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Abstract. This paper is dedicated to the attraction-repulsion chemotaxis-
system

(3)


ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) in Ω× (0, Tmax),

0 = ∆v + f(u)− βv in Ω× (0, Tmax),

0 = ∆w + γur − δw in Ω× (0, Tmax),

de�ned in Ω, a smooth and bounded domain of Rn, with n ≥ 2. Moreover,
γ, β, δ, χ, ξ > 0, r ≥ 1 and f is a suitably regular function generalizing, for
u ≥ 0 and α, s > 0, the prototype f(u) = αus. We focus our analysis on
the value Tmax ∈ (0,∞], since it establishes the temporal interval of existence
of solutions (u, v, w) to problem (3). To be precise, once the problem is en-
dowed with zero-�ux boundary conditions we prove the following results, all
excluding chemotactic collapse scenarios under precise correlations between
the attraction and repulsive e�ects prescribing the model:
• for every α, β, γ, δ, χ > 0, and r > s ≥ 1, there exists ξ∗ > 0 such that

if ξ > ξ∗, any su�ciently regular initial datum u0(x) ≥ 0 emanates a
unique classical solution (u, v, w) to problem (3) which is global, i.e.
Tmax =∞, and such that u, v and w are uniformly bounded;

• for every α, β, γ, δ, χ > 0, and s > r ≥ 1, there exists ξ∗ > 0 such that if
ξ ≥ ξ∗, any su�ciently regular initial datum u0(x) ≥ 0 enjoying precise
smallness assumptions emanates a unique classical solution (u, v, w) to
problem (3) which is global, i.e. Tmax = ∞, and such that u, v and w
are uniformly bounded;

• for every α, β, γ, δ, χ, ξ > 0, and 0 < s < 1 and r = 1, any su�ciently
regular initial datum u0(x) ≥ 0 emanates a unique classical solution
(u, v, w) to problem (3) which is global, i.e. Tmax = ∞, and such that
u, v and w are uniformly bounded.

Further, in a remark of the manuscript, we also address an open question
posed in [Vig19].

1. Introduction and presentation of the main results

The chemotaxis is the movement of certain cells, situated in an environment,
along the concentration gradient of a chemical signal/stimulus produced by a sub-
stance which is therein inhomogeneously distributed. The �rst models of chemo-
taxis phenomena were introduced by Keller and Segel in [KS70, KS71a, KS71b];
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they are formulated in terms of partial di�erential equations and have been largely
developed during the last decades in the �elds of both theoretical and applied
mathematics.

Among the countless variants of these landmark models, it is worthwhile to
consider the general situation where the motion of a certain cell density u = u(x, t),
distributed inside an insulated domain (zero-�ux on the border), is dictated by the
natural di�usion (below indicated with A) of the cells which attract and repulse each
other through two coupled chemosensitivity e�ects: (B < 0) chemoattractant and
(C > 0) chemorepellent. Additionally, the chemical signal w = w(x, t), responsible
for moving away one cell from the other, spreads and is produced by a law indicated
by E, whilst the other one, v = v(x, t) which has a coalescence impact on the cells,
grows with F . A more involved scenario is obtained when, in addition to what was
now speci�ed, an external source (D) in�uences the kinetics of the cells by providing
and dissipating density; the corresponding mathematical formulation reads

(1)


ut = ∇ · (A(u, v, w)∇u+B(u, v, w)∇v + C(u, v, w)∇w) +D(u, v, w)

τvt = ∆v + E(u, v, w)

τwt = ∆w + F (u, v, w)

We analyze this system in Ω× (0, Tmax), where Ω is a bounded and smooth domain
in Rn, n ≥ 2, and where Tmax ∈ (0,∞] establishes the temporal interval up to which
the evolution of u, v and w advances. Additionally, A,B,C,D,E, F are su�ciently
regular functions of their arguments and τ ∈ {0, 1} is a parameter; for τ = 0 the
cell di�usion is rather slower than the di�usion of the chemicals. Moreover, we
equip (1) with Neumann boundary conditions, imposing equal to zero the outward
normal derivative, denoted with (·)ν , of u, v, and w on ∂Ω, and for τ = 1 (i.e.
τ = 0) complementing the system with nonnegative and su�ciently regular initial
distributions for u0(x), v0(x) and w0(x) (i.e. initial distribution for u0(x)).

Experiments and observations indicate that the aforementioned cellular move-
ment may present certain instabilities, as the so-called chemotactic collapse, the
mechanism resulting in aggregation processes for the cell distribution, eventually
blowing up/exploding at �nite time. This is well known in the classical Keller�
Segel system, obtained from (1) by letting A(u, v, w) ≡ 1, B(u, v, w) = −χv,
χ > 0, C(u, v, w) = D(u, v, w) ≡ 0 and E(u, v, w) = −v + u, and eliminating
the third unknown w; see, for instance, [HW01] and [Win13] for the paraolic-
parabolic case (i.e. τ = 1) and [JL92] and for [Nag01] for the parabolic-elliptic one
(τ = 0). On the other hand, the introduction of external and/or chemo-di�usive
smoothing e�ects may prevent blow-up scenarios, even in the presence of a su-
perlinear growth rate for the chemoattractant v: in [GST16] it is proved that for
A(u, v, w) ≡ 1, B(u, v, w) = −χum, C(u, v, w) ≡ 0, D(u, v, w) = µu(1−uα), τ = 0,
E(u, v, w) = uγ − v, with m, γ, α ≥ 1 and χ, µ > 0, and under the assumptions
α > m + γ − 1 or α = m + γ − 1 and µ > nα−2

