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Abstract. The method of sub and super-solution is applied to obtain existence and location of
solutions to a quasilinear elliptic problem with variable exponent and Dirichlet boundary condi-

tions involving a nonlinear term f depending on solution and on its gradient. Under a suitable

growth condition on the convection term f , the existence of at least one solution satisfying a priori
estimate is obtained.

1. Introduction

The aim of this paper is to prove the existence of solutions for following Dirichlet problem

(P )

{
−∆p(x)u−∆q(x)u = f(x, u,∇u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN (with N ≥ 3) is a non–empty bounded open domain with a Lipschitz
boundary ∂Ω.

In problem (P ) we assume that p, q ∈ C(Ω) and 1 < q(x) < p(x) < ∞, for allx ∈ Ω.
The so called (p(x), q(x))-Laplacian is the differential operator on the left-hand side of

the equation and it is identified by operators ∆p(x)u := div(|∇u|p(x)−2∇u) and ∆q(x)u :=

div(|∇u|q(x)−2∇u) known as p(x)−Laplacian operator and q(x)−Laplacian operator, re-
spectively. When p(x) = p and q(x) = q (constants) it becomes the usual (p, q)-Laplacian
differential operator. The nonlinearity f : Ω×R×RN → R of problem (P ) is a Carathéodory
function , i.e. f(·, s, ξ) is measurable for all (s, ξ) ∈ R× RN and f(x, ·, ·) is continuous for
a.e. x ∈ Ω. Problems with variable exponent find interesting applications in different phys-
ical problems, including the study of smart fluids, as electrorheological fluids ([1], [2], [6],
[27], [28]), and in power electronic about the study of the thermistors ([4], [16]). There is a
relevant literature about these problems, whose solutions are generally obtained by improv-
ing variational and topological methods (see for instance [5]-[25]). A detailed presentation
of these problems can be found in the survey of Radulescu ([26]). The convection term f
depends on the solution u and on its gradient ∇u. In this case, problem (P ) can not be
treated with classical variational methods. For this reason, we use another approach, based
on the method of sub-supersolution, to obtain the existence of at least one solution. Recent
results related to this method, applied to Dirichlet problems with p(x)-Laplacian operator
without convection term can be found in [8], [9], [12], [15], [18], [19], [20].
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For results with p-Laplacian or (p, q)-Laplacian operator (p, q= constant) and convection
term we cite [14], [24] and therein references.

We want to emphasize that, although sub- supersolution method has been used to study
problems in classical Sobolev spaces, for use it in Sobolev spaces with variable exponents
new ideas and nontrivial techniques are needed. In order to apply sub-supersolution method
the first objective is to find a subsolution and a supersolution of problem (P ). We point
out that in [23] the authors studied a nonhomogeneous Neumann problems with gradient
depedence showing explicitly how one can effectively determine sub-supersolutions.

In the case of p-Laplacian or (p, q)-Laplacian operator (p, q= constant) a subsolution
can be construct using its first eigenvalue (see for example the recent paper of Motreanu
[22]) but the p(x)-Laplacian operator is inhomogeneous and, usually the infimum of its
eigenvalue is 0 (see [13]) so the first eingenvalue can not be used to costruct a subsolution.
Then to obtain one subsolution of problem (P ), we consider an auxialiary Dirichlet problem,
whose nonlinear term satisfies an appropriate growth condition respect on convection term.
According to our knowlegde, it is the first time when the method of sup-supersolution is
implemented for Dirichlet problems with convection term in variable exponent spaces. In
particular, in Theorem 3.2 we prove that if u and u are a subsolution and a supersolution
(respectively) of problem (P ) satisfying the condition u ≤ u a.e. in Ω, then problem (P )
admits at least one solution u satifying a priori estimate u ≤ u ≤ u a.e. in Ω.

In the final part of the paper we show, under verifiable conditions, how our abstract
result, Theorem 3.2, can be effectively applied for obtaining the existence of at least one
nonnegative solution for problem (P ).

The paper is arranged as follows. Section 2 contains some preliminary properties and
basic notations on variable exponent Lebesgue and Sobolev spaces. Section 3 focuses on the
solvability of an auxiliary problem, depending on a real parameter and which represents
a coercive perturbation of problem (P ). Section 4 presents our main result and finally,
Section 5 illustrates how the abstract result can be applied to obtain the existence of at
least one nonnegative solution to problem (P ).

2. Preliminaries and basic notations

In this section, we recall definitions and tools used in the paper.
Let p ∈ C(Ω) and denote by

p− = min
Ω
p(x), p+ = max

Ω
p(x).

For any p ∈ C(Ω) with p(x) > 1 for all x ∈ Ω, we introduce the variable exponent Lebesgue

space Lp(x)(Ω) defined by

Lp(x)(Ω) =

{
u : Ω→ R such that u is measurable and

∫
Ω
|u|p(x) dx < +∞

}
,

and equipped with the Luxemburg norm defined by

‖u‖Lp(x)(Ω) := inf

{
δ > 0 :

∫
Ω

∣∣∣∣u(x)

δ

∣∣∣∣p(x)

dx ≤ 1

}
.
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These spaces extend classical Banach spaces. So they are reflexive, separable and uniformly
convex Banach spaces. The dual space of Lp(x)(Ω) is the space Lp

′(x)(Ω) where 1
p(x) + 1

p′(x) =

1 for all x ∈ Ω.
In the variable Lebesgue spaces the Hölder inequality holds and we recall it (for more

details [12]).∣∣∣∣∫
Ω
uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖v‖Lp′(x)(Ω),

for all u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω).
Now, we consider the modular given by

ρp(x)(u) =

∫
Ω
|u(x)|p(x)dx ∀u ∈ Lp(x)(Ω).

