Two positive solutions for a nonlinear Neumann problem involving the discrete p-Laplacian

G. Bonanno, P. Candito and G. D'Aguì

Abstract This paper is devoted to study of existence of at least two positive solutions for a nonlinear Neumann boundary value problem involving the discrete *p*-Laplacian.

Key words: Multiple solutions, Difference equations, Neumann problem¹

1 Introduction

In this paper, we investigate the existence of two positive solutions for the following nonlinear discrete Neumann boundary value problem

$$\begin{cases} -\Delta(\phi_p(\Delta u(k-1))) + q(k)\phi_p(u(k)) = \lambda f(k,u(k)), & k \in [1,N], \\ \Delta u(0) = \Delta u(N) = 0, \end{cases}$$
 $(N_{\lambda,\underline{f}})$

where λ is a positive parameter, *N* is a fixed positive integer, [0, N+1] is the discrete interval $\{0, ..., N+1\}$, $\phi_p(s) := |s|^{p-2}s$, $1 and for all <math>k \in [0, N+1]$, q(k) > 0, $\Delta u(k) := u(k+1) - u(k)$ denotes the forward difference operator and

P. Candito

G. Bonanno

Department of Engineering, University of Messina, Contrada Di Dio, (S. Agata), 98166 Messina, Italy, e-mail: bonanno@unime.it

Department DICEAM, University of Reggio Calabria, Via Graziella (Feo Di Vito), 89122 Reggio Calabria, Italy e-mail: pasquale.candito@unirc.it

G. D'Aguì

Department of Engineering, University of Messina, Contrada Di Dio, (S. Agata), 98166 Messina, Italy, e-mail: dagui@unime.it

¹ 2010 Mathematics Subject Classification: 39A10; 39A12; 34B15.

 $f: [0, N+1] \times \mathbb{R} \to \mathbb{R}$ is a continuous function.

The theory of difference equations employs numerical analysis, fixed point methods, upper an lower solutions methods (see, for instance, [4, 6, 8, 25]). The variational approach represents an important advance as it allows to prove multiplicity results, usually, under a suitable condition on the nonlinearities, see [2, 3, 8, 9, 10, 11, 12, 15, 16, 17, 18, 21, 22, 23, 26, 28].

In the present paper, we study the problem $(N_{\lambda,f})$ following a variational approach, based on a recent result of Bonanno and D'Aguì (see [7]), that assures the existence of at least two non trivial critical points for a certain class of functionals defined on infinite-dimensional Banach space. This theorem is obtained by combining a local minimum result given in [14], together with the Ambrosetti-Rabinowitz theorem (see [5]). In the application of the mountain pass theorem, to prove the Palais-Smale condition of the energy functional associated to the nonlinear differential problems, the Ambrosetti-Rabinowitz condition is requested on the nonlinear term, in particular this means that the nonlinear term has to be more than p-superlinear at infinity.

In this paper, exploiting that the variational framework of the problem $(N_{\lambda,f})$ is defined in a finite-dimensional space, we prove that the *p*-superlinearity at infinity of the primitive on the nonlinearity is enough to prove the Palais-Smale condition. For a complete overview on variational methods on finite Banach spaces and discrete problems, see [13]. We obtain, here, Theorem (2), which gived the existence of two positive solutions, by requirin an algebraic condition on the nonlinearity (we mean (6) in 2).

The paper is so organized: Section 2, contains basic definitions and main results on difference equations and some critical point tools, in addition, Lemma 2 is given in order to prove the Palais-Smale condition of the functional associated to problem $(N_{\lambda, \underline{f}})$. Section 3 is devoted to our main result. In particular, our main theorem allows us to obtain two positive solutions with only one hypothesis on the primitive of the nonlinear term f without any asymptotic behaviour at zero. moreover, a consequence (Corollary 1) (requiring the p-superlinearity at infinity and the p-sublinearity at zero on the primitive of f) of our main result is presented in order to show the applicability of our results.