2(m−1)+nαχ , with n ∈ N, any non-

negative and su�ciently regular initial datum provides to (1) a unique classical
solution, which is uniformly bounded. Moreover the same holds for the critical case
α = m + γ − 1 and µ > nα−2

2(m−1)+nαχ , as established in [HT17]. (We also mention

[LT16, Win18] for the critical analysis on both blowing-up and global solutions to
Keller�Segel systems with super and sublinear stimulus production.) Further, for
B,C,D and E as above but for A(u, v, w) ' uq−1, q ≥ 1, in [WZ18] it is shown
that there exists µ∗ = µ∗(m, q, χ, α, n) ≥ 0 such that when q > m + γ − 2

n or
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α > m+ γ− 1 or α = m+ γ− 1 and µ > µ∗ system (1) possesses a global bounded
classical solution for any su�ciently smooth initial data.

Conversely, the sole insertion in the classical Keller�Segel model of a repulsive ef-
fect coming from another chemical substance does not su�ce to avoid δ-formations
for the cells' density. More precisely, con�ning our attention to the linear di�usion
case A(u, v, w) ≡ 1, and �xing B(u, v, w) = −χ∇u and C(u, v, w) = ξ∇u (χ, ξ > 0),
D(u, v, w) ≡ 0 and productions E(u, v, w) = αu − βv, F (u, v, w) = γu − δw
(α, β, γ, δ > 0), for τ = 0, we have that the value ξγ − χα, measuring in some
sense the di�erence between the repulsion and attraction contributions, plays an
important role in problem (1). Indeed, the sign of ξγ − χα (positive, repulsion
prevails over attraction, negative attraction prevails over repulsion) establishes
whether the system has unbounded solutions or all solutions are bounded: see
[TW13, HGZ17, GJZ18, LL16, Vig19] for some details on the issue.

Conditions on the data Property of the solution Reference

◦ n ≥ 2 and any u0 ≥ 0
◦ α, β, γ, δ, χ > 0 Global and bounded Theorem 4.4
◦ r > s ≥ 1
◦ ξ large enough
◦ n ≥ 2 and u0 ≥ 0
◦ α, β, γ, δ, χ > 0
◦ s > r ≥ 1 and p̄ = ps with p > 1 Global and bounded Theorem 4.8
◦ ‖u0‖Lp̄(Ω) small enough
◦ ξ large enough
◦ n ≥ 2 and any u0 ≥ 0
◦ r = 1 and s < 1 Global and bounded Theorem 4.9
◦ α, β, γ, δ, χ, ξ > 0

◦ n ≥ 2 and any u0 ≥ 0
◦ α, β, γ, δ, ξ, χ > 0 Global and bounded [TW13, Theorem 2.1]
◦ r = s = 1
◦ ξγ − χα > 0

◦ n = 2 and u0 ≥ 0
◦ α, β, γ, δ, ξ, χ > 0 Blow-up at �nite time [TW13, Proposition 2.2]
◦ r = s = 1
◦ ξγ − χα < 0 and β = δ
◦ ‖u0‖L1(Ω) large enough

◦ n = 2 and u0 ≥ 0
◦ α, β, γ, δ, ξ, χ > 0 Blow-up at �nite time [HGZ17, Theorem 1]
◦ r = s = 1
◦ ξγ − χα < 0 and β, δ > 0
◦ ‖u0‖L1(Ω) large enough

Table 1. Some known and new results concerning model (2).
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Exactly in the perspective toward blow-up prevention, herein we consider this
particular case (even proposed in [LCREKM03] to describe the aggregation of mi-
croglia observed in Alzheimer's disease) of problem (1),

(2)



ut = ∆u− χ∇ · (u∇v) + ξ∇ · (u∇w) in Ω× (0, Tmax),

0 = ∆v + f(u)− βv in Ω× (0, Tmax),

0 = ∆w + γur − δw in Ω× (0, Tmax),

uν = vν = wν = 0 on ∂Ω× (0, Tmax),

u0(x) := u(x, 0) ≥ 0 x ∈ Ω,

where, again, Ω is a smooth and bounded domain of Rn, n ≥ 2, γ, β, δ, χ, ξ > 0,
r ≥ 1 and

(3) f ∈ C1([0,∞)), 0 ≤ f(θ) ≤ αθs, α, s > 0.

Moreover, u0(x) is a nonnegative and su�ciently regular function on Ω̄, whereas
Tmax ∈ (0,∞] obeys (in the sense of Lemma 2.1 below) the following dichotomy
criterion: either Tmax = ∞, and hence the solution to (2) is de�ned for all x ∈ Ω
and all t > 0, or Tmax is �nite (the blow-up time), and the solution blows up at
Tmax.

From what we observed through our bibliographic research, so far no result con-
cerning the e�ects produced by nonlinear production rates in attraction-repulsion
models as that in (2) have been discussed at length. For instance, it is conceivable
that a sublinear production law for the chemoattractant and a linear one for the
chemorepellent su�ce to guarantee globally bounded cells' distributions, despite
any arbitrarily large initial distribution for the cells themselves and the size of the
other parameters. Similarly, it can be expected that, even without inserting any
logistic dampening source providing smoothness and equilibrium, magnifying the
impact of high values of the third solution component, associated to the repulsion
e�ect, on the evolution of the �rst should enforce global existence of solutions. But
to what extent does it have to be magni�ed? What happens if the chemorepellent
signal is produced by the bacterial density with a superlinear rate, whilst that of
the chemoattractant with a (sub)linear one? Does it prevent any gathering of cell
density as expected in the opposite case? And, even more, how do the cells react
when attracted by a substance produced superlinearly and repelled by another also
produced superlinearly, but more weakly than the �rst? And viceversa?