We have the following proposition

Proposition 2.1. ([12])

(i) ‖u‖Lp(x)(Ω) < 1 (= 1, > 1) ⇔ ρp(x)(u) < 1 (= 1, > 1);

(ii) ‖u‖Lp(x)(Ω) > 1 ⇒ ‖u‖p
−

Lp(x)(Ω)
≤ ρp(x)(u) ≤ ‖u‖p

+

Lp(x)(Ω)
;

(iii) ‖u‖Lp(x)(Ω) < 1 ⇒ ‖u‖p
+

Lp(x)(Ω)
≤ ρp(x)(u) ≤ ‖u‖p

−

Lp(x)(Ω)
.

We want to observe that ρp(x)(u) and ‖u‖Lp(x)(Ω) are linked by the following relation too.

(2.1) ‖u‖p
−

Lp(x)(Ω)
− 1 ≤ ρp(x)(u) ≤ ‖u‖p

+

Lp(x)(Ω)
+ 1 ∀u ∈ Lp(x)(Ω).

Moreover, see [17], if p1, p2 ∈ C(Ω) , p1(x) > 1, p2(x) > 1 and p1(x) ≤ p2(x) for all

x ∈ Ω, then the embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω) is continuous and it results

(2.2) ‖u‖Lp1(x)(Ω) ≤ (1 + |Ω|)‖u‖Lp2(x)(Ω),

where |Ω| denotes the Lebesgue measure of Ω in RN .

The variable exponent Sobolev space W 1,p(x)(Ω) is defined by

W 1,p(x)(Ω) :=
{
u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)

}
,

and it is equipped with the norm

‖u‖W 1,p(x)(Ω) := ‖u‖Lp(x)(Ω) + ‖|∇u|‖Lp(x)(Ω).

By W
1,p(x)
0 (Ω) we denote the closure of C∞0 (Ω) in W 1,p(x)(Ω) endowed with the norm

‖u‖ := ‖|∇u|‖Lp(x)(Ω).

It is well known that W 1,p(x)(Ω), is separable, reflexive and uniformly convex Banach space.
Denoted by

p∗(x) =


p(x)N

N − p(x)
if p(x) < N,

+∞ if p(x) ≥ N,
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the critical exponent of p(x), the embedding W 1,p(x)(Ω) ↪→ Lr(x)(Ω) is continuous and
compact for each r ∈ C(Ω) with r(x) > 1 and r(x) < p∗(x) for all x ∈ Ω. In the sequel we
denote by kr the best constant for which one has

(2.3) ‖u‖Lr(x)(Ω) ≤ kr‖u‖W 1,p(x)
0 (Ω)

.

Finally, for every u ∈ W
1,p(x)
0 (Ω) we introduce u+, u− ∈ W

1,p(x)
0 (Ω) defined as u+ :=

max{u, 0} and u− := max{−u, 0}.
We refer to [11], [17] for more details on the spaces Lp(x)(Ω) and W 1,p(x)(Ω).

Study of problem (P ) is based on the sub-supersolution method. For more details about
this topic we cite [3] and [21].

A solution of problem (P ) is any function u ∈ W
1,p(x)
0 (Ω) such that f(x, u,∇u) ∈

Lp
′(x)(Ω) and

(2.4)∫
Ω
|∇u(x)|p(x)−2∇u(x) · ∇v(x)dx+

∫
Ω
|∇u(x)|q(x)−2∇u(x) · ∇v(x)dx =

∫
Ω
f(x, u,∇u)v dx,

∀v ∈W 1,p(x)
0 (Ω).

A function u ∈ W 1,p(x)(Ω) is a supersolution for problem (P ) if u ≥ 0 on ∂Ω such that

f(x, u,∇u) ∈ Lp′(x)(Ω) and
(2.5)∫

Ω
|∇u(x)|p(x)−2∇u(x) · ∇v(x)dx+

∫
Ω
|∇u(x)|q(x)−2∇u(x) · ∇v(x)dx ≥

∫
Ω
f(x, u,∇u)v dx,

for all v ∈W 1,p(x)
0 (Ω), v ≥ 0 a.e. in Ω.

A function u ∈ W 1,p(x)(Ω) is a subsolution for problem (P ) if u ≤ 0 on ∂Ω such that

f(x, u,∇u) ∈ Lp′(x)(Ω) and
(2.6)∫

Ω
|∇u(x)|p(x)−2∇u(x) · ∇v(x)dx+

∫
Ω
|∇u(x)|q(x)−2∇u(x) · ∇v(x)dx ≤

∫
Ω
f(x, u,∇u)v dx,

for all v ∈W 1,p(x)
0 (Ω), v ≥ 0 a.e. in Ω.

Now, we recall the useful definitions and the main theorem on peudomonotone operators.
Let X be a real reflexive Banach space with norm ‖·‖, X∗ its dual space and 〈., .〉 the duality

paring between them. A mapping A : X → X∗ is called coercive if lim‖u‖→∞
〈Au,u〉
‖u‖ = +∞;

The map A is called pseudomonotone if for all sequence {un} ⊂ X such that un ⇀ u and
lim supn→+∞〈Aun, un − u〉 ≤ 0 imply that Aun ⇀ Au and 〈Aun, un〉 → 〈Au, u〉.

Theorem 2.1. ([3, Theorem 2.99]) Let X be a real reflexive Banach space and let A :
X → X∗ be a bounded, coercive and pseudomonotone operator. Then, for every b ∈ X∗ the
equation Ax = b has at least one solution x ∈ X.