2 Mathematical Background

In the N + 2-dimensional Banach space

$$X = \{u: [0, N+1] \rightarrow \mathbb{R} : \Delta u(0) = \Delta u(N) = 0\},\$$

we consider the norm

2

$$||u|| := \left(\sum_{k=1}^{N+1} |\Delta u(k-1)|^p + \sum_{k=1}^N q(k)|u(k)|^p\right)^{1/p} \quad \forall u \in X.$$

Moreover, we will use also the equivalent norm

$$\|u\|_{\infty} := \max_{k \in [0, N+1]} |u(k)|, \quad \forall u \in X$$

For our purpose, it will be useful the following inequality

$$||u||_{\infty} \le ||u||q^{-1/p}, \quad \forall u \in X, \quad \text{where} \quad q := \min_{k \in [1,N]} q_k.$$
 (1)

Moreover, we mention the classical Hölder norm on X.

$$||u||_p = \left(\sum_{k=0}^{N+1} |u(k)|^p\right)^{\frac{1}{p}}.$$

We observe that being X a finite dimensional Banach space, all norms defined on it are equivalent and in particular, there exist two positive constants L_1 and L_2 such that $L_1 = \|L_1\| \le \|L_1\| \le L_2 = \|L_1\| \le L_2$

$$L_1 \|u\|_p \le \|u\| \le L_2 \|u\|_p.$$
⁽²⁾

To describe the variational framework of problem $(N_{\lambda,\underline{f}})$, we introduce the following two functions

$$\Phi(u) := \frac{\|u\|^p}{p} \quad \text{and} \quad \Psi(u) := \sum_{k=1}^N F(k, u(k)), \quad \forall u \in X,$$
(3)

where $F(k,t) := \int_0^t f(k,\xi) d\xi$ for every $(k,t) \in [1,N] \times \mathbb{R}$. Clearly, Φ and Ψ are two functionals of class $C^1(X,\mathbb{R})$ whose Gâteaux derivatives at the point $u \in X$ are given by

$$\Phi'(u)(v) = \sum_{k=1}^{N+1} \phi_p \left(\Delta u \left(k - 1 \right) \right) \Delta v \left(k - 1 \right) + q(k) \left| u(k) \right|^{p-2} u(k) v(k) \,,$$

and

$$\Psi'(u)(v) = \sum_{k=1}^{N} f(k, u(k)) v(k),$$

for all $u, v \in X$. Taking into account that

$$-\sum_{k=1}^{N} \Delta(\phi_p(\Delta u(k-1)))v(k) = \sum_{k=1}^{N+1} \phi_p(\Delta u(k-1))\Delta v(k-1), \quad \forall \ u \ v, \in X,$$

it is easy to verify, see also [28], that

Lemma 1. A vector $u \in X$ is a solution of problem $(N_{\lambda,f})$ if and only if u is a critical point of the function $I_{\lambda} = \Phi - \lambda \Psi$.

Let $(X, \|\cdot\|)$ be a Banach space and let $I \in C^1(X, \mathbb{R})$. We say that I satisfies the Palais-Smale condition, (in short (*PS*)-condition), if any sequence $\{u_n\}_{n \in \mathbb{N}} \subseteq X$ such that

- 1. $\{I(u_n)\}_{n\in\mathbb{N}}$ is bounded,
- 2. $\{I'(u_n)\}_{n \in \mathbb{N}}$ converges to 0 in X^* ,

admits a subsequence which is convergent in X.

Here, we recall the abstract result established in [7], on the existence of two nonzero critical points.

Theorem 1. Let X be a real Banach space and let $\Phi, \Psi : X \to \mathbb{R}$ be two functionals of class C^1 such that $\inf_X \Phi = \Phi(0) = \Psi(0) = 0$. Assume that there are $r \in \mathbb{R}$ and $\tilde{u} \in X$, with $0 < \Phi(\tilde{u}) < r$, such that

$$\frac{\sup_{u\in\Phi^{-1}(]-\infty,r])}\Psi(u)}{r} < \frac{\Psi(\tilde{u})}{\Phi(\tilde{u})},\tag{4}$$

-

and, for each

$$\lambda \in \Lambda = \left] rac{ arPsi_{}(ilde{u}) }{ arPsi_{}(ilde{u}) }, rac{ r }{ \sup_{ u \in arPsi_{}^{-1}(]-\infty,r]) } arPsi_{}(u) }
ight[,$$

the functional $I_{\lambda} = \Phi - \lambda \Psi$ satisfies the (PS)-condition and it is unbounded from below.