According to the previous considerations, we summarize our main results dealing
with model (2) as follows (and in Table 1 we also frame them in terms of other known
facts):

i) If the production rate of the repulsive signal surpasses the attractive coun-
terpart, which is linear or superlinear, then any initial cell distribution
spreads throughout time and remains bounded, provided the coe�cient of
the chemical signal responsible of the repulsion is su�ciently large (Theo-
rem 4.4);

ii) If the production rate of the attractive stimulus surpasses the repulsive
counterpart, which is linear or superlinear, then any su�ciently small initial
cells' distribution expands for all times and remains bounded, as long as the
coe�cient of the chemical signal responsible of the repulsion is su�ciently
large (Theorem 4.8);
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iii) If the production rate of the chemoattractant is sublinear then any initial
initial cells' distribution di�uses throughout the time and remains bounded
for linear chemorepellent signals (Theorem 4.9), even for arbitrarily small
(large) repulsive (attractive) coe�cients.

Remark 1. We believe that it is worthwhile spending some words on the results
presented in the items above. Taking the limit case s = 1 and comparing the anal-
ysis in the �rst and third arrow of Table 1, we essentially observe that when s < 1
and r = 1, the sublinearity e�ect of the attraction in the �rst equation of system
(2) su�ces to prevail on the linear repulsion and the corresponding conclusion in
iii) is obtained. Conversely the opposite situation, i.e. s = 1 and r > 1 (repulsion
stronger than attraction), does not seem to paint the same picture: indeed in the
case i) another condition enforcing the action of the repulsion is required. Also
item ii) is suggestive: as far as the attraction is superior to a linear or superlin-
ear repulsion, only small initial distributions give rise to global situations without
explosion instabilities, but always provided large repulsive coe�cients in�uence the
dynamics. This is surprising, or somewhat interesting, since it seems to indicate
that in attraction-repulsion chemotaxis models the impact of the repulsive and at-
tractive agents is not specular: the e�ect of the �rsts is weaker than that coming
from the seconds.

2. From local to globally bounded solutions

One of the �rst steps in dealing with solutions of system (2) is showing that they
actually exist, at least locally.

Lemma 2.1. Let Ω be a bounded and smooth domain in Rn, n ≥ 2. Assume
γ, β, δ, χ > 0, r ≥ 1 and let 0 ≤ u0(x) ∈ C0(Ω̄) be any nontrivial initial datum.
Then for any ξ > 0 and f satisfying (3), problem (2) admits a unique classical
solution (u, v, w) of nonnegative functions, precisely in the class

C0([0, Tmax);C0(Ω))∩C2,1(Ω̄×(0, Tmax))×C2,0(Ω̄×(0, Tmax))×C2,0(Ω̄×(0, Tmax)).

Here Tmax ∈ (0,∞], denoting the maximal existence time, is such that (dichotomy
criterion) either Tmax = ∞ (global-in-time classical solution) or if Tmax < ∞
(local-in-time classical solution) then necessarily

(4) lim sup
t↗Tmax

‖u(·, t)‖L∞(Ω) =∞.

Moreover,

(5)

∫
Ω

u(·, t) = m :=

∫
Ω

u0 > 0 for all t ∈ (0, Tmax).

Proof. The �rst statement can be shown by straightforward adaptations of well-
established methods involving an appropriate �xed point framework and standard
parabolic and elliptic regularity theory (see, for instance, [Cie07], [HW05] and
[FWY15]), as well as related comparison principles. On the other hand, relation
(5) directly follows by integrating over Ω the equation for u in (2). �

Once the (at worst local) solvability for problem (2) is ensured, the bridge es-
tablishing the globability and boundedness is achieved throughout some speci�c Lp

estimates for these solutions. To be precise we have this
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Lemma 2.2. Under the assumptions of Lemma 2.1, ξ > 0 and f satisfying (3),
let (u, v, w) be the classical solution to problem (2). If for some n

2 < p < n the
functions u, f(u) and ur belong to L∞((0, Tmax);Lp(Ω)), then Tmax =∞ and u, v
and w are uniformly bounded in Ω× (0,∞).

Proof. Of course once it is shown that u ∈ L∞((0,∞);L∞(Ω)), both f(u) and ur

are in this same space, so the same property (due to elliptic regularity results on
the second and third equation of (2)) is enjoyed by v and w. From the hypotheses
f, ur ∈ L∞((0, Tmax);Lp(Ω)), the classical regularity theory on elliptic equations
in conjunction with Sobolev embedding theorems infer that

v, w ∈ L∞((0, Tmax);W 2,p(Ω)) and ∇v,∇w ∈ L∞((0, Tmax);W 1,p(Ω)),

and so

v, w ∈ L∞((0, Tmax);C [2−(n/p)](Ω̄)) and ∇v,∇w ∈ L∞((0, Tmax);Lq(Ω)),

for all n < q < p∗ := np
n−p . In particular, by posing ṽ = χu − ξw we have that for

some positive constant Cq

(6) ‖ṽ(·, t)‖Lq(Ω)+‖∇ṽ(·, t)‖Lq(Ω)≤ Cq for all t ∈ (0, Tmax).