In the sequel we will use the pair
(
W

1,p(x)
0 (Ω), W−1,p′(x)(Ω)

)
where W−1,p′(x)(Ω) :=(

W
1,p(x)
0 (Ω)

)∗
. Important properties of the negative p(x)-Laplacian operator are listed in

the next proposition and for the proof we refer to [12].
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Proposition 2.2. The negative p(x)-Laplacian operator −∆p(x) : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω)

defined as

〈−∆p(x)u, v〉 =

∫
Ω
|∇u(x)|p(x)−2∇u(x) · ∇v(x) dx

for all u, v ∈ W 1,p(x)
0 (Ω) is continuous, bounded, strictly monotone (hence maximal mono-

tone and pseudomonotone too) and it has S+−property i.e. every sequence {un} such that

un ⇀ u in W
1,p(x)
0 (Ω) and lim sup

n→+∞
〈−∆p(x)un, un−u〉 ≤ 0 implies that un → u in W

1,p(x)
0 (Ω).

We introduce the map Γ : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) defined by

(2.7) 〈Γu, v〉 = 〈−∆p(x)u−∆q(x)u, v〉 =

∫
Ω
|∇u|p(x)−2∇u ·∇vdx+

∫
Ω
|∇u|q(x)−2∇u ·∇vdx

for all u, v ∈ W 1,p(x)
0 (Ω), corresponding to (p(x), q(x))-Laplacian, which is a bounded and

a maximal monotone operator (see Proposition 2.2). By applying [21, Proposition 2.70] it
has the S+−property in turn. Moreover, since

〈Γu, u〉 ≥ ‖u‖p− if ‖u‖ > 1,

Γ is coercive too.
Finally, with standard arguments it is possible to prove that the following comparison

principle holds.

Lemma 2.1. Let u, v ∈W 1,p(x)(Ω) with u ≤ v on ∂Ω and such that∫
{u>v}

(
|∇u|p(x)−2∇u− |∇v|p(x)−2∇v

)
· ∇(u− v)dx = 0.

Then u ≤ v a.e. in Ω.

3. Main result

Let us admit that a subsolution u ∈ W 1,p(x)(Ω) and a supersolution u ∈ W 1,p(x)(Ω) for
problem (P ) with u(x) ≤ u(x) a.e. in Ω are given. Our main goal is to obtain a solution

u ∈ W 1,p(x)
0 (Ω) of problem (P ) which satisfies the property u ≤ u ≤ u a.e. in Ω. We are

going to use comparison and truncation techniques. To this aim we define the truncation

operator T : W
1,p(x)
0 (Ω)→W

1,p(x)
0 (Ω) associated with the ordered pair of sub-supersolution

u, u of problem (P ), given by

(3.1) Tu(x) =

 u(x) if u(x) ≥ u(x),
u(x) if u(x) < u(x) < u(x),
u(x) if u(x) ≤ u(x),

for all u ∈ W
1,p(x)
0 (Ω). On the basis of (3.1) it is easy to verify that T : W

1,p(x)
0 (Ω) →

W
1,p(x)
0 (Ω) is continuous and bounded (in the sense that it maps bounded sets into bounded

sets). The ordered interval [u, u] associated to the ordered pair u ≤ u is introduced as

[u, u] = {u ∈W 1,p(x)
0 (Ω) : u(x) ≤ u(x) ≤ u(x) for a.e. x ∈ Ω}.

Taking into account (3.1), we have T (u) ∈ [u, u] for all u ∈W 1,p(x)(Ω).
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We assume that f : Ω× R× RN → R in (P ) satisfies the following growth condition

(H) there exist a positive constant a and a function σ ∈ Lp′(x)(Ω) such that

|f(x, s, ξ)| ≤ σ(x) + a|ξ|p(x)−1 for a.e.x ∈ Ω, for all s ∈ [u(x), u(x)], for all ξ ∈ RN .

We point out that using hypothesis (H) it is easy to prove that f(x, u,∇u) ∈ Lp′(x)(Ω) for
all u ∈ [u, u]. Then (H) guarantees the existence of integrals in (2.4), (2.5) and (2.6).

Consider the operator N : [u, u]→ W−1,p′(x)(Ω), called Nemytskij operator and defined
by

〈N(u), v〉 =

∫
Ω
f(x, u(x),∇u(x))v(x)dx,

for all u ∈ [u, u], v ∈ W
1,p(x)
0 (Ω) and where f is the function which appears in (P ). It

is well defined by virtue of hypothesis (H), moreover the compact embedding theorem

implies that the Nemytskij operator N : [u, u] → W−1,p′(x)(Ω) is completely continuous,
since the operator N is the composition of the mapping u → f(x, u,∇u) taking value in

Lp
′(x)(Ω) (which is continuous and bounded by hypothesis (H)) and the linear embedding

Lp
′(x)(Ω) → W−1,p′(x)(Ω) =

(
W

1,p(x)
0 (Ω)

)∗
(which is compact, because it is the adjoint of

the compact embedding W
1,p(x)
0 (Ω)→ Lp(x) ).

We introduce the cut-off function π : Ω× R→ R defined by

(3.2) π(x, s) =

 (s− u(x))p(x)−1 if s > u(x),
0 if u(x) ≤ s ≤ u(x),

−(u(x)− s)p(x)−1 if s < u(x).

From (3.2) we obtain the following relation

(3.3) |π(x, s)| ≤ c|s|p(x)−1 + %(x) for a.e.x ∈ Ω, all s ∈ R

with c = max{1, 2p
+−1} and % ∈ Lp′(x)(Ω) defined by

%(x) = max{|u(x)|p(x)−1, |u(x)|p(x)−1}.

It is useful to point out some estimates related to function π.

