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problem involving the discrete p−Laplacian
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Abstract This paper is devoted to study of existence of at least two positive so-
lutions for a nonlinear Neumann boundary value problem involving the discrete
p-Laplacian.
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1 Introduction

In this paper, we investigate the existence of two positive solutions for the following
nonlinear discrete Neumann boundary value problem{

−∆(φp(∆u(k−1)))+q(k)φp(u(k)) = λ f (k,u(k)), k ∈ [1,N],
∆u(0) = ∆u(N) = 0, (Nλ , f )

where λ is a positive parameter, N is a fixed positive integer, [0,N + 1] is the dis-
crete interval {0, ...,N +1}, φp(s) := |s|p−2s, 1 < p <+∞ and for all k ∈ [0,N +1],
q(k) > 0, ∆u(k) := u(k + 1)− u(k) denotes the forward difference operator and
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f : [0,N +1]× lR→ lR is a continuous function.

The theory of difference equations employs numerical analysis, fixed point meth-
ods, upper an lower solutions methods (see, for instance, [4, 6, 8, 25]). The varia-
tional approach represents an important advance as it allows to prove multiplicity
results, usually, under a suitable condition on the nonlinearities, see [2, 3, 8, 9, 10,
11, 12, 15, 16, 17, 18, 21, 22, 23, 26, 28].

In the present paper, we study the problem (Nλ , f ) following a variational ap-
proach, based on a recent result of Bonanno and D’Aguı̀ (see [7]), that assures the
existence of at least two non trivial critical points for a certain class of functionals
defined on infinite-dimensional Banach space. This theorem is obtained by combin-
ing a local minimum result given in [14], together with the Ambrosetti-Rabinowitz
theorem (see [5]). In the application of the mountain pass theorem, to prove the
Palais-Smale condition of the energy functional associated to the nonlinear dif-
ferential problems, the Ambrosetti-Rabinowitz condition is requested on the non-
linear term, in particular this means that the nonlinear term has to be more than
p−superlinear at infinity.
In this paper, exploiting that the variational framework of the problem (Nλ , f ) is de-
fined in a finite-dimensional space, we prove that the p−superlinearity at infinity of
the primitive on the nonlinearity is enough to prove the Palais-Smale condition. For
a complete overview on variational methods on finite Banach spaces and discrete
problems, see [13]. We obtain, here, Theorem (2), which gived the existence of two
positive solutions, by requirin an algebraic condition on the nonlinearity (we mean
(6) in 2).
The paper is so organized: Section 2, contains basic definitions and main results on
difference equations and some critical point tools, in addition, Lemma 2 is given
in order to prove the Palais-Smale condition of the functional associated to prob-
lem (Nλ , f ). Section 3 is devoted to our main result. In particular, our main the-
orem allows us to obtain two positive solutions with only one hypothesis on the
primitive of the nonlinear term f without any asymptotic behaviour at zero. more-
over, a consequence (Corollary 1) (requiring the p−superlinearity at infinity and the
p−sublinearity at zero on the primitive of f ) of our main result is presented in order
to show the applicability of our results.

2 Mathematical Background

In the N +2-dimensional Banach space

X = {u : [0,N +1]→ lR : ∆u(0) = ∆u(N) = 0},

we consider the norm
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‖u‖ :=

(
N+1

∑
k=1
|∆u(k−1)|p +

N

∑
k=1

q(k)|u(k)|p
)1/p

∀u ∈ X .

Moreover, we will use also the equivalent norm

‖u‖∞ := max
k∈[0,N+1]

|u(k)|, ∀u ∈ X .

For our purpose, it will be useful the following inequality

‖u‖∞ ≤ ‖u‖q−1/p, ∀u ∈ X , where q := min
k∈[1,N]

qk. (1)

Moreover, we mention the classical Hölder norm on X .

‖u‖p =

(
N+1

∑
k=0
|u(k)|p

) 1
p

.