Additionally, for any (x, t) ∈ Ω × (0, Tmax), the �rst equation of (2) reads ut =
∆u−∇ · (u∇ṽ) so that for t0 := max{0, t− 1} the representation formula yields

u(·, t) ≤ e(t−t0)∆u(·, t0)−
∫ t

t0

e(t−s)∆∇ · (u(·, s)∇ṽ(·, s))ds =: u1(·, t) + u2(·, t).

Under these circumstances, the rest of the proof follows that given in [VW27,
Lemma 4.1]; precisely, in order to control the L∞(Ω)-norm of u on (0, Tmax), �rst
one controls (also relying on u ∈ L∞((0, Tmax);Lp(Ω))) a suitable norm of the
cross di�usion term u∇ṽ by replacing relation (24) therein with bound (6), then
applications of known smoothing estimates for the Neumann heat semigroup entail
this uniform bound on (0, Tmax). Finally, the conclusion u ∈ L∞((0,∞);L∞(Ω))
is readily achieved from the dichotomy criterion (4). �

Remark 2 (On the question in [Vig19, Remark 1]). From the above lemma, the
open question posed in [Vig19, Remark 1] has a response: indeed, in the context
of [Vig19, Theorem 3.1], if the u-component of the solution (u, v, w) to the bi-
dimensional version of problem (2) with r = s = 1 becomes unbounded at some
�nite time t∗ (in the sense of the L∞(Ω)-norm) it also blows-up in the Lp(Ω)-norm
for any p > 1, since otherwise from Lemma 2.2 with n = 2 it would be globally
bounded. In particular, that theorem continues to be valid also without the extra
assumption that

∫
Ω
up ↗∞ as t↗ t∗.

3. Preparatory Lemmas

With the crucial implication of Lemma 2.2 in our hands, in this section we aim
at bounding on (0, Tmax) the functional φ(t) :=

∫
Ω
up̄, for p̄ > 1, by means of a

time independent constant. This will be obtained by deriving a proper absorptive
di�erential inequality for φ(t), exactly with the aid of a series of lemmas, which we
present according to our aims and bias.
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Lemma 3.1. Let Ω ⊂ Rn, n ≥ 2, be a bounded and smooth domain and δ > 0.
Then for any nonnegative h ∈ C2(Ω̄), the solution 0 ≤ ψ ∈ C3,κ(Ω̄), 0 < κ < 1, of
the problem

(7)

{
0 = ∆ψ + h− δψ in Ω,

ψν = 0 on ∂Ω,

has the following property: For any ĉ, σ > 0 and p > 1, there exists c̃ = c̃(σ, p) > 0
such that

(8) ĉ

∫
Ω

ψp+1 ≤ (σ + c̃)

∫
Ω

hp+1.

or

(9) ĉ

∫
Ω

ψp+1 ≤ σ
∫

Ω

hp+1 +
c̃

|Ω|p
(∫

Ω

h
)p+1

.

Proof. Retracing what has been presented in [Win14, Lemma 2.2] and [Lan15,
Lemma 2.2], we give herein some details there omitted. From (7), a direct integra-
tion over Ω produces, for any p > 1,

(10)

(∫
Ω

ψ

)p+1

=

(
1

δ

)p+1 (∫
Ω

h
)p+1

,

whilst testing procedures and Young's inequality yield

p

∫
Ω

ψp−1|∇ψ|2 + δ

∫
Ω

ψp+1 =

∫
Ω

ψph ≤ 4p

(p+ 1)2

∫
Ω

ψp+1

+
1

4p
(p+ 1)p−1

∫
Ω

hp+1.

This, through the identity |∇ψ
p+1

2 |2 = (p+1)2

4 ψp−1|∇ψ|2, reads for all η ∈ (0, 1
2 )

(11) η

∫
Ω

|∇ψ
p+1

2 |2 ≤ η
∫

Ω

ψp+1 + η
(p+ 1)p+1

4p+1p

∫
Ω

hp+1.

On the other hand, for the same η ∈ (0, 1
2 ), by virtue of the inclusions

W 1,2(Ω) ↪→↪→ L2(Ω) ↪→ L
2
p+1 (Ω),

Ehrling's Lemma (see [Sho97, Lemma 1.1]) yields a constant cE(η) > 0 such that

‖V ‖2L2(Ω) ≤ η‖V ‖
2
W 1,2(Ω) + cE(η)‖V ‖2

L
2
p+1 (Ω)

for all V ∈W 1,2(Ω);

subsequently, posing in this last relation V = ψ
p+1

2 and making use of (10) and
(11), we obtain

(1− 2η)

∫
Ω

ψp+1 ≤ η (p+ 1)p+1

4p+1p

∫
Ω

hp+1 +

(
1

δ

)p+1

cE(η)
(∫

Ω

h
)p+1

.

Finally, for any ĉ > 0 we introduce the increasing function σ : (0, 1
2 ) → (0,∞)

de�ned as σ(η) = η
1−2η

(p+1)p+1ĉ
4p+1p , and statement (8) follows with the choice

c̃ = c̃(σ, p) :=
ĉ|Ω|p

δp+1

cE(η−1(σ))

1− 2η−1(σ)
,
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once Hölder's inequality provides(
1

δ

)p+1

cE(η)
(∫

Ω

h
)p+1

≤ |Ω|
p

δp+1
cE(η)

∫
Ω

hp+1.