Proposition 3.1. The cut-off function π : Ω×R→ R, given by (3.2), satisfies the following
estimates:

(3.4)

∫
Ω
π(x, u(x))u(x) dx ≥ r1

∫
Ω
|u|p(x) dx− r2,

(3.5)

∫
Ω
|π(x, u(x))||v(x)| dx ≤

(
r3‖u‖

p+

p′−

Lp(x)(Ω)
+ r4

)
‖v‖Lp(x)(Ω) ,

with r1, r2, r3, r4 positive constants.
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Proof. For the proof of the estimate (3.4) we observe that since p ∈ C(Ω) and p(x) > 1 for
all x ∈ Ω, then there exist two positive constants c1 and c2 such that for each ξ, η ∈ R and
for all x ∈ Ω it results

(3.6)
(ξ − η)p(x)−1ξ ≥ c1|ξ|p(x) − c2|η|p(x)−1|ξ| if ξ ≥ η

(η − ξ)p(x)−1ξ ≤ −c1|ξ|p(x) + c2|η|p(x)−1|ξ| if ξ < η.

From (3.6), for each u ∈W 1,p(x)
0 (Ω) one has∫

Ω π(x, u(x))u(x) dx =
∫
{u>u} (u(x)− ū(x))p(x)−1 u(x) dx−

∫
{u<u} (u(x)− u(x))p(x)−1 u(x) dx ≥∫

{u>u}
(
c1|u(x)|p(x) − c2|ū(x)|p(x)−1|u(x)|

)
dx+

∫
{u<u}

(
c1|u(x)|p(x) − c2|u(x)|p(x)−1|u(x)|

)
dx ≥

c1

[∫
Ω |u(x)|p(x) dx−

∫
{u≤u≤u} |u(x)|p(x) dx

]
− c2

∫
Ω

(
|ū(x)|p(x)−1 + |u(x)|p(x)−1

)
|u(x)| dx.

Then Young inequality applied with ε̄ = c1
2c2

and the relation |u(x)| ≤ |ū(x)| + |u(x)|
verified for each x ∈ Ω such that u(x) ≤ u(x) ≤ ū(x) show that∫

Ω
π(x, u(x))u(x) dx ≥ c1

[∫
Ω
|u(x)|p(x) dx−

∫
Ω

(|ū(x)|+ |u(x)|)p(x) dx

]
−

c2

[
c1

2c2

∫
Ω
|u(x)|p(x) dx+ cε̄

∫
Ω

(
|ū(x)|p(x)−1 + |u(x)|p(x)−1

)p′(x)
dx

]
=

= r1

∫
Ω
|u(x)|p(x) dx− r2

with positive constants cε̄, r1 := c1
2 and

r2 := c1

∫
Ω(|u(x)|+ |ū(x)|)p(x) dx+ c2cε̄

∫
Ω

(
|ū(x)|p(x)−1 + |u(x)|p(x)−1

)p′(x)
dx.

The proof of estimate (3.5), follows by (3.2), using Hölder inequality and the modular.

For each u, v ∈W 1,p(x)
0 (Ω) one has

(3.7)∫
Ω |π(x, u(x))||v(x)| dx =

∫
{u>u} (u(x)− u(x))p(x)−1 |v(x)| dx+

∫
{u<u} (u(x)− u(x))p(x)−1 |v(x)| dx ≤

2
(
‖(u− u)p(x)−1‖Lp′(x)(Ω) + ‖(u− u)p(x)−1‖Lp′(x)(Ω)

)
‖v‖Lp(x)(Ω).

From (2.1), we have

‖(u− u)p(x)−1‖p
′−

Lp
′(x)(Ω)

≤ 1 + ρp′(x)

(
(u− u)p(x)−1

)
= 1 + ρp(x)(u− u) =

1 +
∫

Ω |u− u|
p(x)dx ≤ 1 + 2p

+−1
(
ρp(x)(u) + ρp(x)(u)

)
≤

1 + 2p
+−1

(
‖u‖p

+

Lp(x)(Ω)
+ 2
)

+ 2p
+−1‖u‖p

+

Lp(x)(Ω)
.

In the same way, we obtain

‖(u− u)p(x)−1‖p
′−

Lp
′(x)(Ω)

≤ 1 + 2p
+−1

(
‖u‖p

+

Lp(x)(Ω)
+ 2
)

+ 2p
+−1‖u‖p

+

Lp(x)(Ω)
.
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Substituing previous relations in (3.7) and taking into account that p′− > 1, we obtain∫
Ω
|π(x, u(x))||v(x)| dx ≤

(
r3‖u‖

p+

p′−

Lp(x)(Ω)
+ r4

)
‖v‖Lp(x)(Ω)

where r3 := 2
p+−1

p′− +2
, r4 := 2

[(
1 + 2p

+−1
(
‖u‖p

+

Lp(x)(Ω)
+ 2
)) 1

p′− +
(

1 + 2p
+−1

(
‖u‖p

+

Lp(x)(Ω)
+ 2
)) 1

p′−
]
.

�
Now, we perturb problem (P ) using the Nemytskij operator Π : W

1,p(x)
0 (Ω)→W−1,p′(x)(Ω)

defined by Π(u) = π(·, u(·)) where π : Ω× R→ R is defined as in (3.2), the Nemytskij op-

erator N : [u, u]→ W−1,p′(x)(Ω) composed with the truncation operator T : W
1,p(x)
0 (Ω)→

W
1,p(x)
0 (Ω) given by (3.1) and a parameter λ > 0. In this way we obtain the auxiliary

truncated problem

(Tλ)

{
−∆p(x)u−∆q(x)u+ λΠ(u) = N ◦ T (u) in Ω

u = 0 on ∂Ω,

from which we have following the result.

Theorem 3.1. Let u and u be a subsolution and a supersolution of problem (P ), respec-
tively, with u ≤ u a.e. in Ω such that hypothesis (H) is fulfilled. Then, there exists λ0 > 0

such that for all λ ≥ λ0 there is at least one solution u ∈W 1,p(x)
0 (Ω) of the auxiliary problem

(Tλ).