Then, for each $\lambda \in \Lambda$, the functional I_{λ} admits at least two non-zero critical points $u_{\lambda,1}$, $u_{\lambda,2}$ such that $I(u_{\lambda,1}) < 0 < I(u_{\lambda,2})$.

Here and in the sequel we suppose $f(k,0) \ge 0$ for all $k \in [1,N]$. We assume that f(k,x) = f(k,0) for all x < 0 and for all $k \in [1,N]$. Put

$$L_{\infty}(k) := \liminf_{s \to +\infty} \frac{F(k,s)}{s^p}, \quad L_{\infty} := \min_{k \in [1,N]} L_{\infty}(k).$$

We give the following lemma.

Lemma 2. If $L_{\infty} > 0$ then I_{λ} satisfies (PS)-condition and it is unbounded from below for all $\lambda \in \left[\frac{L_2^p}{pL_{\infty}}, +\infty\right]$, where L_2 is given in (2).

4

Proof. Since $L_{\infty} > 0$ we put $\lambda > \frac{L_2^p}{pL_{\infty}}$ and l such that $L_{\infty} > l > \frac{L_2^p}{p\lambda}$. Let $\{u_n\}$ be a sequence such that $\lim_{n \to +\infty} I_{\lambda}(u_n) = c$ and $\lim_{n \to +\infty} I'_{\lambda}(u_n) = 0$. Put $u_n^+ = \max\{u_n, 0\}$ and $u_n^- = \max\{-u_n, 0\}$ for all $n \in \mathbb{N}$. We have that $\{u_n^-\}$ is bounded. In fact, one has

$$\left|\Delta u_n^{-}(k-1)\right|^p \leq -\phi_p \left(\Delta u_n(k-1)\right) \Delta u_n^{-}(k-1),$$

for all $k \in [1, N+1]$, and

$$q(k) |u_n^-(k)|^p = -q(k) |u_n(k)|^{p-2} u_n(k) u_n^-(k),$$

for all $k \in [1, N+1]$. So we have,

$$\sum_{k=1}^{N+1} \left(\left| \Delta u_n^-(k-1) \right|^p + q(k) \left| u_n^-(k) \right|^p \right)$$

$$\leq -\sum_{k=1}^{N+1} \left(\phi_p \left(\Delta u_n(k-1) \right) \Delta u_n^-(k-1) + q(k) \left| u_n(k) \right|^{p-2} u_n(k) u_n^-(k) \right)$$

So,

$$\begin{aligned} \|u_n^-\|^p &= \sum_{k=1}^{N+1} \left(\left| \Delta u_n^-(k-1) \right|^p + q(k) \left| u_n^-(k) \right|^p \right) \\ &\leq -\sum_{k=1}^{N+1} \left(\phi_p \left(\Delta u_n(k-1) \right) \Delta u_n^-(k-1) + q(k) \left| u_n(k) \right|^{p-2} u_n(k) u_n^-(k) \right) \\ &= -\Phi'(u_n)(u_n^-). \end{aligned}$$

By definition of u_n^- and taking into account that f(k,x) = f(k,0) for all x < 0 and for all $k \in [1,N]$, we have

$$\Psi'(u_n)(u_n^-) = \sum_{k=1}^N f(k, u_n(k)) u_n^-(k) \ge 0$$

So, we get

$$||u_n^-||^p \leq -\Phi'(u_n)(u_n^-) \leq -\Phi'(u_n)(u_n^-) + \lambda \Psi'(u_n)(u_n^-),$$

that is

$$\|u_n^-\|^p \le -I'_{\lambda}(u_n)(u_n^-),\tag{5}$$

for all $n \in \mathbb{N}$. Now, from $\lim_{n \to +\infty} I'_{\lambda}(u_n) = 0$, one has $\lim_{n \to +\infty} \frac{I'_{\lambda}(u_n)(u_n^-)}{\|u_n^-\|} = 0$, for which, taking (5) into account, gives $\lim_{n \to +\infty} \|u_n^-\| = 0$. So, we obtain the clain. And, there is

M > 0 such that $||u_n^-|| \le M$, $||u_n^-||_p \le \frac{M}{L_1} = L$, $0 \le u_n^-(k) \le L$ for all $k \in [1, N]$ for all $n \in \mathbb{N}$.