If, indeed, we refrain from using such an inequality, we directly get relation (9). �

Lemma 3.2. Let Ω ⊂ Rn, n ≥ 2, be a bounded and smooth domain. Then we have
these estimates:

• For any p̄ > 1 and 0 < θ1 =
p̄
2−

1
2

p̄
2 + 1

n−
1
2

< 1, there is a constant c∗ > 0 such

that all functions 0 ≤ ψ ∈ L1(Ω), with m :=
∫

Ω
ψ and ∇ψ

p̄
2 ∈ L2(Ω), ful�ll

(12)

∫
Ω

ψp̄ ≤ 4(p̄− 1)

p̄

∫
Ω

|∇ψ
p̄
2 |2 + c∗ for all t ∈ (0, Tmax).

Herein c∗ = c∗(m) > 0, and c∗(m)↗ 0 as m↗ 0.
• For any arbitrary reals ε1 > 0, s ≥ 1 and p̄ > ns

2 ≥ 1, there exist computable
and m-independent constants d1(ε1), c1 > 0 such that all functions 0 ≤ ψ ∈
Lp̄(Ω), with m :=

∫
Ω
ψ and ∇ψ

p̄
2 ∈ L2(Ω), comply with

(13)

∫
Ω

ψp̄+s ≤ ε1
∫

Ω

|∇ψ
p̄
2 |2 + d1(ε1)

(∫
Ω

ψp̄
) 2p̄+2s−sn

2p̄−ns

+ c1m
p̄+s on (0, Tmax).

Proof. The proof of (12) comes from an application of a general case of the Gagliardo�
Nirenberg inequality: in particular, for any p̄ > 1, we can use [Vig 0, (22) of Lemma

4] with f = u
p̄
2 , p = q = 2 and r = 2

p̄ so to explicitly have (recall (a+b)2 ≤ 2(a2+b2),

for all a, b ∈ R) for some CGN > 0∫
Ω

ψp̄ = ‖ψ
p̄
2 ‖2L2(Ω) ≤ C

2
GN (‖∇ψ

p̄
2 ‖θ1L2(Ω)‖ψ

p̄
2 ‖1−θ1
L

2
p̄ (Ω)

+ ‖ψ
p̄
2 ‖
L

2
p̄ (Ω)

)2

= 2C2
GNm

p̄(1−θ1)

(∫
Ω

|∇ψ
p̄
2 |2
)θ1

+ 2C2
GNm

p̄ on (0, Tmax);

hence, we conclude invoking the Young inequality with exponents θ1 and (1 − θ1)

and with c∗ = 2C2
GNm

p̄[(1− θ1)( 2(p̄−1)
p̄θ1C2

GN
)

θ1
θ1−1 + 1].

To prove bound (13), the classical Gagliardo�Nirenberg inequality (see [Nir59,

p. 126]) infers another C̃GN > 0 by means of which we can control
∫

Ω
ψp̄+s on

(0, Tmax) as follows:∫
Ω

ψp̄+s = ‖ψ
p̄
2 ‖2

p̄+s
p̄

L
2
p̄+s
p̄ (Ω)

≤
(
C̃GN (‖∇ψ

p̄
2 ‖θ2L2(Ω)‖ψ

p̄
2 ‖1−θ2L2(Ω) + C̃GN‖ψ

p̄
2 ‖
L

2
p̄ (Ω)

)2 p̄+s
p̄

,

with, since p̄ > ns
2 ⇒ p̄ > (n− 2) s2 , θ2 = ns

2(p̄+s) ∈ (0, 1). Hence by using

(a+ b)2 p̄+s
p̄ ≤ 22 p̄+s

p̄ −1
(
a2 p̄+s

p̄ + b2
p̄+s
p̄

)
with a, b ≥ 0,

we get for some m-independent c0 > 0∫
Ω

ψp̄+s ≤ c0
(∫

Ω

|∇ψ
p̄
2 |2
)ns

2p̄
(∫

Ω

ψp̄
) 2p̄+2s−ns

2p̄

+ c0m
p̄+s on (0, Tmax).

Finally, an application of the Young inequality with exponents ns
2p̄ and 1− ns

2p̄ and

supported by the introduction of an arbitrarily positive ε1, infers the statement. �
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Lemma 3.3. Let γ0 > 1 and l, L, C > 0 ful�ll the strict inequality

(14) C <

(
lγ0

Lγ0

) 1
γ0−1

(
γ0 − 1

γ0

)
.

Then there exists φ∗ > 0 such that solutions of the initial problem

(15)

{
φ′(t) ≤ −lφ(t) + Lφ(t)γ0 + C for t > 0,

φ(0) ≤ φ∗,

satisfy φ(t) ≤ φ∗ for all t ∈ (0,∞).

Proof. For any φ ≥ 0, let us de�ne the regular function H(φ) := −lφ+ Lφγ0 + C.
Hence it is straightforwardly seen that

H(0) = C > 0, lim
φ→+∞

H(φ) = +∞,

and that for φm := (l/Lγ0)
1

γ0−1 it holds that H ′(φm) = 0; speci�cally the point
(φm, H(φm)) represents the absolute minimum of H. On the other hand, in view
of relation (14), we can check that

H(φm) = C −
(
lγ0

Lγ0

) 1
γ0−1

(
γ0 − 1

γ0

)
< 0.