Proof. For every λ > 0 let Aλ : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) be the operator defined by

(3.8) 〈Aλ(u), v〉 = 〈Γ(u) + λΠ(u)−N ◦ T (u), v〉

for each u, v ∈W 1,p(x)
0 (Ω). The composed operator N ◦T is bounded because T is bounded

and N is completely continuous. Since Γ and Π are bounded, it follows from (3.8) that Aλ
is bounded.

The operator Aλ is pseudomonotone. Indeed, let {un} ⊂W 1,p(x)
0 (Ω) be a sequence such

that

(3.9) un ⇀ u in W
1,p(x)
0 (Ω),

and

(3.10) lim sup
n→∞

〈Aλun, un − u〉 ≤ 0.

Consider

〈Aλun, un − u〉 = 〈Γ(un), un − u〉

+ λ

∫
Ω
π(x, un)(un − u) dx−

∫
Ω
f(x, Tun,∇Tun)(un − u) dx.(3.11)

Since un ⇀ u in W
1,p(x)
0 (Ω) and p(x) < p∗(x) for all x ∈ Ω, using a subsequence if

necessary, we have un → u in Lp(x)(Ω). Using (3.2), (2.1) and the Hölder inequality we
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have ∣∣∣∣∫
Ω
π(x, un)(un − u) dx

∣∣∣∣ ≤ ∫
{un<u}

(u− un)p(x)−1|un − u| dx

+

∫
{un>u}

(un − u)p(x)−1|un − u| dx

≤ 2
[(

2 + ‖u− un‖p
+

Lp(x)(Ω)

) 1
(p′)−

+
(
2 + ‖un − u‖p

+

Lp(x)(Ω)

) 1
(p′)−

]
‖un − u‖Lp(x)(Ω) → 0(3.12)

as n→ +∞. Using hypothesis (H) we have∣∣∣∣∫
Ω
f(x, Tun,∇Tun)(un − u) dx

∣∣∣∣ ≤ ∫
Ω
|σ||un − u|dx

+ a

∫
Ω
|∇Tun|p(x)−1 |un − u| dx.(3.13)

Because of (H), σ ∈ Lp′(x)(Ω) and using Hölder inequality, we get

(3.14)

∫
Ω
|σ||un − u|dx ≤ 2 ‖σ‖Lp′(x)(Ω) ‖un − u‖Lp(x)(Ω) → 0 as n→∞.

We want to prove that

(3.15)

∫
Ω
|∇Tun|p(x)−1 |un − u| dx→ 0 as n→ +∞.

The definition (3.1) of the truncation operator T yields∫
Ω
|∇Tun|p(x)−1 |un − u| dx =

∫
{un<u}

|∇u|p(x)−1 |un − u| dx+

∫
{u≤un≤u}

|∇un|p(x)−1 |un − u| dx+

∫
{un>u}

|∇u|p(x)−1 |un − u| dx.

From Hölder inequality and (2.1), we obtain∫
{un<u}

|∇u|p(x)−1 |un − u| dx ≤
∫

Ω
|∇u|p(x)−1 |un − u| dx ≤ 2

(
2+‖|∇u|‖p

+

Lp(x)(Ω)

) 1
(p′)− ‖un−u‖Lp(x)(Ω),

∫
{u≤un≤u}

|∇un|p(x)−1 |un − u| dx ≤
∫

Ω
|∇un|p(x)−1 |un − u| dx ≤ 2

(
2+‖|∇un|‖p

+

Lp(x)(Ω)

) 1
(p′)− ‖un−u‖Lp(x)(Ω),

∫
{un>u}

|∇u|p(x)−1 |un − u| dx ≤
∫

Ω
|∇u|p(x)−1 |un − u| dx ≤ 2

(
2+‖|∇u|‖p

+

Lp(x)(Ω)

) 1
(p′)− ‖un−u‖Lp(x)(Ω).

Therefore (3.15) is verified.
Owing to (3.14), (3.15) and (3.13) we obtain

(3.16) lim
n→∞

∫
Ω
f(x, Tun,∇Tun)(un − u) dx = 0.
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Due to (3.12) and (3.16), inequality (3.10) becomes

lim sup
n→∞

〈Γ(un), un − u〉 ≤ 0.

From (S)+−property of the operator −∆p(x) −∆q(x) in conjuction with (3.9), we have the

strong convergence un → u in W
1,p(x)
0 (Ω). Then

(3.17) Γ(un)→ Γ(u).

In view of (3.17) and un → u in W
1,p(x)
0 (Ω), one has Aλun ⇀ Aλu, 〈Aλun, un〉 → 〈Aλu, u〉,

then the operator Aλ is pseudomonotone.

In order to prove that the operator Aλ : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω) is coercive we observe

that in view of (3.8) and (3.4) we obtain

〈Aλu, u〉 ≥
∫

Ω
|∇u(x)|p(x) dx+ λ

∫
Ω
π(x, u)u dx−

∫
Ω
f(x, Tu,∇(Tu))u dx

≥
∫

Ω
|∇u(x)|p(x) dx+ λr1

∫
Ω
|u|p(x) − λr2 −

∫
Ω
f(x, Tu,∇(Tu))u dx.(3.18)

For every u ∈ W 1,p(x)(Ω), using hypothesis (H), Young inequality, Hölder inequality and
(2.3), for each ε > 0 we have

(3.19)∣∣∣∣∫
Ω
f(x, Tu,∇(Tu))u dx

∣∣∣∣ ≤ ∫
Ω

(
σ(x)|u(x)|+ a|∇(Tu)|p(x)−1|u(x)|

)
dx

≤ 2kp ‖σ‖Lp′(x)(Ω) ‖u‖+ 2akp

(
‖|∇u|p(x)−1‖Lp′(x)(Ω) + ‖|∇u|p(x)−1‖Lp′(x)(Ω)

)
‖u‖+

a

[
ε

∫
Ω
|∇u|p(x) dx+ cε

∫
Ω
|u|p(x) dx

]
.

