, t∗) ,

so that �xing σ = kd(p+1)(m+1)
4ρ0

this expression holds

4kd (p+ 1)

ρ0 (m+ 1)
m

∫
Ω

u
2p−m+1

2 |∇u
m+1

2 | ≤ 8m

(m+ 1)
2σ

2

∫
Ω

u2p−m+1

+
8m

(m+ 1)
2

∫
Ω

|∇u
m+1

2 |2 on (0, t∗).
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Combining this gained bound with (16), we get

d

dt

∫
Ω

u2 ≤ 2kNm

ρ0

∫
Ω

up+1 +
8m

(m+ 1)
2σ

2

∫
Ω

u2p−m+1

+ 2a|Ω|
∫

Ω

up+1 − 2b

∫
Ω

uq+1 on (0, t∗) .

(17)

Since (q+1)(p−m)
q−p + (p+1)(q−2p+m)

q−p = 2p − m + 1, Young's inequality produces for
any ε > 0

(18)

∫
Ω

u2p−m+1 ≤ (1− α) ε

∫
Ω

uq+1 + αε
α−1
α

∫
Ω

up+1 on (0, t∗) ,

where 0 < α = q+m−2p
q−p < 1 in view of the hypothesis q > p > m and 2p < m + q.

Subsequently, by plugging (18) into (17), we obtain

d

dt

∫
Ω

u2 ≤

(
2kNm

ρ0
+ 2a|Ω|+ 8mσ2α

(m+ 1)
2 ε

α−1
α

)∫
Ω

up+1

+

(
8mσ2

(m+ 1)
2 (1− α) ε− 2b

)∫
Ω

uq+1

= M1

∫
Ω

up+1 −M2

∫
Ω

uq+1 on (0, t∗) ,

(19)

where

M1 =
2kNm

ρ0
+ 2a|Ω|+ 8mσ2α

(m+ 1)2
ε
α−1
α , M2 = 2b− 8mσ2ε(1− α)

(m+ 1)2
.

Now we let ε > 0 su�ciently small as to ensure M2 > 0 (as an example we see that

for ε = b(m+1)2

8mσ2(1−α) we have M2 = b). Thereafter, since the Hölder inequality (recall

p < q) gives ∫
Ω

up+1 ≤
(∫

Ω

uq+1

) p+1
q+1

|Ω|
q−p
q+1 on (0, t∗),

we deduce from (19) that

ψ′ ≤M1

(∫
Ω

uq+1

) p+1
q+1

[
|Ω|

q−p
q+1 − M2

M1

(∫
Ω

uq+1

) q−p
q+1

]
on (0, t∗),(20)

where we introduced ψ(t) = ψ :=
∫

Ω
u2 for all t ∈ (0, t∗). In order to establish an

absorptive di�erential inequality for ψ, we use again Hölder's inequality to observe
that

ψ ≤
(∫

Ω

uq+1
) 2
q+1 |Ω|

q−1
q+1 ⇒ −

(∫
Ω

uq+1
) q−p
q+1 ≤ −ψ

q−p
2 |Ω|

(1−q)(q−p)
2(q+1) on (0, t∗),

so that in view of (20) we arrive at this initial value problem,ψ′(t) ≤M1

(∫
Ω
uq+1

) p+1
q+1

[
|Ω|

q−p
q+1 − M2

M1
|Ω|

(1−q)(q−p)
2(q+1) ψ

q−p
2 (t)

]
on (0, t∗),

ψ(0) =
∫

Ω
u2

0 > 0,
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from which is guaranteed that

(21) ψ(t) ≤ C := max

{∫
Ω

u2
0, |Ω|

(
M1

M2

) 2
q−p
}

for all t ∈ (0, t∗).

Finally, well know extension results for ODE's with locally Lipschitz continuous
right side (see, for instance, [8]), show that t∗ = ∞; indeed, if t∗ were �nite,
ψ(t)↗ +∞ as t↘ t∗ and it would contradict (21). �
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