In this way, the existence of 0 < φ0 < φm < φ∗ such that H(φ0) = H(φ∗) = 0 is
guaranteed (see sub�gure 1(a)). In particular φ∗ itself is a (global) supersolution
of the equation φ′ = H(φ) (like φ0, but it is smaller than φ∗) satisfying the initial
condition φ∗(0) = φ∗. We �nally conclude by comparison arguments, since φ is a
subsolution (sub�gure 1(b)) to problem (15). �

(a) The smallest (φ0) and the largest (φ∗) roots
of the equation H(φ) = 0. The value φm is the
minimum point of H and the absolute minimum
H(φm) is such that H(φm) < 0.

(b) The funtions φ(t) = φ0 and φ(t) = φ∗ are,
respectively, the (gloabl) stable and unstable su-
persolutions of the equation φ′ = H(φ); hence
any subsolution of φ′ = H(φ) complying with
φ(0) ≤ φ∗ remains below φ∗.

Figure 1. Interpretation of comparison principles.

Remark 3. Relation (8) of Lemma 3.1 is essential to estimate in the proofs of
the three theorems integrals involving the w-component of the solution (u, v, w) to
problem (2) in terms of others involving the u-component. A similar role is played
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by (12) of Lemma 3.2, by means of which certain bounds on (0, Tmax) of
∫

Ω
∇u

p̄
2

are expressed as linear combinations of powers of φ(t). Conversely Lemma 3.3 and
(13) of Lemma 3.2 are employed only during the proof of Theorem 4.8, for which
the desired absorptive di�erential inequality for φ(t) can be achieved under precise
technical conditions (as for instance (14) of Lemma 3.3).

4. Some properties of classical solutions: Proofs of the theorems

The succeeding three subsections, §4.1, §4.2 and §4.3, include the formal proofs
of the conceptual results presented in items i), ii) and iii) of §1. The contents of
these subsections are all concerned with the derivations of a priori estimates on
(0, Tmax) for the component u of the solution (u, v, w) to problem (2) provided by
Lemma 2.1. To be precise, the evolutive analysis on (0, Tmax) of the functional
φ(t) :=

∫
Ω
up̄ is the instrument implying the desired bound for u in Lp(Ω); in turn,

such a bound is su�cient to guarantee the uniform boundedness of u. Henceforth,
let us continue our computation toward such a derivation.

4.1. The case r > s ≥ 1. Proof of Theorem 4.4.

Lemma 4.1. Under the assumptions of Lemma 2.1, ξ > 0 and f satisfying (3)
with the precise choice r > s ≥ 1, let (u, v, w) be the classical solution to problem
(2). Then for any ε2, ε3, σ > 0 and p > 1, there exists c̃ > 0 and d3(ε3) > 0 such
that for p̄ = pr the u-component satis�es for all t ∈ (0, Tmax)

d

dt

∫
Ω

up̄ ≤ −4(p̄− 1)

p̄

∫
Ω

|∇u
p̄
2 |2+[

ε2 + ε3 + γp+1(σ + c̃)− ξγ(p̄− 1)
] ∫

Ω

up̄+r + d3(ε3).

Proof. We set p̄ = pr and compute d
dt

∫
Ω
up̄. Using problem (2) and the divergence

theorem (applied twice in both cross-di�usion terms), thanks to the hypotheses (3)
on f , we have that for all t ∈ (0, Tmax)

d

dt

∫
Ω

up̄ = p̄

∫
Ω

up̄−1ut = p̄

∫
Ω

up̄−1[∆u− χ∇ · (u∇v) + ξ∇ · (u∇w)]

≤ −4
(p̄− 1)

p̄

∫
Ω

|∇u
p̄
2 |2 + αχ(p̄− 1)

∫
Ω

up̄+s

+ ξδ(p̄− 1)

∫
Ω

up̄w − γξ(p̄− 1)

∫
Ω

up̄+r − χβ(p̄− 1)

∫
Ω

up̄v.

(16)

For any ε2 > 0 and some d2(ε2) > 0, by relying �rst on Young's inequality and then
on (8) with h = γur, ψ = w and ĉ = d2(ε2), we can write on (0, Tmax)

ξδ(p̄− 1)

∫
Ω

up̄w ≤ ε2
∫

Ω

up̄+r + d2(ε2)

∫
Ω

wp+1

≤ ε2
∫

Ω

up̄+r + γp+1(σ + c̃)

∫
Ω

up̄+r,

(17)

and, again by Young's inequality for any ε3 > 0 and some d3(ε3) > 0

αχ(p̄− 1)

∫
Ω

up̄+s ≤ ε3
∫

Ω

up̄+r + d3(ε3) on (0, Tmax).(18)

We henceforth have the claim by plugging these two gained estimates in (16) and
neglecting the nonpositive term −χβ(p− 1)

∫
Ω
upv. �
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Lemma 4.2. Under the assumptions of Lemma 2.1, and f satisfying (3) with the
precise choice r > s ≥ 1, the following holds: For any σ > 0 and p > 1, there
exists ξ∗(σ, p) > 0 such that if ξ > ξ∗(σ, p) and (u, v, w) is the classical solution to
problem (2), we obtain for p̄ = pr and some c2 > 0

d

dt

∫
Ω

up̄ ≤ −4
p̄− 1

p̄

∫
Ω

|∇u
p̄
2 |2 + c2 for all t ∈ (0, Tmax).