Taking into account (3.19), (2.3), (3.4) and (3.5) then (3.18) becomes

(3.20)
〈Aλu, u〉 ≥ (1− aε)

∫
Ω
|∇u|p(x) dx− d ‖u‖+ (λr1 − acε)

∫
Ω
|u(x)|p(x) dx− λr2

≥ (1− aε) ‖u‖p
−
− d ‖u‖+ (λr1 − acε)

∫
Ω
|u(x)|p(x) dx− λr2 for all ‖u‖ ≥ 1.

Because of p− > 1, choosing ε ∈ ]0, 1[, from (3.20) we get coercivity of operator Aλ for all
λ > acε

r1
.

Since the operator Aλ : W
1,p(x)
0 (Ω) → W−1,p′(x)(Ω) is bounded, pseudomonotone and co-

ercive, Theorem 2.1 ensures that exists u ∈ W 1,p(x)
0 (Ω) which solves (Tλ) and the proof is

complete. �

Remark 3.1. We observe that it is possible to improve growth condition (H) replacing it
with the more general condition
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(Hβ) there exist a positive constant a, a function σ ∈ Lp
′(x)(Ω) and β ∈ C(Ω̄) with

0 ≤ β− ≤ β+ <
(
p
p∗

)−
such that

|f(x, s, ξ)| ≤ σ(x) + a|ξ|
β(x)

p(x)−β(x) for a.e.x ∈ Ω, for all s ∈ [u(x), u(x)], for all ξ ∈ RN .

This condition extends to variable case the growth condition present, for example, in

[22] and [24]. In particular, condition β+ <
(
p
p∗

)−
ensures the well posedness of space

L
p

p−β (x)
(Ω) and, in the light of Theorem 2.3 of [11], provides the compact embedding of

W
1,p(x)
0 (Ω) in L

p
p−β (x)

(Ω), that we need in proof of Theorem 3.1. We should be observed
that condition (Hβ) entailes other estimates, similar to (3.4) and (3.5).

Our main result on problem (P ) is the following.

Theorem 3.2. Let u and u be a subsolution and a supersolution of problem (P ), respec-
tively, with u ≤ u a.e. in Ω such that hypothesis (H) is fulfilled. Then problem (P ) possesses

at least one solution u ∈W 1,p(x)
0 (Ω) satisfying the location property u ≤ u ≤ u a.e. in Ω.

Proof. Fixed λ > 0 sufficiently large, Theorem 3.1 ensures the existence of u ∈ W 1,p(x)
0 (Ω)

that is a solution of the truncated auxiliary problem (Tλ). We want to prove that u ≤ u ≤
u a.e. in Ω.

Choosing (u− u)+ ∈W 1,p(x)
0 (Ω) as a test function in (2.5) and in (Tλ), we obtain that

(3.21) 〈Γ(u), (u− u)+〉 ≥
∫

Ω
f(x, u,∇u)(u− u)+ dx,

and

〈Γ(u), (u− u)+〉+ λ

∫
Ω
π(x, u)(u− u)+dx =

=

∫
Ω
f(x, Tu,∇(Tu))(u− u)+dx.(3.22)

Subtract (3.21) from (3.22) and use (3.1) we get

〈Γ(u), (u− u)+〉 − 〈Γ(u), (u− u)+〉+ λ

∫
Ω
π(x, u)(u− u)+ dx

≤
∫

Ω

(
f(x, Tu,∇(Tu))− f(x, u,∇u)

)
(u− u)+ dx(3.23)

=

∫
{u>u}

(
f(x, Tu,∇(Tu))− f(x, u,∇u)

)
(u− u) dx = 0.

We observe that the classical inequality

(3.24) (|ξ|h−2ξ − |η|h−2η) · (η − ξ) ≥ 0 for ξ, η ∈ RN and for each h > 1
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ensures

〈Γ(u), (u− u)+〉 − 〈Γ(u), (u− u)+〉

=

∫
{u>u}

(
|∇u|p(x)−2∇u− |∇u|p(x)−2∇u

)
· ∇(u− u)dx∫

{u>u}

(
|∇u|q(x)−2∇u− |∇u|q(x)−2∇u

)
· ∇(u− u)dx ≥ 0.(3.25)

From (3.2), (3.23) and (3.25) we obtain that

0 ≤ λ
∫
{u>u}

(u− u)p(x) dx = λ

∫
Ω
π(x, u)(u− u)+ dx ≤

〈Γ(u), (u− u)+〉 − 〈Γ(u), (u− u)+〉+ λ

∫
Ω
π(x, u)(u− u)+ dx ≤ 0.

It follows that u ≤ u a.e in Ω.
With similar calculations we can show that u ≤ u a.e in Ω. Consequently, it results

Tu = u, Π(u) = 0 and so the solution u of the auxiliary truncated problem (Tλ) is a
solution of the original problem (P ). �

4. Application and example

Goal of this section is to costruct a subsolution u ∈ W 1,p(x)(Ω) and a supersolution

u ∈ W 1,p(x)(Ω) of problem (P ) with 0 ≤ u < u a.e. in Ω in order to apply Theorem 4.1.
We introduce the following assumptions:

(H1) there exists a function g ∈ C(Ω×R) with g(x, 0) ≥ 0, g(x, 0) 6≡ 0 ∀x ∈ Ω, such that
s→ g(x, s) is nonincreasing in s ∈ [0,∞[, for all x ∈ Ω, and

f(x, s, ξ) ≥ g(x, s) a.e. x ∈ Ω, ∀s ∈ R, ∀ξ ∈ RN ;

(H2) there esists a positive constant α0 ∈ R such that

f(x, α0, 0) < 0 a.e. x ∈ Ω.