We observe that being X a finite dimensional Banach space, all norms defined on
it are equivalent and in particular, there exist two positive constants L1 and L2 such
that

L1‖u‖p ≤ ‖u‖ ≤ L2‖u‖p. (2)

To describe the variational framework of problem (Nλ , f ), we introduce the fol-
lowing two functions

Φ(u) :=
‖u‖p

p
and Ψ(u) :=

N

∑
k=1

F(k,u(k)), ∀u ∈ X , (3)

where F(k, t) :=
∫ t

0 f (k,ξ )dξ for every (k, t)∈ [1,N]× lR. Clearly, Φ and Ψ are two
functionals of class C1(X , lR) whose Gâteaux derivatives at the point u∈ X are given
by

Φ
′(u)(v) =

N+1

∑
k=1

φp (∆u(k−1))∆v(k−1)+q(k) |u(k)|p−2 u(k)v(k) ,

and

Ψ
′(u)(v) =

N

∑
k=1

f (k,u(k))v(k),

for all u, v ∈ X . Taking into account that

−
N

∑
k=1

∆(φp(∆u(k−1)))v(k) =
N+1

∑
k=1

φp(∆u(k−1))∆v(k−1), ∀ u v,∈ X ,
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it is easy to verify, see also [28], that

Lemma 1. A vector u∈ X is a solution of problem (Nλ , f ) if and only if u is a critical
point of the function Iλ = Φ−λΨ .

Let (X ,‖ · ‖) be a Banach space and let I ∈ C1(X , lR). We say that I satisfies the
Palais-Smale condition, (in short (PS)−condition), if any sequence {un}n∈lN ⊆ X
such that

1. {I(un)}n∈lN is bounded,
2. {I′(un)}n∈lN converges to 0 in X∗,

admits a subsequence which is convergent in X .
Here, we recall the abstract result established in [7], on the existence of two non-

zero critical points.

Theorem 1. Let X be a real Banach space and let Φ , Ψ : X→ lR be two functionals
of class C1 such that inf

X
Φ = Φ(0) =Ψ(0) = 0. Assume that there are r ∈ lR and

ũ ∈ X, with 0 < Φ(ũ)< r, such that

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

, (4)

and, for each

λ ∈Λ =

Φ(ũ)
Ψ(ũ)

,
r

sup
u∈Φ−1(]−∞,r])

Ψ(u)

 ,
the functional Iλ = Φ−λΨ satisfies the (PS)−condition and it is unbounded from
below.

Then, for each λ ∈ Λ , the functional Iλ admits at least two non-zero critical
points uλ ,1, uλ ,2 such that I(uλ ,1)< 0 < I(uλ ,2).

Here and in the sequel we suppose f (k,0)≥ 0 for all k ∈ [1,N]. We assume that
f (k,x) = f (k,0) for all x < 0 and for all k ∈ [1,N]. Put

L∞(k) := liminf
s→+∞

F(k,s)
sp , L∞ := min

k∈[1,N]
L∞(k).

We give the following lemma.

Lemma 2. If L∞ > 0 then Iλ satisfies (PS)−condition and it is unbounded from

below for all λ ∈
]

Lp
2

pL∞

,+∞

[
, where L2 is given in (2).
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Proof. Since L∞ > 0 we put λ >
Lp

2
pL∞

and l such that L∞ > l >
Lp

2
pλ

. Let {un} be a

sequence such that lim
n→+∞

Iλ (un) = c and lim
n→+∞

I′
λ
(un) = 0. Put u+n = max{un,0} and

u−n = max{−un,0} for all n ∈ lN. We have that {u−n } is bounded. In fact, one has∣∣∆u−n (k−1)
∣∣p ≤−φp (∆un(k−1))∆u−n (k−1),

for all k ∈ [1,N +1], and

q(k)
∣∣u−n (k)∣∣p =−q(k) |un(k)|p−2 un(k)u−n (k),

for all k ∈ [1,N +1].
So we have,

N+1

∑
k=1

(∣∣∆u−n (k−1)
∣∣p +q(k)

∣∣u−n (k)∣∣p)
≤−

N+1

∑
k=1

(
φp (∆un(k−1))∆u−n (k−1)+q(k) |un(k)|p−2 un(k)u−n (k)

)
.

So,

‖u−n ‖p =
N+1

∑
k=1

(∣∣∆u−n (k−1)
∣∣p +q(k)

∣∣u−n (k)∣∣p)
≤ −

N+1

∑
k=1

(
φp (∆un(k−1))∆u−n (k−1)+q(k) |un(k)|p−2 un(k)u−n (k)

)
= −Φ

′(un)(u−n ).

By definition of u−n and taking into account that f (k,x) = f (k,0) for all x < 0 and
for all k ∈ [1,N], we have

Ψ
′(un)(u−n ) =

N

∑
k=1

f (k,un(k))u−n (k)≥ 0.