Proof. For any σ > 0 and p > 1, let us set ξ∗(σ, p) = γp σ+c̃
rp−1 , where c̃ = c̃(σ, p) was

introduced in Lemma 3.1. Assumption ξ > ξ∗(σ, p) allows us to choose in Lemma
4.1 these values: ε2 = ε3 = k

2 , with k = γ(p̄ − 1)(ξ − ξ∗(σ, p)) > 0. Thereafter, we

see that ε2 + ε3 + γp+1(σ + c̃)− ξγ(p̄− 1) = 0, and this yields the conclusion with
c2 = d3

(
k
2

)
. �

Lemma 4.3. Under the assumptions of Lemma 2.1, σ > 0, p > 1 and f satisfying
(3) with the precise choice r > s ≥ 1, let ξ∗(σ, p) be the constant provided in Lemma
4.1. Then if ξ > ξ∗(σ, p), the classical solution (u, v, w) to problem (2) is such that
for p̄ = pr and some D > 0∫

Ω

up̄ ≤ D for all t ∈ (0, Tmax).

Proof. For p̄ = pr > 1, by employing (12) of Lemma 3.2 with ψ = u we have the
inequality

−4
p̄− 1

p̄

∫
Ω

|∇u
p̄
2 |2 ≤ −

∫
Ω

up̄ + c∗ for all t ∈ (0, Tmax),

which in conjunction with Lemma 4.2 produce for for φ(t) =
∫

Ω
up̄ the absorp-

tive di�erential inequality φ′(t) ≤ c3 − φ(t) on (0, Tmax), with c3 = c∗ + c2. By
complementing this inequality with the natural initial condition φ(0) =

∫
Ω
up̄0, we

immediately have φ(t) ≤ max{φ(0), c3} =: D, for all t ∈ (0, Tmax). �

We can hence show the �rst

Theorem 4.4. Let Ω ⊂ Rn, n ≥ 2, be a bounded and smooth domain. Assume
β, γ, δ, χ > 0, r > 1, f satisfying (3) for r > s ≥ 1, and let 0 ≤ u0(x) ∈ C0(Ω̄)
be any nontrivial initial datum. Then there exists ξ∗ such that, if ξ > ξ∗, problem
(2) admits a unique solution (u, v, w) of nonnegative and bounded functions in the
class

C0([0,∞);C0(Ω)) ∩ C2,1(Ω̄× (0,∞))× C2,0(Ω̄× (0,∞))× C2,0(Ω̄× (0,∞)).

Proof. For any n ≥ 2, let σ = 1, p = 3n
4 ∈ (n2 , n) and ξ∗ = ξ∗(1, 3n

4 ) from Lemma
4.2. Additionally for ξ > ξ∗, let (u, v, w) be the classical solution to (2) provided
by Lemma 2.1. The assumption ξ > ξ∗ allows us to apply Lemma 4.3; hence, for
any r > 1, ur ∈ L∞((0, Tmax);Lp(Ω)) and in turn u, us ∈ L∞((0, Tmax);Lp(Ω)). In
particular, from (3), we have f ∈ L∞((0, Tmax);Lp(Ω)) as well, and an application
of Lemma 2.2 immediately concludes the proof.

�
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4.2. The case s > r ≥ 1. Proof of Theorem 4.8.

Lemma 4.5. Under the assumptions of Lemma 2.1, and f satisfying (3) with the
precise choice s > r ≥ 1, the following holds: For any σ > 0 and p > 1, there
exists ξ∗(σ, p) > 0 such that if ξ ≥ ξ∗(σ, p) and (u, v, w) is the classical solution to
problem (2), we obtain for p̄ = ps

d

dt

∫
Ω

up̄ ≤ −4
p̄− 1

p̄

∫
Ω

|∇u
p̄
2 |2 + c4

∫
Ω

up̄+s on (0, Tmax).

with some computable c4 > 0.

Proof. Let p̄ = ps; the Young inequality and (8), with h = γur, ψ = w and ĉ = c5
(with some c5 > 0), entail

ξδ(p̄− 1)

∫
Ω

up̄w ≤ χα(p̄− 1)

∫
Ω

up̄+s + c5

∫
Ω

wp+1

≤ χα(p̄− 1)

∫
Ω

up̄+s + γp+1(σ + c̃)

∫
Ω

up̄+r on (0, Tmax),

so that from relation (16) we have

d

dt

∫
Ω

up̄ ≤ −4
(p̄− 1)

p̄

∫
Ω

|∇u
p̄
2 |2 + 2αχ(p̄− 1)

∫
Ω

up̄+s

+ [γp+1(σ + c̃)− γξ(p̄− 1)]

∫
Ω

up̄+r on (0, Tmax).

(19)

Taking ξ∗(σ, p) = γp σ+c̃
ps−1 (naturally c̃(σ, p) again from Lemma 3.1), the assumption

ξ ≥ ξ∗(σ, p) implies what we claimed for c4 = 2αχ(p̄− 1). �

Lemma 4.6. Under the assumptions of Lemma 2.1, σ > 0, p > n
2 and f satisfying

(3) with the precise choice s > r ≥ 1, let ξ∗(σ, p) be the constant provided in Lemma
4.5. Then if ξ ≥ ξ∗(σ, p), the classical solution (u, v, w) to problem (2) is such that
for p̄ = ps and γ0 = 2p+2−n

2p−n > 1

d

dt

∫
Ω

up̄ ≤ −l
∫

Ω

up̄ + L

(∫
Ω

up̄
)γ0

+ C on (0, Tmax),

with l, L, C > 0 computable and m-independent constants. Additionally, C = C(m)
is such that C(m)↗ 0 as m↗ 0.