At this point, by contradiction argument, assume that $\{u_n\}$ is unbounded (that is, $\{u_n^+\}$ is unbounded).

From $\liminf_{s \to +\infty} \frac{F(k,s)}{s^p} = L_{\infty}(k) \ge L_{\infty} > l$ there is $\delta_k > 0$ such that $F(k,s) > ls^p$ for all $s > \delta_k$. Moreover,

$$\begin{split} F(k,s) &\geq \min_{s \in [-L,\delta_k]} F(k,s) \geq ls^p - l\left(\max\{\delta_k,L\}\right)^p + \min_{s \in [-L,\delta_k]} F(k,s) \\ &\geq ls^p - \max\{l\left(\max\delta_k,L\right)^p - \min_{s \in [-L,\delta_k]} F(k,s), 0\} = ls^p - Q(k) \end{split}$$

for all $s \in [-L, \delta_k]$. Hence, $F(k, s) \ge ls^p - Q(k)$ for all $s \ge -L$. It follows that $F(k, u_n(k)) \ge l(u_n(k))^p - Q(k)$ for all $n \in \mathbb{N}$ and for all $k \in [1, N]$, $\sum_{k=1}^N F(k, u_n(k)) \ge$ $\sum_{k=1}^N [l(u_n(k))^p - Q(k)] = l ||u_n||_p^p - \sum_{k=1}^N Q(k) = l ||u_n||_p^p - \overline{Q}$, that is, $\Psi(u_n) \ge l ||u_n||_p^p - \overline{Q}$,

for all $n \in \mathbb{N}$. Therefore, one has

$$I_{\lambda}(u_n) = \Phi(u_n) - \lambda \Psi(u_n) = \frac{1}{p} ||u_n||^p - \lambda \Psi(u_n) \leq \frac{L_2^p}{p} ||u_n||_p^p - \lambda l ||u_n||_p^p + \lambda \overline{Q},$$

that is

$$I_{\lambda}(u_n) \leq \left(\frac{L_2^p}{p} - \lambda l\right) \|u_n\|_p^p + \lambda \overline{Q},$$

for all $n \in \mathbb{N}$. Since $||u_n||_p \to +\infty$ and $\frac{L_2^p}{p} - \lambda l < 0$, one has $\lim_{n \to +\infty} I_{\lambda}(u_n) = -\infty$ and this is absurd. Hence, I_{λ} satisfies (PS)-condition.

Finally, we get that I_{λ} is unbounded from below. Let $\{u_n\}$ be such that $\{u_n^-\}$ is bounded and $\{u_n^+\}$ is unbounded. As before, we obtain $\Psi(u_n) \ge l ||u_n||_p^p - \overline{Q}$, for all $n \in \mathbb{N}$ and, consequently, $I_{\lambda}(u_n) \le \left(\frac{L_2^p}{p} - \lambda l\right) ||u_n||_p^p + \lambda \overline{Q}$, for all $n \in \mathbb{N}$. Hence, $\lim_{n \to +\infty} I_{\lambda}(u_n) = -\infty$ and the proof is complete.

3 Main Results

In this section, we present the main existence result of our paper. We start putting

$$Q = \sum_{k=1}^{N} q(k).$$

Theorem 2. Let $f : [1,N] \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that $f(k,0) \ge 0$ for all $k \in [1,N]$, and $f(k,0) \ne 0$ for some $k \in [1,N]$. Assume also that there exist two positive constants c and d with d < c such that

$$\frac{\sum_{k=1}^{N} \max_{|\xi| \le c} F(k,\xi)}{c^{p}} < q \min\left\{\frac{1}{Q} \frac{\sum_{k=1}^{N} F(k,d)}{d^{p}}, \frac{L_{\infty}}{L_{2}^{p}}\right\}.$$
(6)

Then, for each $\lambda \in \overline{\Lambda}$ *with*

$$\bar{\Lambda} = \left] \max\left\{ \frac{Q}{p} \frac{d^p}{\sum\limits_{k=1}^N F(k,d)}, \frac{L_2^p}{pL_{\infty}} \right\}, \frac{q}{p} \frac{c^p}{\sum\limits_{k=1}^N \max_{|\xi| \le c} F(k,\xi)} \left[, \frac{q}{p} \frac{d^p}{\sum\limits_{k=1}^N \frac{d^p}{p} \sum\limits_{k=1}^N \frac{d^p}{p} \frac{d^p}{p} \frac{d^p}{p} \frac{d^p}{p} \right] \right\}$$

the problem $(N_{\lambda,f})$ admits at least two positive solutions.