So, we get

‖u−n ‖p ≤−Φ
′(un)(u−n )≤−Φ

′(un)(u−n )+λΨ
′(un)(u−n ),

that is
‖u−n ‖p ≤−I′

λ
(un)(u−n ), (5)

for all n∈ lN. Now, from lim
n→+∞

I′
λ
(un) = 0, one has lim

n→+∞

I′
λ
(un)(u−n )
‖u−n ‖

= 0, for which,

taking (5) into account, gives lim
n→+∞

‖u−n ‖= 0. So, we obtain the clain. And, there is
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M > 0 such that ‖u−n ‖ ≤M, ‖u−n ‖p ≤
M
L1

= L, 0 ≤ u−n (k) ≤ L for all k ∈ [1,N] for

all n ∈ lN.
At this point, by contradiction argument, assume that {un} is unbounded (that is,

{u+n } is unbounded).

From liminf
s→+∞

F(k,s)
sp = L∞(k)≥ L∞ > l there is δk > 0 such that F(k,s)> lsp for all

s > δk. Moreover,

F(k,s) ≥ min
s∈[−L,δk]

F(k,s)≥ lsp− l (max{δk,L})p + min
s∈[−L,δk]

F(k,s)

≥ lsp−max{l (maxδk,L)
p− min

s∈[−L,δk]
F(k,s),0}= lsp−Q(k)

for all s ∈ [−L,δk]. Hence, F(k,s) ≥ lsp −Q(k) for all s ≥ −L. It follows that

F (k,un(k))≥ l (un(k))
p−Q(k) for all n∈ lN and for all k ∈ [1,N],

N

∑
k=1

F (k,un(k))≥

N

∑
k=1

[l (un(k))
p−Q(k)] = l‖un‖p

p−
N

∑
k=1

Q(k) = l‖un‖p
p−Q, that is,

Ψ(un)≥ l‖un‖p
p−Q,

for all n ∈ lN. Therefore, one has

Iλ (un) = Φ(un)−λΨ(un) =
1
p
‖un‖p−λΨ(un)≤

Lp
2

p
‖un‖p

p−λ l‖un‖p
p +λQ,

that is

Iλ (un)≤
(

Lp
2

p
−λ l

)
‖un‖p

p +λQ,

for all n ∈ lN. Since ‖un‖p→+∞ and
Lp

2
p
−λ l < 0, one has lim

n→+∞
Iλ (un) =−∞ and

this is absurd. Hence, Iλ satisfies (PS)−condition.
Finally, we get that Iλ is unbounded from below. Let {un} be such that {u−n } is

bounded and {u+n } is unbounded. As before, we obtain Ψ(un)≥ l‖un‖p
p−Q, for all

n ∈ lN and, consequently, Iλ (un) ≤
(

Lp
2

p
−λ l

)
‖un‖p

p +λQ, for all n ∈ lN. Hence,

lim
n→+∞

Iλ (un) =−∞ and the proof is complete.

3 Main Results

In this section, we present the main existence result of our paper. We start putting
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Q =
N

∑
k=1

q(k).

Theorem 2. Let f : [1,N]× lR→ lR be a continuous function such that f (k,0) ≥ 0
for all k ∈ [1,N], and f (k,0) 6= 0 for some k ∈ [1,N]. Assume also that there exist
two positive constants c and d with d < c such that

N

∑
k=1

max
|ξ |≤c

F(k,ξ )

cp < qmin


1
Q

N

∑
k=1

F(k,d)

dp ,
L∞

Lp
2

 . (6)

Then, for each λ ∈ Λ̄ with

Λ̄ =

max


Q
p

dp

N

∑
k=1

F(k,d)

,
Lp

2
pL∞

 ,
q
p

cp

N

∑
k=1

max
|ξ |≤c

F(k,ξ )

 ,
the problem (Nλ , f ) admits at least two positive solutions.

Proof.
We consider the functionals Φ and Ψ given in (3). Φ and Ψ satisfy all regularity

assumptions requested in Theorem 1, moreover we have that any critical point in X
of the functional Iλ is exactly a solution of problem (Nλ , f ). Furthermore, inf

S
Φ =

Φ(0) =Ψ(0) = 0. In order to prove our result, we need to verify condition (4) of
Theorem 1. Fix λ ∈ Λ̄ , from (6) one has that L∞ > 0 and Λ̄ is non-degenerate. From

Lemma 2, the functional Iλ satisfies the (PS)−condition for each λ >
Lp

2
pL∞

, and it

is unbounded from below. Now, put r =
qcp

p
, an condier u ∈Φ−1 (]−∞,r]); so such

a u satisfies

1
p
‖u‖p ≤ r,

so

‖u‖ ≤ (pr)
1
p .