Proof. The assumption on p implies ps = p̄ > ns
2 . In order to estimate

∫
Ω
up̄+s

appearing in the conclusion of Lemma 4.5, we use (13) with ψ = u and set γ0 =
2p+2−n

2p−n so having

d

dt

∫
Ω

up̄ ≤
(
−4

p̄− 1

p̄
+ c4ε1

)∫
Ω

|∇u
p̄
2 |2 + c4d1(ε1)

(∫
Ω

up̄
)γ0

+ c4c1m
p̄+s,

for all t ∈ (0, Tmax). On the other hand, for ε1 = 2 p̄−1
p̄c4

, recalling the expression of

c∗ in relation (12), the previous estimate reads

d

dt

∫
Ω

up̄ ≤ −1

2

∫
Ω

up̄ + c4d1

(
2
p̄− 1

p̄c4

)(∫
Ω

up̄
)γ0

+mp̄ (c7 + c8m
s) t ∈ (0, Tmax),

for computable (andm-independent) c7, c8 > 0, so that we conclude with an evident
choice of l, L and C = C(m). �
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Lemma 4.7. Under the assumptions of Lemma 2.1, σ > 0, p > n
2 and f satisfying

(3) with the precise choice s > r ≥ 1, let ξ∗(σ, p) be the constant provided in Lemma
4.5. Then for p̄ = ps there exist m∗ > 0 and φ∗ > 0 with the following property:
For any 0 ≤ u0 ∈ C0(Ω̄) complying with

(20)

∫
Ω

u0 ≤ m∗ and

∫
Ω

up̄0 ≤ φ∗,

the classical solution (u, v, w) to problem (2) emanating from u0 satis�es∫
Ω

up̄ ≤ φ∗ on (0,∞).

Proof. For l, L, γ0 taken from Lemma 4.6, σ > 0, p > n
2 and ξ∗(σ, p) as in Lemma

4.5, we choose m∗ su�ciently small as to ensure for C = C(m∗) (from the same
Lemma 4.6) the validity of bound (14) in Lemma 3.3. In turn, for φ∗ > 0 provided
by this last lemma, let 0 ≤ u0 ∈ C0(Ω̄) ful�ll assumptions (20), and (u, v, w)
be the classical solution to problem (2) established in Lemma 2.1. Under these
circumstances, since from Lemma 4.6 it is seen that φ(t) =

∫
Ω
up̄ satis�es the

initial problem (15) of Lemma 3.3, we have the claim. �

We so have the second

Theorem 4.8. Let Ω ⊂ Rn, n ≥ 2, be a bounded and smooth domain. Assume
β, γ, δ, χ > 0, r ≥ 1, f satisfying (3) for s > r ≥ 1, and let 0 ≤ u0(x) ∈ C0(Ω̄) be
any nontrivial initial datum. There exist ξ∗,m∗ > 0 and φ∗ > 0 such that, if ξ ≥ ξ∗,
then for any 0 ≤ u0(x) ∈ C0(Ω̄) ful�lling

∫
Ω
u0 ≤ m∗ as well as

∫
Ω
u

3ns
4

0 ≤ φ∗,
problem (2) admits a unique solution (u, v, w) of nonnegative and bounded functions
in the class

C0([0,∞);C0(Ω)) ∩ C2,1(Ω̄× (0,∞))× C2,0(Ω̄× (0,∞))× C2,0(Ω̄× (0,∞)).

Proof. For any n ≥ 2, let σ = 1, p = 3n
4 ∈ (n2 , n), ξ∗ = ξ∗(1,

3n
4 ) as in Lemma

4.5 and m∗ and φ∗ taken according to Lemma 4.7. In this way, for u0 complying
with our assumptions, the u-component of the classical solution to problem (2) is
such that us ∈ Lp((0, Tmax);L∞(Ω)). Subsequently, and reasoning exactly as in
the proof of Theorem 4.4, we rely on Lemma 2.2 and conclude. �

4.3. The case s < 1 and r = 1. Proof of Theorem 4.9. The next theorem
closes our paper.

Theorem 4.9. Let Ω ⊂ Rn, n ≥ 2, be a bounded and smooth domain. Assume
β, γ, δ, ξ, χ > 0, f satisfying (3) for s < 1 and r = 1, and let 0 ≤ u0(x) ∈ C0(Ω̄) be
any nontrivial initial datum. Then problem (2) admits a unique solution (u, v, w)
of nonnegative and bounded functions in the class

C0([0,∞);C0(Ω)) ∩ C2,1(Ω̄× (0,∞))× C2,0(Ω̄× (0,∞))× C2,0(Ω̄× (0,∞)).

Proof. In light of all of the above (particularly taking in mind proof the of Theorem
4.9), it is su�cient to show that for p̄ = pr = p, and some n

2 < p < n and c > 0,
we arrive at the crucial inequality

d

dt

∫
Ω

up ≤ −4(p− 1)

p

∫
Ω

|∇u
p
2 |2 + c for all t ∈ (0, Tmax).
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This is simply attained by applying (9) with h = γur = γu, ψ = w and ĉ = d2(ε2),
invoking the conservation of mass

∫
Ω
u = m for all t ∈ (0, Tmax), so to reduce

relation (17) into

ξδ(p̄− 1)

∫
Ω

up̄w ≤ ε2
∫

Ω

up̄+r + γp+1σ

∫
Ω

up̄+r +
c̃

|Ω|p
(mγ)p+1 on (0, Tmax).

Choosing ε2 and σ su�ciently small, as well as ε3 in estimate (18), there is c > 0
such that bound (16) becomes exactly as our desired inequality.

�
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