Proof.

We consider the functionals Φ and Ψ given in (3). Φ and Ψ satisfy all regularity assumptions requested in Theorem 1, moreover we have that any critical point in Xof the functional I_{λ} is exactly a solution of problem $(N_{\lambda,\underline{f}})$. Furthermore, $\inf_{S} \Phi = \Phi(0) = \Psi(0) = 0$. In order to prove our result, we need to verify condition (4) of Theorem 1. Fix $\lambda \in \overline{\Lambda}$, from (6) one has that $L_{\infty} > 0$ and $\overline{\Lambda}$ is non-degenerate. From Lemma 2, the functional I_{λ} satisfies the (PS)-condition for each $\lambda > \frac{L_{2}^{p}}{pL_{\infty}}$, and it is unbounded from below. Now, put $r = \frac{qc^{p}}{p}$, an condier $u \in \Phi^{-1}(]-\infty,r]$; so such a u satisfies

$$\frac{1}{p}\|u\|^p \le r,$$

so

$$\|u\| \le (pr)^{\frac{1}{p}}$$

One has

$$|u| \le \frac{1}{q^{\frac{1}{p}}} ||u|| \le \left(\frac{pr}{q}\right)^{\frac{1}{p}} = c$$

So,

G. Bonanno, P. Candito and G. D'Aguì

$$\Psi(u) = \sum_{k=1}^{N} F(k, u(k)) \leq \sum_{k=1}^{N} \max_{|\xi| \leq c} F(k, \xi),$$

for all $u \in X$ such that $u \in \Phi^{-1}(]-\infty, r]$). Hence,

$$\frac{\sup_{u\in\Phi^{-1}(]-\infty,r])}\Psi(u)}{r} \le \frac{p}{q} \frac{\sum_{k=1}^{N} \max_{|\xi|\le c} F(k,\xi)}{c^{p}}.$$
(7)

Now, let be $\tilde{u} \in \mathbb{R}^{N+2}$ be such that $\tilde{u}(k) = d$ for all $k \in [0, N+1]$. Clearly, $\tilde{u} \in X$ and it holds

$$\Phi(\tilde{u}) = \frac{Qd^p}{p},\tag{8}$$

and so, we have

$$\frac{\Psi(\tilde{u})}{\Phi(\tilde{u})} = \frac{p}{Q} \frac{\sum_{k=1}^{N} F(k,d)}{d^{p}}.$$
(9)

Therefore, from (7), (9) and assumption (6) one has

$$\frac{\sup_{u\in\Phi^{-1}(]-\infty,r])}\Psi(u)}{r} < \frac{\Psi(\tilde{u})}{\Phi(\tilde{u})}$$

Moreover, taking into account that 0 < d < c and again by (6), we have that

$$0 < d < \left(\frac{q}{Q}\right)^{\frac{1}{p}} c. \tag{10}$$

Indeed, by contradiction, if we suppose that $d \ge \left(\frac{q}{Q}\right)^{\frac{1}{p}} c$, we have

$$\frac{\displaystyle\sum_{k=1}^{N}\max_{|\xi|\leq c}F(k,\xi)}{c^{p}}\geq \frac{\displaystyle\sum_{k=1}^{N}F(k,d)}{c^{p}}\geq \frac{q}{Q}\frac{\displaystyle\sum_{k=1}^{N}F(k,d)}{d^{p}},$$

which contradicts (6). Hence by (8) and (10) we get $0 < \Phi(\tilde{u}) < r$.

So, finally we obtain that hat I_{λ} admits at least two non-zero critical points and then, for all $\lambda \in \overline{\Lambda} \subset \Lambda$, these are non zero solutions of $(N_{\lambda,f})$.