One has

|u| ≤ 1

q
1
p
‖u‖ ≤

(
pr
q

) 1
p

= c.

So,
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Ψ(u) =
N

∑
k=1

F(k,u(k))≤
N

∑
k=1

max
|ξ |≤c

F(k,ξ ),

for all u ∈ X such that u ∈Φ−1 (]−∞,r]).
Hence,

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
≤ p

q

N

∑
k=1

max
|ξ |≤c

F(k,ξ )

cp . (7)

Now, let be ũ ∈ lRN+2 be such that ũ(k) = d for all k ∈ [0,N+1]. Clearly, ũ ∈ X and
it holds

Φ(ũ) =
Qdp

p
, (8)

and so, we have

Ψ(ũ)
Φ(ũ)

=
p
Q

N

∑
k=1

F(k,d)

dp . (9)

Therefore, from (7), (9) and assumption (6) one has

sup
u∈Φ−1(]−∞,r])

Ψ(u)

r
<

Ψ(ũ)
Φ(ũ)

.

Moreover, taking into account that 0 < d < c and again by (6), we have that

0 < d <

(
q
Q

) 1
p

c. (10)

Indeed, by contradiction, if we suppose that d ≥
(

q
Q

) 1
p

c, we have

N

∑
k=1

max
|ξ |≤c

F(k,ξ )

cp ≥

N

∑
k=1

F(k,d)

cp ≥ q
Q

N

∑
k=1

F(k,d)

dp ,

which contradicts (6). Hence by (8) and (10) we get 0 < Φ(ũ)< r.
So, finally we obtain tha that Iλ admits at least two non-zero critical points and

then, for all λ ∈ Λ̄ ⊂Λ , these are non zero solutions of (Nλ , f ).
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Since we are interested to obtain a positive solution for problem (Nλ , f ), we adopt
the following truncation on the functions f (k,s),

f+(k,s) =
{

f (k,s), if s≥ 0;
f (k,0), if s < 0.

Fixed λ ∈Λ+
c . Working with the truncations f+(k,s), since we have that f (k(0,s) 6=

0 for some k ∈ [1,N], let u a non trivial solution guaranteed in the first part of the
proof, now, to prove the u is nonnegative, we exploit the u is a critical point of the
energy functional Iλ = Φ−λΨ associated to problem (Nλ , f+). In other words, we
have that u ∈ X satisfies the following condition

N+1

∑
k=1

φp(∆u(k−1))∆v(k−1)+
N

∑
k=1

q(k)φp(u(k))v(k)=
N

∑
k=1

f+(k,u(k))v(k), ∀u,v∈X .

(11)
From this, taking as test function v =−u−, it is a simple computation to prove that
‖u−‖ = 0, that is u is nonnegative. Moreover, arguing by contradiction, we show
that u is also a positive solution of problem (Nλ , f ). Suppose that u(k) = 0 for some
k ∈ [1,N]. Being u a solution of problem (Nλ , f ) we have

φp(∆u(k−1))−φp(∆u(k)) = f (k,0)≥ 0,

which implies that

0≥−|u(k−1)|p−2u(k−1)−|u(k+1)|p−2u(k+1)≥ 0.

So, we have that u(k−1) = u(k+1) = 0. Hence, iterating this process, we get that
u(k)= 0 for every k∈ [1,N], which contradicts that u is nontrivial and this completes
the proof.

Now, we present a particular case of Theorem 2.

Corollary 1. Assume that f is a continuous function such that f (k,0) > 0 for all
k ∈ [0,N] and

limsup
t→0+

F(k, t)
t p =+∞, (12)

and

lim
t→+∞

F(k, t)
t p =+∞,

for all k ∈ [0,N], and put λ ∗ =
q
p

sup
c>0

cp

N

∑
k=1

max
|ξ |≤c

F(k,ξ )

.

Then, for each λ ∈ ]0,λ ∗[, the problem (Nλ , f ) admits at least two positive solu-
tions.
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Proof. First, note that L∞ =+∞. Then, fix λ ∈ ]0,λ ∗[ and c > 0 such that

λ <
q
p

cp

N

∑
k=1

max
|ξ |≤c

F(k,ξ )

.

From (12) we have

limsup
t→0+

N

∑
k=1

F(k, t)

t p =+∞,

then there is d > 0 with d < c such that
p
Q

N

∑
k=1

F(k,d)

dp >
1
λ

. Hence, Theorem 2

ensures the conclusion.
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