The following result allows to get existence of nonnegative solutions to problem (P ).

Theorem 4.1. Assume that conditions (H1) and (H2) hold, and

|f(x, s, ξ)| ≤ σ(x) + a|ξ|p(x)−1 a.e. in Ω, for all s ∈]0, α0], for all ξ ∈ RN ,

for σ ∈ Lp′(x)(Ω) and a positive constant a. Then, problem (P ) admits at least one non-

negative solution u ∈W 1,p(x)
0 (Ω) satifying u(x) < α0 a.e. in Ω.

Proof. In virtue of hypothesis (H1) there exists a positive constant M ∈ R such that

M = max
x∈Ω

g(x, 0).

Consider the problem

(4.1)

{
−∆p(x)u−∆q(x)u = M in Ω,

u = 0 on ∂Ω.
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We claim that problem (4.1) admits one unique solution w ∈ W
1,p(x)
0 (Ω). Consider

the operator Γ given by (2.7) and further comments. Using Theorem 2.1 there esists

w ∈W 1,p(x)
0 (Ω) such that

〈Γ(w), v〉 = 〈M,v〉 =

∫
Ω
Mv(x) dx

for all v ∈ W 1,p(x)
0 (Ω). Then w ∈ W 1,p(x)

0 (Ω) ia a weak solution to problem (4.1) and this
solution is unique due to (3.24) and to the strict monotonicity of the operator Γ.

Choosing −w− ∈W 1,p(x)
0 (Ω) in (4.1) as test function one has

∫
Ω
|∇w|p(x)−2∇w · ∇(−w−)dx+

∫
Ω
|∇w|q(x)−2∇(w) · ∇(−w−)dx =

∫
Ω
M(−w−)dx,

then

0 ≤
∫
{w<0}

|∇w|p(x)dx ≤
∫
{w<0}

|∇w|p(x)dx+

∫
{w<0}

|∇w|q(x)dx =

∫
{w<0}

Mwdx ≤ 0.

From Lemma 2.1 we have w ≥ 0 a.e. in Ω. On the other hand, condition M > 0 implies
that w 6≡ 0 Moreover, from Theorem 4.1 of [10] we have that w ∈ L∞(Ω).

Now, we claim that there exists a unique solution of following problem

(4.2)

{
−∆p(x)u−∆q(x)u = g(x, u(x)) in Ω,

u = 0 on ∂Ω.

Consider the function g∗ : Ω× R→ R defined by

g∗(x, s) =


g(x, 0) s < 0,

g(x, s) 0 ≤ s ≤ w(x),

g(x,w(x)) s > w(x),

∀x ∈ Ω, ∀s ∈ R

and put

G∗(x, s) =

∫ s

0
g∗(x, z)dz ∀x ∈ Ω, ∀s ∈ R.

We observe that g∗ is a Carathéodory function and moreover we have

(4.3) min
x∈Ω

g∗(x, ‖w‖∞) ≤ g∗(x, s) ≤M ∀x ∈ Ω, ∀s ∈ R.

Consider the following problem

(4.4)

{
−∆p(x)u−∆q(x)u = g∗(x, u(x)) in Ω,

u = 0 on ∂Ω,

and the functional I : W
1,p(x)
0 (Ω)→ R defined by

I(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
Ω

1

q(x)
|∇u|q(x)dx−

∫
Ω
G∗(x, u(x))dx.
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Conditions (4.3) and p− > 1 ensure that I is coercive and it belongs to C1(W
1,p(x)
0 (Ω),R)

with

〈I ′(u), v〉 =

∫
Ω
|∇u|p(x)−2∇u · ∇vdx+

∫
Ω
|∇u|q(x)−2∇u · ∇vdx−

∫
Ω
g∗(x, u(x))v(x)dx

for each u, v ∈W 1,p(x)
0 (Ω). Also, using the embedding theorem, we see that I is sequentially

weakly lower semicontinuous. Therefore, by the Weierstrass-Tonelli theorem, we can find

u ∈W 1,p(x)
0 (Ω) such that

(4.5) I(u) = inf
W

1,p(x)
0 (Ω)

I(u).

From (4.5) we have I ′(u) = 0 so we obtain

(4.6)

∫
Ω
|∇u|p(x)−2∇u · ∇hdx+

∫
Ω
|∇u|q(x)−2∇u · ∇hdx =

∫
Ω
g∗(x, u)hdx,

for all h ∈ W 1,p(x)
0 (Ω), i.e. u is a weak solution for problem (4.4). Choosing h = −u− ∈

W
1,p(x)
0 (Ω) as test function in (4.6) and taking into account g(x, 0) ≥ 0, we have

0 ≤
∫
{u<0}

|∇u|p(x)dx+

∫
{u<0}

|∇u|q(x)dx =

=

∫
{u<0}

g(x, 0)(−u−)dx ≤ 0.

Hence, from Lemma 2.1, we have u ≥ 0 a.e. in Ω. Because of g∗(x, 0) = g(x, 0) 6≡ 0, we
observe that u 6≡ 0.