8

Since we are interested to obtain a positive solution for problem $(N_{\lambda,\underline{f}})$, we adopt the following truncation on the functions f(k,s),

$$f^{+}(k,s) = \begin{cases} f(k,s), \text{ if } s \ge 0; \\ f(k,0), \text{ if } s < 0. \end{cases}$$

Fixed $\lambda \in \Lambda_c^+$. Working with the truncations $f^+(k, s)$, since we have that $f(k(0, s) \neq 0$ for some $k \in [1, N]$, let u a non trivial solution guaranteed in the first part of the proof, now, to prove the u is nonnegative, we exploit the u is a critical point of the energy functional $I_{\lambda} = \Phi - \lambda \Psi$ associated to problem (N_{λ, f^+}) . In other words, we have that $u \in X$ satisfies the following condition

$$\sum_{k=1}^{N+1} \phi_p(\Delta u(k-1)) \Delta v(k-1) + \sum_{k=1}^{N} q(k) \phi_p(u(k)) v(k) = \sum_{k=1}^{N} f^+(k, u(k)) v(k), \, \forall u, v \in X$$
(11)

From this, taking as test function $v = -u^-$, it is a simple computation to prove that $||u^-|| = 0$, that is *u* is nonnegative. Moreover, arguing by contradiction, we show that *u* is also a positive solution of problem $(N_{\lambda,\underline{f}})$. Suppose that u(k) = 0 for some $k \in [1, N]$. Being *u* a solution of problem $(N_{\lambda,f})$ we have

$$\phi_p(\Delta u(k-1)) - \phi_p(\Delta u(k)) = f(k,0) \ge 0,$$

which implies that

$$0 \ge -|u(k-1)|^{p-2}u(k-1) - |u(k+1)|^{p-2}u(k+1) \ge 0.$$

So, we have that u(k-1) = u(k+1) = 0. Hence, iterating this process, we get that u(k) = 0 for every $k \in [1, N]$, which contradicts that *u* is nontrivial and this completes the proof.

Now, we present a particular case of Theorem 2.

Corollary 1. Assume that f is a continuous function such that f(k,0) > 0 for all $k \in [0,N]$ and

$$\limsup_{t \to 0^+} \frac{F(k,t)}{t^p} = +\infty,$$
(12)

and

$$\lim_{t \to +\infty} \frac{F(k,t)}{t^p} = +\infty,$$

for all $k \in [0,N]$, and put $\lambda^* = \frac{q}{p} \sup_{c>0} \frac{c^p}{\sum_{k=1}^N \max_{|\xi| \le c} F(k,\xi)}.$

Then, for each $\lambda \in]0, \lambda^*[$, the problem $(N_{\lambda,\underline{f}})$ admits at least two positive solutions.

Proof. First, note that $L_{\infty} = +\infty$. Then, fix $\lambda \in [0, \lambda^*]$ and c > 0 such that

$$\lambda < rac{q}{p} rac{c^p}{\displaystyle\sum_{k=1}^N \max_{|\xi| \leq c} F(k, \xi)}.$$

From (12) we have

$$\limsup_{t\to 0^+} \frac{\sum\limits_{k=1}^N F(k,t)}{t^p} = +\infty,$$

then there is d > 0 with d < c such that $\frac{p}{Q} \frac{\sum_{k=1}^{N} F(k,d)}{d^{p}} > \frac{1}{\lambda}$. Hence, Theorem 2 ensures the conclusion.

Acknowledgements

The authors are members of the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). The paper is partially supported by PRIN 2017- Progetti di Ricerca di rilevante Interesse Nazionale, "Nonlinear Differential Problems via Variational, Topological and Set-valued Methods" (2017AYM8XW).

References

- 1. R. P. Agarwal, *Difference Equations and Inequalities: Theory, Methods and Applications*, Marcel Dekker, New York, Basel, (2000).
- R. P. Agarwal, K. Perera, D. O'Regan, *Multiple positive solutions of singular and nonsingular discrete problems via variational methods*, Nonlinear Anal. 58 (2004), 69–73.
- 3. R. P. Agarwal, K. Perera, D. O'Regan, *Multiple positive solutions of singular discrete p-Laplacian problems via variational methods*, Adv. Diff. Equ. 2 (2005), 93–99.
- R. P. Agarwal, On multipoint boundary value problems for discrete equations, J. Math. Anal. Appl. 96 (2) (1983), 520-534.
- A. Ambrosetti, P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973) 349–381.
- D. R. Anderson, I. Rachuånková, C. C. Tisdell, Solvability of discrete Neumann boundary value probles, Adv. Diff. Equ. 2 (2005), 93–99.
- G. Bonanno, G. D'Aguì, Two non-zero solutions for elliptic Dirichlet problems, Z. Anal. Anwend. 35 (2016), No. 4, 449–464.
- 8. C. Bereanu, J. Mawhin, Boundary value problems for second-order nonlinear difference equations with discrete ϕ -Laplacian and singular ϕ , J. Difference Equ. Appl. 14 (2008), 1099–1118.

- C. Bereanu, P. Jebelean, C. Şerban, Ground state and mountain pass solutions for discrete p(·)−Laplacian, Bound. Value Probl. 2012 (104) (2012).
- G. Bonanno, P. Candito, Nonlinear difference equations investigated via critical point methods, Nonlinear Anal. 70 (2009), 3180–3186.
- 11. G. Bonanno, P. Candito, Infinitely many solutions for a class of discrete nonlinear boundary value problems, Appl. Anal. 88 (2009), 605–616.
- 12. G. Bonanno, P. Candito, Nonlinear difference equations through variational methods, Handbook on Nonconvex Analysis, Int. Press, Somerville, MA, 2010, pp.1–44.
- G. Bonanno, P. Candito, G. D'Aguì, Variational methods on finite dimensional Banach spaces and discrete problems, Advanced Nonlinear Studies 14 (2014), 915–939.
- G. Bonanno, A critical point theorem via the Ekeland variational principle, Nonlinear Anal. 75 (2012) 2992–3007.
- G. Bonanno, P. Jebelean, C. Şerban, Superlinear discrete problems, Appl. Math. Lett. 52 (2016) 162–168.
- P. Candito, G. D'Aguì, *Three solutions for a discrete nonlinear Neumann problem involving the p-Laplacian*, Adv. Difference Equ. 2010, Art. ID 862016, 11 pp.
- P. Candito, G. D'Aguì, Three solutions to a perturbed nonlinear discrete Dirichlet problem, J. Math. Anal. Appl. 375 (2011), 594–601.
- P. Candito, G. D'Aguì, Constant-sign solutions for a nonlinear neumann problem involving the discrete p-laplacian, Opuscula Math. 34, no. 4 (2014), 683–690.
- 19. P. Candito, N. Giovannelli, *Multiple solutions for a discrete boundary value problem involving the p-Laplacian*, Comput. Math. Appl. **56** (2008), 959–964.
- G. D'Aguì, J. Mawhin, A. Sciammetta Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian, J. Math. Anal.Appl. 447, (2017),383–397.
- M. Galewski, S. Gląb, On the discrete boundary value problem for anisotropic equation, J. Math. Anal. Appl. 386 (2012), 956–965
- A. Guiro, I. Nyanquini, S. Ouaro, On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian, Adv. Difference Equ. 2011 (32) (2011).
- L. Jiang, Z. Zhou, Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations, Adv. Difference Equ. (2008), Article ID 345916, 10 pg.
- W. G. Kelly, A. C. Peterson, *Difference Equations: An Introduction with Applications*, Academic Press, San Diego, New York, Basel, (1991).
- I. Rachuånková, C. C.Tisdell, Existence of non-spurious solutions to discrete Dirichlet problems with lower and upper solutions, Nonlinear Anal. 67 (2007), 1236–1245.
- C. Şerban, Existence of solutions for discrete p-Laplacian with potential boundary conditions, J. Difference Equ. Appl. 19 (2013), 527–537.
- 27. M. Struwe, Variational Methods, Springer, Berlin, 1996.
- 28. Y. Tian , W. Ge, *The existence of solutions for a second-order discrete Neumann problem with p-Laplacian*, J. Appl. Math. Comput. **26** (2008), 333-340.