By choosing (u− w)+ ∈W 1,p(x)
0 (Ω) as test function in (4.1) and (4.4), we have

0 ≤
∫

Ω
|∇u|p(x)−2∇u·∇(u−w)+dx+

∫
Ω
|∇u|q(x)−2∇u·∇(u−w)+dx =

∫
Ω
g∗(x, u)(u−w)+dx

and∫
Ω
|∇w|p(x)−2∇w · ∇(u− w)+dx+

∫
Ω
|∇w|q(x)−2|∇w · ∇(u− w)+dx =

∫
Ω
M(u− w)+dx

and so we obtain ∫
Ω

(
|∇u|p(x)−2∇u− |∇w|p(x)−2∇w

)
· ∇(u− w)+dx

+

∫
Ω

(
|∇u|q(x)−2∇u− |∇w|q(x)−2∇w

)
· ∇(u− w)+dx

=

∫
Ω

(
g∗(x, u)−M

)
(u− w)+dx .

Taking into account hypothesis (H1) and classical inequality (3.24) we have

0 ≤
∫
{u>w}

(
|∇u|p(x)−2∇u− |∇w|p(x)−2∇w

)
· ∇
(
u− w

)
dx
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≤
∫
{u>w}

(
|∇u|p(x)−2∇u− |∇w|p(x)−2∇w

)
· ∇
(
u− w

)
dx

+

∫
{u>w}

(
|∇u|q(x)−2∇u− |∇w|q(x)−2∇w

)
· ∇
(
u− w

)
dx =

=

∫
{u>w}

(
g(x,w(x))−M

)
(u− w)dx ≤ 0 ,

hence, from Lemma 2.1, we have u ≤ w a.e. in Ω. Therefore g∗(x, u) = g(x, u) and u is
a nonnegative solution of (4.2). Moreover, u is unique (for the proof see for example [9],
[19]).

Now we claim that function u is a subsolution of problem (P ) .
In fact, taking into account hypothesis (H1) and taking in the mind that u is solution of
(4.2) we obtain∫

Ω
|∇u|p(x)−2∇u · ∇vdx+

∫
Ω
|∇u|q(x)−2∇u · ∇vdx =

∫
Ω
g(x, u)vdx ≤

∫
Ω
f(x, u,∇u)vdx

for all v ∈W 1,p(x)
0 (Ω).

From hypothesis (H2) we have that the constant function u = α0 is a supersolution of

problem (P ); in fact for all v ∈W 1,p(x)
0 (Ω), v ≥ 0 it results∫

Ω
|∇u|p(x)−2∇u·∇vdx+

∫
Ω
|∇u|q(x)−2∇u·∇vdx = 0 ≥

∫
Ω
f(x, α0,∇α0)vdx =

∫
Ω
f(x, α0, 0)vdx.

Now, we claim that u ≤ α0 = u a.e x ∈ Ω.
We observe that from hypotheses (H1) and (H2) with ξ = 0, s = α0 we have

g(x, α0) ≤ f(x, α0, 0) < 0 ∀x ∈ Ω.

Using (u−α0)+ ∈W 1,p(x)
0 (Ω) as test function in (4.2), and taking into account hypothesis

(H1), we have∫
Ω
|∇u|p(x)−2∇u · ∇(u− α0)+dx+

∫
Ω
|∇u|q(x)−2∇u · ∇(u− α0)+dx

=

∫
Ω
g(x, u)(u− α0)+dx ≤

∫
Ω
g(x, α0)(u− α0)+dx,

then

0 ≤
∫
{u>α0}

|∇u|p(x)dx+

∫
{u>α0}

|∇u|q(x) ≤
∫
{u>α0}

g(x, αo)(u− α0)dx ≤ 0.

From Lemma 2.1 we have u ≤ α0 a.e. x ∈ Ω. We observe that hypothesis (H) holds for the
constructed subsolution u and supersolution u of our problem (P ). Therefore, Theorem 4.1

ensures the existence of a solution u ∈W 1,p(x)
0 to problem (P ), which satisfies the property

u ≤ u ≤ u a.e. in Ω. Taking into account that u ≥ 0, we conclude that u is nonnegative.
This completes the proof. �

Finally, we present an example of problem, which admits al least one nonnegative solu-
tion. Our aim is to apply Theorem 4.1.
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Example 4.1. Let Ω ⊂ RN be, with N ≥ 3 and consider p, q ∈ C(Ω) with 1 < q(x) <
p(x) <∞, for all x ∈ Ω. Let f : Ω× R× RN → R be defined by

f(x, s, ξ) = g(x, s) + h(ξ) for all (x, s, ξ) ∈ Ω× R× RN ,
with

g(x, s) =


|x|+ 1 if x ∈ Ω, s ≤ 0,

(|x|+ 1)(1− s) if x ∈ Ω, 0 < s ≤ 2,

− (|x|+ 1) if x ∈ Ω, s > 2,

and

h(ξ) = min
{
|ξ|p−−1, |ξ|p+−1

}
for all ξ ∈ RN .

We observe that

|f(x, s, ξ)| = |g(x, s)+h(ξ)| ≤ |g(x, s)|+|h(ξ)| ≤ (|x|+1)+min
{
|ξ|p−−1, |ξ|p+−1

}
≤ (|x|+1)+|ξ|p(x)−1,

a.e. in Ω, for all s ∈ [0, 2], for all ξ ∈ RN and so condition requested in Theorem 4.1 is
verified by choosing a = 1, α0 = 2 and σ(x) = |x| + 1. On the other hand, since h(ξ) ≥ 0
for all ξ ∈ RN , we have

f(x, s, ξ) = g(x, s) + h(ξ) ≥ g(x, s) a.e. x ∈ Ω, ∀ s ∈ R, ξ ∈ RN ,
and

f(x, 2, 0) = g(x, 2) = −(|x|+ 1) < 0 a.e. x ∈ Ω

which return hypotheses (H1) and (H2) respectively. This allows the Theorem 4.1 to be
applied to the problem (P ) with f given above.
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